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Abstract

Network-on-Chips (NoC) are widely used in industrial applications since they
provide communication parallelism and reduce energy consumption. The use
of NoC has been recently extended to real-time systems, whose execution has
to meet temporal constraints. Communication delays introduced by the net-
work make the scheduling analysis challenging. In this article, we propose a
new NoC communication model called ECTM. The main goal of this model
is to assess the schedulability of dependent periodic tasks exchanging messages
on a NoC. ECTM is a model allowing schedulability analysis of messages and
tasks of the NoC. To achieve schedulability, ECTM produces an analysis model
by transforming NoC messages to tasks in order to take into account commu-
nication delays during the scheduling analysis. Schedulability of the system
is assessed using simulation over the feasibility interval with a list scheduling,
ECTM supports Store-And-Forward and Wormhole NoC.

In this article, we have demonstrated the correctness of the transformations
of ECTM. ECTM has been implemented in a real-time scheduling analysis tool
called Cheddar and we performed experiments to assess its efficiency. ECTM
is more efficient than existing solutions with an improvement of 30% for Store-
And-Forward NoCs and up to 100% for Wormhole NoCs, while the proposed
model requires a larger computation time about 17% for Store-And-Forward
NoCs

Keywords: Network-On-Chip (NoC), Real-Time Systems, Communication,
Schedulability Analysis, Wormhole, Store-And-Forward

1. Introduction

Since they provide communication parallelism and limit the energy con-
sumption, Networks-on-Chip (NoC) are widely used in industrial applications.
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Recently, the use of NoC [1] has been extended to real-time systems. Real-time
systems are systems that have deadlines to meet [2].

NoCs introduce communication delays because of possible resource con-
tentions between different flows in the network. Those delays depend on many
factors. Some of them are related to the NoC configuration like the switching
mode or the arbitration policy, while others result from the network state [3].
Thus, due to the NoC architecture, real-time scheduling analysis is a challenge.

In order to analyze schedulability of periodic tasks in NoC-based parallel
architectures, we have to take into account at the same time the task scheduling
over processing elements and the message communication scheduling over the
network.

Unfortunately, classic multiprocessor real-time scheduling solutions consider
worst case communication time instead of the actual delays introduced by the
network [4]. Consequently, it leads to pessimistic schedulability analysis results.

In this article, we propose a NoC communication model in order to assess
the scheduling analysis of periodic tasks over NoC architectures. The proposed
model simplifies combined scheduling analysis of the periodic tasks and the NoC
communications.

Our approach converts NoC flows of messages scheduling to periodic tasks
scheduling. Each flow of message is transformed into a set of dependent peri-
odic tasks. As a result, the scheduling analysis is simplified as the problem of
the tasks and NoC communications scheduling is similar to the scheduling of
periodic tasks deployed on a multiprocessor, which has been well studied [5, 6].
We have proven the correctness of the transformations. Furthermore, by a set
of experiments, we show the efficiency of this approach.

Unlike conventional solutions which consider pessimistic scenarios to evalu-
ate the communication times, ECTM only accounts real traffic contentions in
the network. In fact, ECTM selects interference which arrives due to the ac-
tual flows in the network thanks to a temporal characterization of the traffic.
For that, ECTM is intended to be more accurate than the state-of-the-art so-
lutions for a given class of NoC architecture. More precisely, we can only apply
our proposition to Virtual Channel Store-And-Forward (SAF) NoC and Private
Virtual Channel Wormhole NoC.

The remainder of the article is organized as follows. The next section
presents related works. Section 3 introduces background about the NoCs and
the periodic task/flow models. Assumptions about the NoC architectures sup-
ported in this work are defined in the section 4. Then, the next section describes
our approach for analyzing the scheduling of periodic tasks over such NoC-based
parallel architectures. Section 5 demonstrates the correctness of the transfor-
mation of our analysis model. Implementation and evaluation of the proposed
approach are explained in section 7 and section 8 concludes this article.

2. Related Work

NoC-based communications have recently attracted significant attention be-
cause of their potential for performance improvement and their impact on task
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scheduling. Thus, several NoC communication analysis methods have been pro-
posed.

Shi and Burns [7] propose an analysis approach for real-time on chip com-
munications with Wormhole switching and fixed priority scheduling. In [8], the
authors focus on real-time communication services with a priority share policy.
These works established worst case communication time analysis for different
NoC configurations.

