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1.  Introduction
The evolution of random wave fields is a complex problem that has often been treated as a spatially ho-
mogeneous or stationary process in which nonlinear wave evolution is represented by 4-wave nonlinear 
interactions that control the cascade of energy to shorter components with a source of energy from the 
wind and dissipation by wave breaking (e.g., Hasselmann, 1962; Phillips, 1985). A particular difficulty of the 
problem is the interaction of multiple scales that introduce effective non-homogeneities, in particular the 
short waves are expected to respond to the orbital velocities and apparent gravity of the long waves. Recent 
parameterizations of the spectral wave dissipation have used empirical representations of enhanced break-
ing of short waves induced by long waves (Donelan et al., 2012; Romero, 2019). This enhanced breaking 
may explain a large change in the energy level of waves with periods 1–2 s. However, it requires a detailed 
justification. Here, we will ignore the effect of the short wave nonlinearity that are discussed by Zhang and 
Melville (1981), and that are certainly important for the eventual evolution of short waves toward breaking. 
Instead we focus on the nonhomogeneity of linear shorter wave components that is caused by the presence 
of linear longer wind-generated waves. This effect is generally called modulation. Very similar effects occur 
when surface gravity waves interact with internal waves (Lewis et al., 1974) or much longer gravity waves 
such as tides (Ardhuin et al., 2012).

Much of the previous modulation theory and observation work was motivated by the analysis of remote 
sensing data, in particular the modulated power of microwave radar signals backscattered from short gravi-
ty-capillary waves, which is routinely used to measure wind and waves. These investigations have produced 
very useful theoretical and empirical transfer functions in which the local wind speed and direction play 
an important role (e.g., Hara et al., 2003; Hasselmann et al., 1985; Keller & Wright, 1975). The early works 
were also associated to possible net growth or decay of long waves as an indirect interaction of long waves 
and wind through the presence of short waves (Garrett & Smith, 1976; Hasselmann, 1971; Longuet-Hig-
gins, 1969). Such effects may indeed be relevant to swell dissipation or the generation of the long-period 
fore-runners described by Munk et al. (1963).

Abstract  The wave action equation provides a general framework that has been applied to the 
conservative hydrodynamic interactions between short and long surface waves. So far, only a limited range 
of solutions have been investigated. Here, we show that the wave action equation predicts that groups of 
short waves propagating over long monochromatic waves are unstable. We demonstrate theoretically and 
numerically, a new ratchet-type instability that progressively condenses short wave action around the long 
wave crests due to the correlation of phase speed and action fluctuations. This instability is of particular 
interest because it may lead to a higher probability of breaking for short waves propagating in directions 
within ±35 degrees of the dominant waves direction. This preferred breaking could has a strong impact on 
cross- and down-wind slope statistics and thus air-sea exchanges and remote sensing.

Plain Language Summary  Short waves riding on long waves tend to focus their energy 
near the crest of the long waves. This focusing is most pronounced for short waves propagating within 35 
degrees of the long wave direction, and may lead to a preferential breaking of short waves. This effect may 
explain the relatively low energy observed in short waves that propagate near the direction of the long 
waves.
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Our purpose differs from these previous works as we focus on not-so-short modulated components, with 
typical wavelengths around 1 m. For these wavelengths, and for the average wind speed of 7 m/s, a typ-
ical growth rate given by Equation 1 in Plant  (1982) is   0.01 s−1. Over a typical long wave period of 
10 s, this gives a growth of only 10%, which we shall neglect. Our interest is the intermittent variability of 
wave properties, including the mean energy level of the not-so-short waves as a function of direction. One 
particular motivation for this study is that the energy balance of waves beyond two times the dominant 
frequency requires some poorly understood “cumulative dissipation” (e.g., Ardhuin et al., 2010; Banner & 
Morison, 2010; Banner et al., 2002), which may be related to modulation-type processes, possibly associated 
with steep long waves (Kharif, 1990). Recent observations of meter-scale waves have revealed a suppressed 
energy level for short waves aligned with the dominant waves (Leckler et al., 2015; Peureux et al., 2018), that 
cannot be explained by nonlinear 4-wave interactions alone (Peureux, 2017).

It has been recognized for a long time that the dominant waves may organize the evolution of the shorter 
components by many modulation processes (Longuet-Higgins & Stewart, 1960, hereinafter LH&S), with 
a possible influence on the spectra of both short and long waves (Banner et al., 1989; Hasselmann, 1971). 
We have thus decided to revisit the modulation effect for meter-scale short gravity waves in the presence 
of longer waves. Here, we consider a highly simplified model without sources or sinks of energy, following 
the classic paper of LH&S. This conservative model is known to be unrealistic in the case of waves over 
tidal currents, for which wave breaking severely limits the predicted steepness (Ardhuin et al., 2012). Still it 
exhibits some interesting behavior that has not been described before. In particular, we find that the short 
wave steepness can be much larger than predicted by LH&S.

The theoretical model is described in Section 2. Section 3 presents the solutions and describes the impor-
tance of the terms neglected by LH&S. Section 4 gives a prediction for an envelope instability that is verified 
numerically. These results are then discussed in Section 5 in the context of random wave breaking and a 
cumulative effect of long waves on short waves.

2.  Problem Statement
Here, we consider a narrow-band field of short waves propagating over a varying large scale velocity field 
with a horizontal component U and a vertical component W in deep water. The short waves are charac-
terized by an energy density E per unit horizontal surface, a wave vector k, an intrinsic radian frequency 

   k , and an associated action density (e.g., Phillips, 1977)


 .EN� (1)

The short waves have intrinsic phase velocity  /C k and group velocity   /gC k. The distribution 
of the short wave energy in space and time is given by the wave-action conservation equation and the con-
servation of crests (Bretherton & Garrett, 1968; Phillips, 1977),

         0t gN NC U� (2)

       0,tk k U� (3)

where      ,x y , provided the external current varies slowly compared to the short waves wave length, 
and neglecting other sources and sinks of energy such as wind input or breaking dissipation. The short wave 
energy is related to the local envelope amplitude a as given by Equation 4.11 in LH&S,


 

   
 

21 11 .
2 2 tE ga W

g
� (4)

Here, we assume that the short waves are in deep water, so that the radian frequency σ and wave number k 
are related by the dispersion relation
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 2 ,g k� (5)

where the apparent gravity g  is the gravity acceleration modified by the long wave induced downward 
vertical acceleration

 
   

 
 11 .tg g W

g
� (6)

which slightly differs from the factor in Equation 4. This was not taken into account in LH&S but it is taken 
into account in later works (e.g., Elfouhaily et al., 2001; Longuet-Higgins, 1991). In deep water, the group 
speed is related to the phase velocity through





1 .

2 2g
C gC

k
� (7)

Together with Equations 5–7, the system of Equations 2 and 3 governs the evolution of the short waves 
envelope.

We consider a large-scale flow U given by a deep-water monochromatic longer wave of steepness   1L , 
wave number kL, radian frequency  L, phase speed  /L L LC k , and a phase   L Lk x t

  cos ,L LU C� (8)

the vertical velocity

  sinL LW C� (9)

and the apparent gravity

    1 cos ,L gg g M� (10)

where Mg = −1 (Phillips, 1977). The long wave orbital velocity given by Equation 8 is associated with a long 
wave surface elevation  / cosL Lk , so that   0  corresponds to the crests and   180  to the troughs.

LH&S proposed solutions for the 1D case in which they neglected the gradients of the short waves group 
velocity compared to the gradients of the orbital currents. It simplified greatly the algebra and lead them to 
a general first order solution for any short waves modulated variable

      1 cos ,i L XX X M� (11)

where the property X of the short waves only depends on the long wave phase and Xi is the mean value of 
X. MX is usually called the modulation transfer function (MTF) for the variable X. MX is of the order of unity 
for most variables, especially MN = 1 and Mk = 1 in the LH&S approximate solution.

In the following, we investigate the modulation in more general conditions, and this departure from the 
mean short waves behavior, normalized by the long wave steepness, is a periodic function of time and space,

   





,
Δ , ,i

L i

X x t X
X x t

X
� (12)

and the MTF MX in Equation 11 appears in the Fourier series expansion of ΔX as a ψ-periodic function:

      



      , ,

2
Δ , cos cosX X X n X n

n
X x t M M n� (13)
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This generalization of the modulation is particularly necessary when the modulation is not stationary. From 
now on, we will often refer to the maximum modulation after a given time to characterize the short waves 
field.

For simplicity, we consider the problem in which all quantities are invariant along the y-axis, that is, along 
the long wave crests, so that ky remains constant along the propagation, and all y partial derivatives are can-
celled. This assumption transforms Equations 2 and 3 to their simplified versions

       / 2 0t xN C U N� (14)

       / 0,t x x xk C U k� (15)

where   /xk k is the cosine of the short waves propagation direction, which will be used for numerical 
simulations. Changing variables from N and kx to N and C, with  /C g k , gives the alternative set of 
equations, which will be used for analytical calculations,

       



   

  
      

  
        2 2

2

3 2 / 2 1 / 2

t x

x x x

C U N

N C N C g g N U
� (16)

     



 

  
      

  
       

2

2

/ 2 / 2 ,

t x

x t x

C U C

C U C g C U g
� (17)

with derivation details given in Appendix A.