In order to schedule periodic tasks over NoC architectures, several scheduling
algorithms have been proposed. Those solutions have different goals. Some
optimize the design by minimizing the power consumption and the execution
time of an application. In other works, the timing constraints of the system are
enforced [9].

Varatkar et al. [10] developed a two-step mapping and scheduling algorithm.
It performs simultaneous mapping and scheduling of tasks in order to reduce
communication energy by minimizing the inter-processor communication. How-
ever, the communication distance is roughly approximated. This work does not
carry out communication mapping and scheduling. Thus, real-time schedulabil-
ity analysis cannot assess application real-time constraints, because communi-
cation latencies are completely ignored in the analysis process.

Lei et al. [11, 12] also propose a two-step algorithm for task mapping and
scheduling over NoC architectures. The goal of the scheduling analysis is to
check hard deadlines, while the goal of task mapping is to maximize timing
performances. The communications are not considered in the mapping and the
scheduling process. Communication delays are estimated using average distance
in the NoC. Thus, this approach cannot guarantee hard deadlines required by
critical real-time systems also.

The analysis approach we propose in this article starts with a model trans-
formation. The model transformation aims to convert an architectural model
into a simplified analysis model [13].

A model transformation approach has been used by Lakshmanan et al.
in [14] also. They propose a stretching algorithm for a dependent task model.
The stretching algorithm avoids the parallel structure of the architectural model
by executing them as sequentially as possible. The work in [13] introduces a
Directed Acyclic Graph (DAG) Stretching algorithm in order to analyze the
scheduling of dependent tasks. In the stretching algorithms, dependent tasks
are transformed to a set of independent sequential threads. Intermediate offsets
and deadlines are assigned to threads so as to determine their execution interval.
However, all these transformation models do not consider the communications
in the NoC. Again, such an approach does not allow us to assess application
real-time constraints.

To conclude, there are few methods that perform NoC communication schedul-
ing analysis [9]. Furthermore, most of the proposed approaches for task and
communication scheduling over NoC architectures do not consider the exact
communication time. They consider worst case communication time or aver-
age distance in the NoC to estimate the communication time. Finally, existing
transformation models also ignore the NoC communications.
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The next sections detail a new NoC communication model that addresses
the limitations highlighted above.

3. Background

This section sums up the background required to understand the contribu-
tions proposed in the next sections. First, we introduce the main concepts about
NoCs. Then, we present the models of flow and task assumed in this article.

3.1. Network-on-Chip

A NoC is a network of nodes. Each node may be a processing element, a
memory, a peripheral or a cluster.

Fig. 1 illustrates the major components of a NoC. Nodes access the network
through a network interface (NI) and receive data encapsulated in packets [1].
Then, processing elements communicate by exchanging messages over the net-
work. The network is composed of routers and unidirectional physical links.
We note eRxRy the unidirectional link between the two routers Rx and Ry, and
ePExRy the unidirectional link between the processing element PEx and the
router Ry. Finally, eRyPEx is an unidirectional link between the router Ry and
the processing element PEx.

Figure 1: Network On Chip

In order to ensure the communication in the network, routers implement
arbitration policy and switching mode.

Switching Mode: It determines how a packet is allocated to buffers and
channels and when it will receive service. In this article, we assume two switching
modes: Store And Forward (SAF) and Wormhole.

For the SAF mode, each router waits for a full packet to arrive before sending
it to the next router [15].

With the Wormhole mode, the packet is divided into a number of fixed size
flits [3]. More precisely, the packet is split into an header flit, one or several body
flits and a tail flit. The header flit stores the routing information and is used
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to build the route. As the header flit moves ahead along the selected path, the
remaining flits follow in a pipeline way and possibly span over multiple routers.

Arbitration Policy: Its aim is to select one packet among many in a router.
When several incoming packets request the same output port of a router, an
arbitration is required to select one of these packets.

Several arbitration mechanisms have been used in NoC routers [1]. Round-
robin and priority-based are 2 examples of these mechanisms. Round-robin
arbiters give the lowest priority to the last served request in the next arbitration.
Priority-based arbiters choose one packet from many requests based on their
fixed priority.

3.2. Task model

In this article, we consider real-time systems designed as a set of dependent
periodic tasks deployed on a NoC.

We assume a set of tasks Γ composed of n periodic tasks: Γ ={τ1, τ2, . . . , τn}
Each task τi is defined as follows: τi = { Oτi , Tτi , Cτi , Dτi , Πτi , Nodeτi , E }
where:

• Oτi is the first release time of the task τi.

• Tτi is the period of the task.

• Cτi specifies the computation time needed by the task defined as its Worst
Case Execution Time.

• Dτi is the deadline to meet.

• Πτi is the fixed priority of the task. The value 1 denotes the highest
priority level while a larger value is a lower priority.

• Nodeτi identifies the NoC node (i.e. the processing element) running the
task. This parameter allows us to introduce the mapping configuration,
i.e. to which processing element each task is assigned to.

• E : Γ −→ Γp

τi −→ E(τi) ={τj , . . . , τk }
The function E introduces the precedence constraints of the task model.
For a given task τi, the function E determines all the tasks {τj , . . . , τk}
that receive messages from the task τi.

From the previous task model, in [16], we have proposed DTFM (Dual Task
and Flow Model) in order to compute the flow model from the task model, the
mapping of the tasks on the processing elements and the NoC model. The flow
model specifies the messages that have to be transmitted in the NoC to make
effective the communications between the tasks.

With DTFM, the set of flows ψ related to Γ can be defined as follow. The
flow model comprises m periodic traffic flows ψ ={ρ1, ρ2, . . . , ρm}. Each flow
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ρi raises a sequence of messages in a similar way that a task raises a sequence
of jobs. Each flow ρi is defined as follows: ρi ={ Oρi , Tρi , Dρi , Πρi , NodeSρi ,
NodeDρi , F }

where:

• Oρi is the release time of the messages, i.e. the first time a message of the
flow becomes ready to be transmitted.

• Tρi is the period of the message.

• Dρi is the deadline of the message i.e. the message must be available for
the receiver before this time.

• Πρi is the priority of the messages. The value 1 denotes the highest priority
level while a larger value indicates a lower priority.

• NodeSρi is the node (i.e. the processing element) running the transmitter
task.

• NodeDρi is the node running the receiver task.

• F : ψ −→ Ωp

ρi −→ F (ρi) ={ePEjRj , . . . , eRxRy , . . . , eRkPEk}
where Ω is a set of physical links in the NoC.

F is a function that computes the links used by a flow. In other words, F
identifies the physical links that will be used by any messages of the flow.

The function F helps us to understand the relationships between the var-
ious flows that transit through the network and to determine the interfer-
ence between the messages sent by the tasks.

Finally, in this article, we assume the following protocol about message ex-
changes : tasks send their packets at completion time (at the end) of each
instance of their periodic execution and the packets are read before the peri-
odic execution of the receiving tasks. This protocol is called immediate data
connection protocol in the standard AADL [17].

3.3. NoC communication analysis

Depending on the NoC configuration, we may have different types of laten-
cies. In this section, we focus on latencies introduced by the NoC assumed in
this article. Let’s see the different types of delays that we must understand to
assess schedulability of real-time tasks deployed on such NoCs.

3.3.1. Path delay

The Path Delay PD is the time required to send a packet from the trans-
mitter to the receiver when no traffic flow contention exists.

We assume here that packets of a flow do not share any physical link with
other flows along the path. This delay is variable and depends on several pa-
rameters such as the number of hops between the transmitter and the receiver,
the flow rate and the size of the messages [3].
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3.3.2. Delay due to Direct Interference

A second kind of delay occurs due to direct interference.
We have a direct interference when two flows share the same physical link

at the same time. This delay caused by a direct interference between flows is
called a Direct Delay DD.

The direct interference can be presented as a non-deterministic source of
delay. In our analysis, we consider the worst case latency introduced by the
direct interference. We assume the packet from the observed traffic-flow arrives
just after other packets for each shared link. We assume also a maximum size
of the packets [3].

3.3.3. Delay due to Indirect Interference

Another kind of delay occurs due to indirect interference. There is an indirect
interference when two flows do not share the same physical link but interfere di-
rectly with the same flows. We call the delay caused by an indirect interference,
an Indirect Delay, noted ID.

Considering indirect interference, each flow blocked by direct interference
with other flows, will in turn block all other flows which share physical links
with it. However those physical links remain available and cannot be used
by any flows during the indirect interference situation. Thus, this kind of in-
terference must be avoided because it affects significantly the use rate of the
network resources. In addition, in most cases, indirect interference complicates
the scheduling analysis and increases the pessimism degree of the worst case
communication time.