At time t = 0, a monochromatic and unidirectional short wave is considered, with a slight deviation along 
the long wave direction that can encompass any kind of random modulation by the latter, considering the 
modulation of the order of the long wave steepness, in other words

      0, i LN t x N N x� (18)

      0, i LC t x C C x� (19)

       0,x i i L xk t x k k x� (20)

with

     
   

 
   

  

21 cos .
2

x
g i L

i

k x
C x M

k
� (21)

We may also consider more general initial conditions,

     



   , ,

2
0 / cos cosi N i N n i

n
N t N M M n� (22)

      




 
   

 
, ,

2
0 cos cos .x i i k i k n i

n
k t k M M n� (23)
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LH&S initial condition corresponds to MN, i = Mk, i = 1 and (MN)n,i = (Mk)
n,i = 0, n ≥ 2. In the following, initial conditions harmonics with n ≥ 2 will 
be set to zero for simplicity: we have found that these give perturbations 
that do not qualitatively change the nature of the solutions.

As a result the initial condition on C is (see Appendix A for more details),

       ,0 1 cosi L C iC t C M� (24)

at order L, where    2
, ,0.5 .C i g i k iM M M

To summarize, our problem is fully determined by the initial conditions 
for the short wave wavenumber and action Mk, i (t = 0, x) and MN, i (t = 0, 
x) and 3 parameters, namely the long wave steepness L, the initial scale 
ratio ki/kL, and the short waves propagation direction with respect to the 
long wave i, or   cosi i. Simulation results are linear in Ni, and inde-
pendent of the short waves initial steepness.

In the following, the coupled Equations 14 and 15, together with initial 
conditions 22 and 23 are solved numerically using a procedure detailed 
in Appendix B and summarized here. As spatially periodic solutions are 
sought, the simulation spatial domain is reduced to a single long wave 
length, from   0  to   360 , with periodic boundary conditions. The 
problem is solved in a frame moving with the long wave phase velocity. 
Following up on our interest in short wave breaking, we will particular-
ly focus on the long wave crests,   0 , because the largest short wave 
steepness is obtained there.

3.  Modulation of Two Collinear Wave Trains
3.1.  Numerical Simulation

We first consider the simplified 1D configuration where short and long waves are aligned along the x-axis. 
The short waves do not refract and    1i  is a constant for the moment. Starting from a uniform dis-
tribution, the evolution of short wave action N, wavenumber kx and short waves steepness ak is shown in 
Figure 1 for ki/kL = 10 and   0.1L .

The space and time evolution of the wavenumber kx is nearly periodic, with higher values (shorter wave-
lengths) around the crests of the long waves. Away from the long wave crests, there is a local maximum that 
travels at the speed of a short wave group with a position shown with the dotted line. The pattern of the 
action and steepness are similar except that they are clearly not periodic: the wave packet that starts from 
the trough gains action and steepness each time it goes over a long wave crest, but it only loses part of that 
gain as it goes in the following trough. Conversely, a wave packet that starts from the wave crest loses action 
and steepness as it goes over a trough, but only recovers some of that when going over the next crest. What 
happens is a progressive condensation of action along the trajectory of the first short wave group, the one 
starting from the trough, and the passage of the wave crests. As the total action is conserved, this gain of one 
wave group goes with a loss of the neighboring wave groups.

Because the long wave orbital contribution converges on the forward face of the long waves, the increase 
in short wave action occurs one-quarter of period later, that is, on the crest. This effect is already present in 
the LH&S solution. What we find here, is that the additional change in advection velocity due to the mod-
ulation of the short wave group speed gives an additional amplification. This amplification has a nonzero 
mean effect because the modulations of N and  0.5 /gC g k  are correlated: the average perturbation in 
the advection of action is a product Cg'N' that on average is not zero because of the phase relation between 
N and k. As a result, every long wave cycle brings a little more convergence and the maximum value of N 
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Figure 1.  Evolution of short wave properties, action N, wavenumber k 
and slope ak, in the frame of reference moving with the long wave phase ψ, 
with   0 corresponding to the long wave crest. The short wave quantities 
are normalized by the long wave slope L, following the definition of the 
modulation in Equation 12. The case shown here is for ki/kL = 10,   0.1L

,   1i  and Co = 0.1, starting with a uniform distribution of N and k at 
t = 0. The black dots correspond to successive positions of a linear wave 
group starting from the trough of the long wave profile and propagating at 
apparent speed of the short wave groups 0.5Ci (see Appendix C).
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keeps growing at each cycle. This leads to a pattern of very sharp action maxima that travels along the long 
wave profile at a speed that is, very close to the short wave group speed (dotted lines in Figure 1). Every time 
the maximum goes over the crest of a long wave it is amplified a little more.

A more quantitative understanding is provided by the time evolution of both the wave action and the wave 
number modulations as presented in Figure 2 following a long wave crest, that is,   0 , corresponding 
to a vertical slice through Figure 1. Two simulations are shown starting from either the modulated LH&S 
profile (MN, i = Mk, i = 1) or a uniform distribution along the long wave profile (Mk, i = MN, i = 0). This second 
option corresponds to the sudden appearance of a long wave perturbation in the middle of a homogeneous 
short wave field. It is less clear under which the first option may be realized, given that the solution appears 
to be unstable. Indeed, the top panel suggests that the LH&S solution is much more stable with modulations 
locked in phase with the long wave crests and an amplitude of 1, but still the numerical solution slowly 
deviates and produces higher and lower values of N and k.

In general, the modulation of k is less pronounced than the modulation of N. The time evolution of k is 
given by Equation 15 alone, as C is a function of k only, and develops into the typical saw-tooth profile 
due to the nonlinearity brought by the piece of the advection velocity (the short wave phase speed) that is, 
proportional to k−0.5. This is similar to the formation of shocks for shoaling waves in the shallow water equa-
tion. Such a formation of shocks is a common property of all nonlinear Burgers-type advection equations 
(Whitham, 1974). The numerical scheme here does not fully capture the shocks and keeps them relatively 
smooth.

The combined behavior of N and k leads to a progressive steepening of the short waves, due to the growth 
of the wave action peaks almost in phase with those of the wave number (see Figure  2). Again, while 
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Figure 2.  Time evolution of the relative change of the modulation of wave action N, wave number k and steepness ak 
following long wave crests for a short waves train with ki/kL = 10,   0.1L ,   1i  and Co = 0.1. Panel (a) corresponds to 
LH&S initial conditions MN, i = Mk, i = 1, and panel (b) to homogeneous initial conditions MN, i = Mk, i = 0 as in Figure 1. 
The stability analysis solution and its envelope correspond to the analytical solution of Appendix C.

(a)

(b)
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the steepness of the LH&S initial conditions almost does not evolve, the 
maximum steepness from any other cosine-distributed initial condition 
is much larger.

The longer term evolution shown in Figure 2 later has MN exceeding 10 
after 10 long wave periods. This focusing is typical of Burgers-type advec-
tion equations. The later stabilization at  40NM  for larger times (see 
Figure 3) is beyond the scope of the present paper and may be due to nu-
merical diffusion. Anyway, such large values should never be reached for 
short waves with average steepness ak > 0.1 in the presence of long waves 
with similar steepness, because short wave breaking should occur before.

The growth of the wave action disappears when the advection is line-
arized, as done by LH&S, when neglecting the  x gC  terms in both Equa-
tions 2 and 3 compared to  xU.

3.2.  Stability Analysis

The behavior of the short waves is investigated analytically in a weak 
nonlinear interactions framework by switching to the alternative set of Equations 16 and 17, with initial 
conditions 22 and 24. The procedure used to solve this problem is detailed in Appendix C for the 2D and 
summarized here in the 1D case. Using a classical perturbation expansion in powers of the long wave steep-
ness L, the perturbation induced by the long waves modulation through the first order solution {N1, C1} on 
the initial state {N0, C0} follows (see Appendix C)

            0 1 0 0 1/ 2 / 2t x x xC N N U N C� (25)

                 0 1 0 0 0/ 2 / 2 / 2 .t x x t xC C C U C g C g� (26)

Already the sources of the instability are visible. There is a single way coupling occurring here. The evolu-
tion of C1 given by Equation 26 is stand-alone, and is plugged into the one of N1 through the right-hand side 
of Equation 25. As both equations have the same left-hand side operator, they have the same natural fre-
quency. The forcing operated by the term  1xC  in the Equation 25 forces N1 at its resonance frequency (secu-
lar term), giving rise to an exponential growth of the solution. That term was precisely neglected by LH&S.