In the next section, we detail our contributions and the targeted NoC con-
figurations.

4. Supported NoC Architectures

In this section, we present assumptions about the NoC architectures inves-
tigated in this paper. Then, we discuss the rationale of these choices.

• Assumptions 1: We consider 2D NoC with XY/YX routing algorithm.
We take this assumptions in order to consider the most used topology and
routing algorithm in NoCs.

• Assumptions 2: We consider Wormhole or SAF as switching mode in
the considered NoC router. Wormhole switching minimizes the commu-
nication time and it does not require large capacity buffers. But, we also
consider SAF switching mode because it decreases the potential congestion
over the network[18].

• Assumptions 3: We consider NoC router with virtual channels. This
assumptions has been taken in order to reduce blocking situations between
flows and to give more flexibility to flows in the considered network.
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• Assumptions 4: We consider a fixed priority flit-level arbitration for
Wormhole NoC and a fixed priority packet-level for SAF NoC. We take
this assumptions since most of NoC routers use those arbitration policies.

• Assumptions 5: In this assumptions, we consider that the NoC router
can communicate only one flow per virtual channel. Said differently, two
flows cannot share the same virtual channel even if they can share the
same physical link using two different virtual channels. We consider this
assumption in order to avoid indirect interference situations.

To sum up, we target in our work the 2D mesh NoCs with several virtual
channels. For SAF NoC, using virtual channel allows us to avoid indirect in-
terference. With a Wormhole NoC, we need to use a virtual channel for each
communication flow in order to also prevent such an interference [18]. Next,
we demonstrate how those assumptions avoid indirect interference. Then, we
discuss the strengths of those assumptions.

We prove by contradiction that we cannot have indirect interference in a SAF
NoC which implements virtual channel. Let assume a SAF NoC with virtual
channels. In this configuration, each virtual channel is only used by one flow.
Then, two flows cannot share the same virtual channel.

Let consider three flows ρ1, ρ2 and ρ3 as shown in Fig 2.

• ρ1 and ρ2 share the physical link eR1R2.

• ρ2 and ρ3 share the physical link eR3R4.

Now, let assume that we have indirect interference, that’s mean the flow ρ1

is blocked by the flow ρ2 because they share the same physical link eR1R2 at the
same time. To have an indirect interference, the flow ρ2 must be also blocked
by the flow ρ3 because they share the same physical link eR3R4. However, since
the link eR1R2 is not used by either ρ2 or ρ1, they cannot share the same virtual.
We can do the same demonstration for Wormhole NoC with virtual channel.

Figure 2: Indirect interferences in NoC architectures

Assumptions (3 and 5) allow us to avoid indirect interference in our analysis.
Maybe the weakest assumption in our study is the restricted number of flow per
virtual channel, i.e. only one flow per virtual channel (Assumptions 6). In
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order to enforce this assumption we would note that there are many solutions
to mitigate its negative effects.

For M flows per physical link and under those assumptions, we must have M
virtual channels per physical link. The value of M can be reduced depending to
several parameters such as the task model and the task mapping. On the one
hand, for a fixed value of M, we must select a task mapping which allows us
to have at most M flows sharing the same physical link. This kind of problems
is similar to a Quadratic Assignment Problem (QAP) [19]. QAP is known as
an NP-Hard optimization problem. However, there are various heuristics that
can be used for defining such mapping as those described in [19] or [20]. Multi-
criteria heuristics are presented in these articles. Authors in [20, 19] try to
optimize the total communication volume and the number of VCs. We note
that this optimization issue is orthogonal to the scope of this work. On the
other hand, for a fixed task mapping, we can select M as the maximum of flows
sharing the same link. We note that the higher the number of virtual channel,
the larger the overhead of area for the NoC implementation.

5. NoC Communication Time Models

In order to analyze the scheduling of periodic tasks running on a NoC archi-
tecture, communication delays in the NoC have to be investigated.

Shi et al. in [3, 7, 8] proposed NoC communication models based on worst
case scenarios. Those communication models compute worst case communica-
tion delays that can be used to assess schedulability of periodic tasks running
on the NoC.

Next, we formalize WCCTM, the Worst Case Communication Time Model,
base on the Shi’s analysis. Then, we propose ECTM (Exact Communication
Time Model), an exact communication model that improves WCCTM.