In that case, the perturbative expansion cannot be applied, and approximate solutions are obtained using 
a multiple time scale method (see Appendix C). Especially, the resonance results in an exponential growth 
of the wave action maxima (the total wave action being conserved) with typical e-folding time τ estimated 
from (93), which reduces to

 

  ,

1 1Ω 1
4

i
L L k i

L

C M
C� (27)

assuming a 1D case and using  Ci/CL ≪ 1. This expression is valid for times   1
L , typically of the order 10 

long wave periods. The growth which takes place does not change the total wave action over the long wave 
profile, but modifies its distribution as explained in the previous section. A comparison of the approximate 
solution with the numerical simulation of the previous paragraph is presented in Figure 3 (gray lines). For 
most cases, the growth predicted theoretically is first slower than the one modeled, overpasses it at large 
enough times, but still presents a behavior to the one computed numerically.

The influence of initial conditions on the growth of the solution is presented in Figure 4. For both the 
numerical and the stability analysis solution, this diagram clearly highlights an unstable equilibrium posi-
tion around the LH&S initial conditions. More precisely, for the analytical solution, a stationary solution is 
obtained when
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Figure 3.  Wave action modulation on wave crests (same case as Figure 2b 
for a longer time range).
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


  , 2 1,k i gM M� (28)

and the oscillations of the action profile are cancelled when





 , 1,N iM� (29)

where μ, χ and  are defined in Appendix C, Equations C24, C25, and C29. The combination of Equa-
tions 28 and 29 is very close to the LH&S solution. The exact stationary profile in 1D was studied by Kha-
rif (1990) and deviates slightly from a linearly modulated profile such as the ones taken as initial conditions. 
From Figure 4, the furthest the initial conditions from the stationary solution, the larger the oscillations of 
the solution around the stationary profile, and the largest the growth of action. It has to be noted that the 
modulation on k has more significant consequences on the growth of action than the modulation of action 
itself.

4.  Modulation of Noncollinear Wave Trains
Numerical simulations and analytical calculations, detailed in Appen-
dix C, have been performed for short waves propagating at an angle rel-
ative to the long wave propagation, that is, with   1. Both results are 
illustrated in Figure 5. The calculations predict a growth of the wave ac-
tion at the rate

     

   2

,
1 1Ω 1 3 2 ,

4
i

L L i k i i
L

C M
C� (30)

as given by Equation C27, with / 1i LC C .

The maxima of wave action modulation after 10 long wave periods are 
presented for two different long wave steepnesses   0.05L  and   0.1L  
(solid lines), and compared to the predictions of our analytical model, 
Equation 66 (dashed lines). The same qualitative behaviors are observed 
for both the analytical and the numerical solutions. The largest errors of 
the analytical model are found where the growth rate is the largest. In-
deed, the exponential growth expected in the stability analysis generally 
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Figure 4.  Maximum action modulation after 10 long wave periods from initiation as a function of various initial 
modulations. The runs are performed with ki/kL = 10,   0.1L ,   1i  and Co = 1. The white crosses stand for LH&S 
initial conditions MN, i = Mk, i = 1.

Figure 5.  Angular profile of action modulation maxima at the long waves 
crests over 10 long wave periods from initiation in the case MN, i = Mk, i = 0, 
  0.1L , ki/kL = 10,   1i  and Co < 0.1. The dashed lines are given by our 
analytical model.
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underestimates the growth of the numerical solution at early times. However, the general directional dis-

tribution is well captured. Especially, the growth rate Equation (30) becomes zero at    2 / 3i  which 

corresponds to   35i  and   145i . These angles define a ±35° sector around the upwave and downwave 
directions for which an excess breaking probability of short waves can be expected.

Qualitatively, the behavior of the noncollinear solutions is similar to collinear wave trains. There still exists 
for each initial direction i a stationary solution, for which modulation does not change, given at order 
L by expressions (28) and (29). For given cosine-distributed initial conditions, the distance of the initial 
modulation from the stationary solution determines both the amplitude of the subsequent modulation and 
instability.

5.  Discussion and Conclusions
From our analysis we found that short waves modulation by monochromatic long waves can be more com-
plex than the steady cosine shape variation in wave action and wavenumber given by the linearized solu-
tion of Longuet-Higgins and Stewart (1960). For a wide class of initial conditions, the short wave energy 
condenses into very steep and narrow wave packets around the long wave crests. This resonance mecha-
nism is expected to occur for other kinds of dispersive wave interactions, in particular for gravity waves in 
intermediate water depth. It can also be expected for any kind of dispersive wave packet periodically forced 
in space and time by an external source. A similar mechanism has already been reported and measured 
experimentally for the interaction between a surface and an internal gravity waves by Lewis et al. (1974), 
with a maximum of the interaction when the phase speed of the long wave matches the group speed of the 
short waves, corresponding to   0 in the analysis reported in Appendix C.

Although the qualitative behavior is the same regardless of the initial conditions, both the oscillations and 
the growth rate Equation 27 depend on the initial conditions, especially on the magnitude of the short wave 
perturbation along the long wave profile. There exists a stationary profile of short waves, close to the LH&S 
solution, but any deviation from that profile results in an exponential growth of the wave action maxima. 
Ultimately, this should lead to a steepening of the short waves profile and an increase of the breaking 
probability.

For a wide range of initial conditions there is locally, after about 10 long waves periods, an effect of the long 
waves on the short waves that is, 10 times larger than expected by LH&S. This effect is maximum for short 
and long wave propagating in the same direction, and is greatly reduced for direction differences larger 
than 20 degrees. Over this time scale, considering the empirical growth term of Plant (1982), the wind-wave 
generation can only be neglected for winds under 3 m/s or short wavelengths longer than 1 m. In these 
conditions, the occurrence of extreme short wave amplitude may be governed by the process described 
here. In order to be applied to the analysis of meter-scale wave breaking in the presence of longer waves, the 
instability of short wave packets that we describe here should be investigated in a more realistic setting. In 
particular, we expect that replacing the monochromatic long waves by random long wave groups will limit 
the magnitude of the maximum steepness as the forcing will only be coherent over only 10 or so long wave-
lengths. Also, this model may not be valid for all waves in a broad wind wave spectrum, as a scale separation 
assumption is required. Finally, the present theoretical framework is limited to order 1

L solutions, and can-
not be applied at long time scales for which nonlinear 4-wave resonant interactions will likely dominate the 
evolution of the wave field (Hasselmann, 1962).

In the ocean, short gravity waves ride on a random superposition of waves that is, different from the mono-
chromatic waves investigated here. We expect that significant modulations can be generated over the time 
scale of a few long wave periods, with oscillations around the LH&S solution. Future analysis may further 
combine generation and dissipation effects with the conservative case described here, possibly following 
Longuet-Higgins (1991). The short wave response to wave groups is another topic that should be investigat-
ed as a step toward a practical application for the parameterizations of spectral wave evolution.
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Appendix A:  Alternative Set of Equations

Equation for the phase speed C

Equation 15 is rewritten as a function of  /C g k . From the chain rule, the derivatives of C and kx are 
connected through

 
 
 

.x
x

C CdC dk dg
k g� (A1)

Knowing that     / / 2xC k C k  and     / / 2C g C g , then

   
      



 

     

     

 






/ 2 / 2

/ 2 / 2 / 2
t t x t

x x t

C C k k C g g

C k C U k C g g
� (A2)

from Equation 15. The x derivatives are then expanded and expressed as a function derivatives of C only. 
Especially, from Appendix A1, 

 
     

2 ',x x x x
k kk C g
C g� (A3)

and

    


             

2 21 1/ / 2 ,
2x x x x x x xk k k C C g g

k C
� (A4)

as xdk dk. After collecting the  xC terms in Appendix A2 using Appendices A3 and A4, Equation 17 is 
obtained.

The initial condition on C can be derived from the one on kx, Equation 23:

      0 / 0C t g k t� (A5)

              
22 2 2 2

,1 cos / 1 cos 1L g i i L k i i ig M k M k� (A6)

        2
,1 cos ,i L C i LC M � (A7)

where

i
i

gC
k

� (A8)

and




2
,

, .
2

g i k i
C i

M M
M� (A9)

A.2. Equation for N
Although Equation 14 is already expressed as a function of N and C, it can be expressed in a more conven-
ient way by expanding the x-derivative term. Especially:
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   

 

 

 
        

 
      

2 2
/ 2 / 2 .

t x x x

x x x

N C N N C N U

N C NC N U
� (A10)

Then, using Equation A4 and collecting terms in  xC, Equation 16 is obtained.