Figure 3: NoC Communication Model - Goal

As shown in Fig. 3, the goal of a NoC communication model is to as-
sess schedulability of periodic tasks running on the NoC. Next, we present an
overview of our schedulability approach before introducing both WCCTM and
ECTM.

5.1. Overview of our approach

Fig. 4 shows an overview of the approach we propose. The system to analyze
is expressed by a model of the NoC, a model of the application as a set of
dependent periodic tasks and how such tasks are deployed on the processing
elements. In the sequel, we call this input model the architectural model.
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Then, to achieve schedulability analysis of the overall system, we apply the
following steps:

1. The communication delay model of the architectural model is transformed
into an analysis model to validate the scheduling of the communications.
For such a transformation, we use ECTM and WCCTM. WCCTM is
used in this article to evaluate ECTM efficiency.

2. By a scheduling simulation with a list scheduling policy over the feasibility
interval, we assess the schedulability of the system. Feasibility intervals
are choosen according to [21].

Figure 4: Overall approach

In the next paragraphs, we define the architectural model and the analysis
model.

5.1.1. Architectural model

For the architectural model, we consider a set of periodic tasks exchanging
messages, and deployed over a NoC. The task set is defined by the parameters
introduced in Section 3.2.

The NoC is characterized by its topology, the switching mode and arbitration
policy it implements. Table 1 summarizes the assumptions related to the NoC,
i.e. mainly a 2D mesh NoC with virtual channels. We recall here that allocating
a virtual channel for each flow allows us to avoid indirect interference.

Moreover, a task mapping completes the architecture model, that allows to
apply the DTFM [16] algorithm to generate a temporal specification of the
communication flows inside the NoC.

5.1.2. Analysis model

The analysis model is composed of a set of periodic tasks running on a
multiprocessor execution platform. We assume a multiprocessor with identical
processors [21] and no hardware shared resource.

Scheduling analysis of such models can be performed with list scheduling [22,
6]. List scheduling algorithms build scheduling list of tasks when assigning them
their priorities. There are several means to determine the priorities of tasks such
as Highest Level First, Longest Path and Longest Processing Time [23].
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Noc Communication WCCTM ECTMSAF ECTMWormhole

Model

Topology and 2D mesh 2D mesh 2D mesh
dimension

Routing algorithm XY / YX XY / YX XY / YX
Switching mode Wormhole / SAF SAF Wormhole

Arbitration Fixed priority Fixed priority Fixed priority
policy Round Robin Round Robin Round Robin

Virtual channel With With With
Preemption level Flit / Packet Packet Flit

Table 1: Assumptions on the NoC for each communication model

Highest Level First with Estimated Time (HLFET), Modified Critical Path
(MCP), Earliest Time First (ETF) and Dynamic Level Scheduling (DLS) are
examples of list scheduling algorithms which can be applied on the analysis
model we assume [5, 6].

Now we describe the communication time models considered in this article:
WCCTM and two ECTM models, one for SAF switching mode and the second
for Wormhole switching mode.

5.2. Worst Case Communication Time Model (WCCTM)

Let us see now how the architectural model is transformed into a WCCTM
analysis model. To achieve this transformation, we apply the following rules:

• Rule 1: All routers and unidirectional links of the architectural model
will be removed in the analysis model while keeping all the processing
elements.

• Rule 2: We keep all tasks of the architectural model in the analysis model.

• Rule 3: Each flow ρi of the architectural model is modeled as a process-
ing element PEρi in the analysis model. The tasks running in the new
processing element PEρi are scheduled according to a fixed priority policy.

• Rule 4: Each flow ρi of the architectural model will be abstracted by one
task τρi in the analysis model.

• Rule 5: If the architectural model contains two periodic tasks τsource and
τdestination and if τsource sends the messages of the flow ρi to τdestination,
then applying WCCTM leads to the flow ρi transformed in the analysis
model as a periodic task τρi with the following parameters:

– Oτρi = Oρi

– Tτρi = Tρi
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– Cτρi = WCCTi

where WCCTi is the Worst Case Communication Time of a ρi’s
message. We compute WCCTi with the methods proposed in [3, 7, 8]
for Wormhole NoCs or in [3] for SAF NoCs.