Appendix B:  Numerical Scheme

General Procedure
Any of the above equations can be translated in the frame moving with the long wave phase speed through 
a change of coordinates from (x,t) to   ,T  where ψ is the long wave phase and  LT t accompanied with 
a change of variables from N and kx to    , xq , where

   , / iN T N� (B1)

     , / .x x Lk T k� (B2)

Equations 14 and 15 are then written in a nonlinear advection form

     , 0.T fq q� (B3)

The flux function f is split into a quasi-linear term g and a ψ-dependent source term s

       , ,f g sq q q� (B4)

with

     





   
            

0.5
0.5 1 , 1

2 xg q� (B5)

and

                     
0.5, cos 1 cos 1 / 2 , / ,L L xs q q� (B6)

which includes the contributions of the orbital currents and the apparent gravity. Here, both functions are 
nonlinear, which requires a careful choice of numerical methods. We verified numerically that the scheme 
is conservative, in the sense that both the total action and wave number over the whole numerical domain 
(a long wave phase) are conserved during the time integration, within the round-off error.

The combination of a Runge-Kutta order 4 and the MUSCL4 numerical scheme of Kurganov and Tadmor 
(2000) is found to provide satisfying results for the numerical solution of the advection-only system and for 
the stability of the full solution computation. The Runge-Kutta scheme is used to solve the ODE

   
   1/2 1/2

1 ,
Δ

n n
j j jQ F F

x
� (B7)

where discretized quantities are indexed with j and 1/2
n
jF  corresponds to MUSCL numerical fluxes. The 

latter are computed according to

PEUREUX ET AL.

10.1029/2020JC016735

11 of 16



Journal of Geophysical Research: Oceans

   
 

   


  

 

 

 

 

  

1/2 1/2 1/2

max
1/2 1/2

1 1

1
2

n R L
j j j

R L
j j

n n
j j

F g Q g Q

Q Q

s Q s Q

� (B8)

where

   1/2 1 1
Δ
2

R n n
j j j

xQ Q σ� (B9)

  1/2
Δ
2

L n n
j j j

xQ Q σ� (B10)

 
  
 
 
 

1 1minmod ,
Δ Δ

n n n n
j j j jn

j x x
Q Q Q Q

σ� (B11)

where minmod (a, b) is equal to

0 if ab 0 B12� (B12)

 if 0, anda ab a b� (B13)

 if 0, andb ab a b� (B14)

   max max ,R L� (B15)

        
  

     
 

0.5 0.5
max 1 / 2 ,max 1 1 / 2R R R

j j j jj j
� (B16)

are the maximum wave speeds at a given time step (eigenvalues of the Jacobian matrix g') and where  R
j  is 

computed according to Equation B9.

The numerical resolution uses 128 points over the long wave wavelength, with periodic boundary condi-
tions        360 , 0 ,q T q T . The time step is chosen so that the Courant number Co is lower or 

equal to one




 max
ΔΔ ,CoT� (B17)

thus insuring the stability of the numerical scheme. As  max 1, the typical time step is Δ 1 / 128T  long 
wave periods.

B.2. Test Case
The numerical scheme was tested against the closest analytically solvable problem

      , 0.t xX U x t X� (B18)

verified both by X = N and X = kx, which are the same as Equations 14 and 15 without the self-advection 
term and the apparent gravity modification, or equivalent to reducing f in Equation B4 to
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       , 1 cos .Lf q q� (B19)

With initial condition        ,, 0 1 cosi L X iX x t X M  and in the case of a monochromatic long wave 
orbital current Equation 8, the solution of Equation B18 is:

    

 

  


, ,
1 cos

L
i

L

v t u
X x t X� (B20)

where

                 
22 / 1 arctan 1 / 1 tan / 2L L Lu� (B21)

               2 2
, ,1 1L X i L X iv M r M r� (B22)

               
2 21 / 1r w w� (B23)

              
 

21 / 1 tan 1 / 2 .L L Lw� (B24)

The classical Lax-Wendroff scheme for nonlinear advection equations (Leveque, 2002) has been tested but 
unrealistically overestimates the growth of instability, contrary to the present scheme. As a drawback, when 
compared to the analytical solution (B20), the present scheme exhibits a slightly lower accuracy than the 
Lax-Wendroff scheme. Although conservative, the distributions of N and kx flatten spatially due to MUS-
CL-RK4. The mean error typically increases by 3% every 100 long waves periods for Co = 1 and 128 spatial 
samples.