– Dτρi
= Dρi

– Nodeτρi = PEρi

– E(τρi)= τdestination

Figure 5: Worst Case Communication Time Model (WCCTM) - Example

We illustrate the WCCTM transformation by the example shown in Fig. 5.
We consider 4 periodic tasks τ1, τ2, τ3 and τ4. τ1 sends messages of the flow ρ1

to the task τ2, and τ3 sends messages of the flow ρ2 to the task τ4.
In addition, the tasks τ1, τ2, τ3 and τ4 are respectively executed by the

processing elements PE1, PE3, PE2 and PE4.
When applying the WCCTM transformation rules, we get:

• (Rule 1) Routers and links of the architectural model are removed in the
analysis model.

• (Rule 2 + Rule 1) All tasks and processing elements of the architectural
model are kept in the analysis model.

• (Rule 3 + Rule 4) The flow ρ1 is transformed into a task τρ1 . The
processing element PEρ1 executes τρ1 . The flow ρ2 is transformed into a
task τρ2 . Last, the processing element PEρ2 executes τρ2 .

In order to assess the schedulability of such system, we run scheduling simula-
tion over the feasibility interval. In this simulation, we consider a list scheduling
algorithm for processing elements PE1, PE2, PE3 and PE4. For the rest of
processing elements, we consider a fixed priority algorithm.
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In the architectural model, the flows ρ1 and ρ2 share the same physical link
eR2R3, while, in the analysis model, there is no shared resources between τρ1
and τρ2 . We explain that by considering the worst case communication time of
each flow as the capacity of each corresponding task.

5.3. Exact Communication Time Model for SAF NoC

For the SAF NoCs, we propose ECTMSAF . Next, we detail the transfor-
mation rules for ECTMSAF :

• Rule 1: Each router of the architectural model will be removed in the
analysis model while keeping all the processing elements.

• Rule 2: Each unidirectional link eRxRy in the network between two
routers Rx and Ry of the architectural model will be replaced in the
analysis model by a new processing element PERxRy.

Each unidirectional link ePExRx in the network between a processing ele-
ment and a router (respectively eRxPEx between a router and a processing
element) of the architectural model will be replaced in the analysis model
by a new processing element PEPExRx (respectively PERxPEx).

These new processing elements in the analysis model apply a scheduling
algorithm in agreement with the considered arbitration policy in the NoC
router.

• Rule 3: We keep all tasks of the architectural model in the analysis model.

• Rule 4: Each flow ρi of the architectural model will be replaced by a set
of nbrlinki tasks Γρi , where nbrlinki denotes the number of links used by
the flow ρi, or:

Γρi = { τρi,1 , τρi,2 , . . . , τρi,nbrlinki }.

• Rule 5: If the architectural model contains two periodic tasks τsource and
τdestination and if τsource sends messages from the flow ρi to τdestination,
then applying ECTMSAF leads to the flow ρi transformed in the analysis
model as a set of periodic tasks Γρi . Parameters of each task τρi,j of the
task set Γρi are computed as follow.

For j in [ 1, . . .nbrlinki ] τρi,j is characterized by :

– Oτρi,j = Oρi

– Tτρi,j = Tρi

– Cτρi,j = PDOneLink

PDOneLink is the Path Delay of one link, i.e. the time required to
send one flow over one link without considering the possible conflicts
in the network.

– Dτρi,j
= Dρi
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– Nodeτρi,j =

 PERjPEj if j = nbrlinki
PEPEjRj if j = 1
PERxRy if 1 < j < nbrlinki

We note here that eRxRy represents each of the physical links used by
the flow ρi which is transformed to the processing element PERxRy
in the analysis model.

– E(τρi,j ) =

{
τi,j+1 if j < nbrlinki
τdestination if j = nbrlinki

Figure 6: Example of ECTMSAF for one flow

We apply the ECTMSAF transformation to the previous example (Fig. 5).
Figures 6 and 7 show the architectural and the analysis models with ECTMSAF .
Fig. 6 shows the transformation of ECTM for ρ1, while Fig. 7 shows the trans-
formation of ECTM for both ρ1 and ρ2.

When applying the ECTMSAF transformation, we get:

• (Rule 1 + Rule 2) Routers have been removed and the physical links
are transformed, in the analysis model, into processing elements.

• (Rule 3) All tasks of the architectural model are kept in the analysis
model.

• (Rule 4 + Rule 5) ρ1 and ρ2 use 4 physical links. Thus, the flow ρ1 has
been transformed in the analysis model to a task set Γρ1 of 4 tasks: Γρ1
= { τρ1,1 , τρ1,2 , . . . , τρ1,4}.
The flow ρ2 has been transformed in the analysis model to a task set Γρ2
of 4 tasks: Γρ2 = { τρ2,1 , τρ2,2 , . . . , τρ2,4}.
τρ1,1 , τρ1,2 , τρ1,3 and τρ1,4 are respectively executed by the processing ele-
ments PEPE1R1, PER1R2, PER2R3 and PER3PE3.

τρ2,1 , τρ2,2 , τρ2,3 and τρ2,4 are respectively executed by the processing ele-
ments PEPE2R2, PER2R3, PER3R4 and PER4PE4.
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Figure 7: Example of ECTMSAF for two flows

We consider a list scheduling algorithm for processing elements PE1, PE2,
PE3 and PE4. For the rest of the processing elements, a scheduling algorithm
in agreement with the considered arbitration policy in the considered NoC is
assumed.

In the analysis model, flows ρ1 and ρ2 share the same physical link eR2R3.
ECTM translates this shared resource in the analysis model by sharing the
processing element PER2R3 between τρ1,3 and τρ2,2 .

5.4. Exact Communication Time Model for Wormhole NoC

For the Wormhole NoCs, we propose ECTMWormhole. In the following, we
detail rules of ECTMWormhole:

• Rule 1: Each router of the architectural model will be removed in the
analysis model while keeping all the processing elements.

• Rule 2: Each unidirectional link eRxRy in the network between two
routers of the architectural model will be modeled in the analysis model
by a new processing element PERxRy.

Each unidirectional link ePExRx in the network between a processing ele-
ment and a router (respectively eRxPEx between a router and a processing
element) of the architectural model will be replaced in the analysis model
by a new processing element PEPExRx (respectively PERxPEx).

These new processing elements use a scheduling algorithm in agreement
with the considered arbitration policy in the NoC router.
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• Rule 3: We keep all tasks of the architectural model in the analysis model.

• Rule 4: Each flow ρi of the architectural model will be replaced by a set of
nb tasks Γρi , where nb = nblinki × nbsizei in the analysis model. nblinki
represents the number of links used by the flow, and nbsizei represents
the size of message of the flow ρi.

Γρi = { τρi,1,1 , τρi,a,b , . . . , τρi,nbsizei,nblinki}.
For example, with ECTMWormhole, a flow of 2 flits, which uses 3 physical
links, will be transformed in the analysis model into a task set of 6 tasks.

• Rule 5: If the architectural model contains two periodic tasks τsource
and τdestination, τsource and τdestination are executed respectively on the
two processing elements PEs and PEd. If τsource sends the messages of
flow ρi to τdestination, then applying ECTMWormhole leads to the flow ρi
transformed in the analysis model as a task set Γρi . Parameters of each
task τρi,a,b of the task set Γρi are computed as follow:

For (a,b) ∈ [1, sizei] x [1,nbrlinki], τρi,a,b is characterized by :

– Oτρi,a,b = Oρi

– Tτρi,a,b = Tρi

– Cτρi,a,b = PDOneflit/Onelink

PDOneflit/Onelink is the time required to send one flit over only one
link without considering the possible conflicts in the network.

– Dτρi,a,b
= Dρi

– Nodeτρi,a,b =

 PEPEsRs if a = 1
PERxRy if 1 < a < nbrlinki
PERdPEd if a = nbrlinki

We note here that eRxRy represents one of the physical links used by
the flow ρi which is transformed to the processing element PERxRy
in the analysis model.

– E(τρi,a,b) =


τρi,a+1,b, τρi,a,b+1 if a < sizei and b < nbrlinki
τρi,a+1,b if a < sizei and b = nbrlinki
τρi,a,b+1 if a = sizei and b < nbrlinki
τdestination if a = sizei and b = nbrlinki

We note here that some tasks of Γρi have only one successor such
as τρi,sizei,b, τρi,a,nbrlinki and τρi,sizei,nbrlinki . The rest of the tasks
have two successors.

In order to illustrate the transformation of the proposed model for Wormhole
NoCs, we apply ECTMWormhole on the previous example (Fig. 5). Figures 8
and 9 show the architectural and the analysis models with ECTMWormhole.
Fig. 8 shows the transformation of ECTM for ρ1, while Fig. 9 shows the trans-
formation of ECTM for both ρ1 and ρ2.