Appendix C:  Multiple Time Scales Modulated Fields at Order εL

Here, we look for spatially periodic solutions for the short waves field by switching from the set of Equa-
tions 14 and 15 on N and kx to the alternative set Equations 14 and 17 on N and C, the equation on C being 
more convenient algebraically than the one on kx. Initial conditions (22) and (24) must be associated with 
the present set of equations. The variables are then expanded in powers of the small parameter L:

     2
0 1L LN N N � (C1)

     2
0 1 .L LC C C � (C2)

Similarly, for γ, which is a function of C only, we have:

        2
0 1 .L L� (C3)

At order  0
L, Equations 16 and 17 and their initial conditions are

             2
0 0 0 0 0 0 0/ 2 3 2 / 2t x xC N N C� (C4)

    0 0 0/ 2 0t xC C� (C5)

  0 0 iN t N� (C6)

  0 0 .iC t C� (C7)
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which are nonlinear forced advection equations. For simplicity, we consider the  0
L solutions to be constant 

throughout the propagation, although this system of equations would allow for more complicated solutions. 
Hence we consider:

  0 , iN x t N� (C8)

  0 , ,iC x t C� (C9)

and consequently

  0 , ix t� (C10)

At order L, the equations to be solved are

     
   
   

  

          
  

2
0 0 1 0 0 0 0 1

2
0 0 0 0

/ 2 / 3 2 / 2

1 / 2

t x L x x

L x

C N N U N C

N C g g
� (C11)

                    2
0 0 1 0 0 0 0 0/ 2 / 2 / 2t x x L t xC C C U C g C g� (C12)

   1 ,0 cosi N iN t N M� (C13)

   1 ,0 ,cosi C iC t C M� (C14)

because U is a L order function, according to Equation 8.

In the present case, the solution of the system Equations C11–C14 would invalidate the perturbative ex-
pansion performed so far. Indeed, as it is discussed in Section 33.2, this system presents a secular term 

      2
0 0 0 13 2 / 2 xN C  in Equation C11. Its analytical solution would result in an unbounded growth of 

the solution N1 namely, or instability. As a consequence, at large enough times, N1 would become greater 
than N0, which would be in contradiction with the assumptions behind the perturbative expansion Equa-
tion C1. This was not considered in LH&S.

As an alternative to the perturbative expansion performed until now, and in the presence of a secular term, 
a multiple scale method can be employed (e.g., Nayfeh, 1973) to revisit the problem from the beginning. 
This methods consists in keeping the perturbative expansion Equations C1 and C2, and completing it by 
replacing the single time dimension by two. Two time scales are introduced, a fast one, t0 = t and a slow one, 

1 Lt t. t0 is the scale of the regular oscillations, while t1 is the scale of the instability. In the multiple scale 
method, these two variables are considered as independent. This introduces a single modification in the 
previous derivations. The time derivative is changed into

    0 1t t L t� (C15)

At order  0
L, Equations C4–C7 remain true only by replacing t by t0. The solutions Equations C8 and C9 are 

kept, but the dependency on t1 is not solved. In other words

    0 0 1 0 1, , iN t t x N N t� (C16)

    0 0 1 0 1, , .iC t t x C C t� (C17)

At order 1
L, changes appear due to the introduction of the instability time. t1 derivatives of N0 and C0, 

respectively, are added in Equations C11 and C12, according to Equation C15. In the multiple time scales 
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method, the slow time derivative terms are here to balance the secular terms, so that we are left with, on 
the one side,

                     
2

0 0 1 0 0 0 0 00 / 2 / 1 / 2t x L x L xC N N U N C g g� (C18)

                    
2

0 0 1 0 0 0 0 00 0/ 2 / 2 / 2 ,t x L x L t xC C C U C g C g� (C19)

and on the other,

        2
0 0 0 0 11 3 2 / 2t xd N N C� (C20)

 01 0.td C� (C21)

with still the same initial conditions Equations C13 and C14. The solutions are obtained by solving for Equa-
tions C18 and C19 alone first, and introducing their solutions into the instability Equations C21 and C22.

The full solutions are summarized here. The phase speed consists in an average constant value

 0 i
i

gC C
k

� (C22)

modulated with a fixed amplitude

     
 

  
     

   
1 , cos cosi C i LC C M t� (C23)

where the constants χ and μ are defined by

  1 0.5 /i i LC C� (C24)

      2 / 2 / 2 1 /i g i i LM C C� (C25)

and where the initial modulation on C is given by Equation A9. The action is already distorted at order  0
L:

      0 exp Ω sini LN N t t� (C26)

where

       


 
    

  

2
,

1Ω 1 3 2 .
4 2

gi i
L L i k i i

L L

MC CM
C C

� (C27)

with an additional modulation at order 1
L:

     
 

  
         

 0 0
1 , cos cos ,i N i L

i i

N NN N M t
N N

� (C28)

where

       


          
   

 2 211 3 2 2 1
4

i i
i i g i i

L L

C CM
C C

� (C29)

The 1D solutions of Section 3 are obtained by setting   1i .
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