When applying the ECTMWormhole transformation, we get:
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Figure 8: Exact Communication Time Model for Wormhole: Example - 1 flow

Figure 9: Exact Communication Time Model for Wormhole: Example - 2 flows
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• (Rule 1 + Rule 2) Routers of the architectural model are removed in
the analysis model. Physical links are transformed in the analysis model
into processing elements.

• (Rule 3) All tasks of the architectural model are kept in the analysis
model.

• (Rule 4 + Rule 5) The flow ρ1 and ρ2 use 4 physical links. The flow
size is 2 flits. Thus, the flows ρ1 and ρ2 are transformed in the analysis
model into 2 task sets Γρ1 and Γρ2 of 8 tasks:

Γρ1 = { τρ1,1,1 , τρ1,1,2 , . . . , ..., τρ1,4,2} and Γρ2 = { τρ2,1,1 , τρ2,1,2 , . . . , ...,
τρ2,4,2}.

In the architectural model, flows ρ1 and ρ2 share the same physical link
eR2R3. ECTMWormhole translates this shared resource in the analysis model
by sharing the processing element PER2R3 between τρ1,3,1 , τρ1,3,2 , τρ2,2,1 and
τρ2,2,2 .

After computing the analysis model using ECTM, we perform the scheduling
analysis with list scheduling algorithms. In this work, we consider the algorithm
Highest Level First with Estimated Time (HLFET).

With HLFET, first we assign a priority to each task. Then, a scheduling list
of tasks is built. A ready task will be executed over the corresponding processor
if available. If two ready tasks share the same corresponding processor, the
higher priority task will be executed first. We note that there is no preemption
[22, 6].

In the architectural model, at the Wormhole network level, we have flit level
preemption. However when applying ECTM, each flit per physical link will
be transformed into one task. This is why we use non preemptive scheduling
algorithm for the analysis model.

At the SAF network level, we have packet level preemption. When applying
ECTM, each packet per physical link will be replaced by one task in the anal-
ysis model. Then again, we use non preemptive scheduling algorithm for the
analysis model in order to model the fixed priority packet level arbitration of
the architectural model.

In the next section, we present a validation of the proposed approach.

6. Validation

For the Wormhole and SAF NoC, ECTM transforms every flow ρi of the
architectural model to a set of dependent tasks in the analysis model. We show,
in this section, that the communication interference caused by hardware shared
resources as expressed the architectural model are kept in the analysis model
computed by ECTM, leading to a correct schedulability analysis. We express
this property below:

Property 1. Let assume a SAF or Wormhole NoC implementing a fixed pri-
ority arbitration policy. Let a task τ1 that sends a flow ρi to the task τ2. If
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ECTM transforms the flow ρi to a set of dependent tasks Γρi , then the response
time of the set Γρi is equal to the effective communication time of the flow ρi.

The following inequality follows from the property 1:

PDρi ≤ Ceffρi = CECTMρi
≤ Cρi (1)

where

• PDρi is the communication time of the flow ρi in absence of communica-
tion interference in the NoC.

• Ceffρi specifies the effective communication time of the flow ρi.

• CECTMρi
is the sum of the capacity of all the tasks of the task set Γρi .

• Cρi specifies the worst case communication time of all messages of the flow
ρi.

Next, we demonstrate that the property 1 is true for the SAF and Wormhole
NoCs. To do so, we consider two cases: with and without interference.

6.1. ECTM for SAF NoC

We consider two dependent periodic tasks τ1 and τ2. τ1 sends the flow ρi
to the task τ2. ρi uses n physical links. With ECTMSAF , the flow ρi of the
architecture model is transformed into a set of n tasks Γρi in the analysis model
(Γρi = {τρi,1, ...τρi,n})

We remind that under this configuration, we cannot have indirect interfer-
ence. In addition, the preemption delay is stated as null.

6.1.1. Case without interference

Before starting our demonstration, we remind the path delay equation of the
flow ρi for such a NoC configuration [3]:

PDρi = (sizemax/Blink +Rhop) · n = PDOneLink · n (2)

where

• Blink specifies the link bandwidth for a physical link in the considered
NoC.

• sizemax is the maximum packet size belonging to ρi.

• n denotes the number of hops between the source and destination nodes
for ρi.

• Flitsize specifies the flit size.

• Rhop indicates the constant processing delay in each router.
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In the without interference case, we have:

CECTMρi
= CΓρi

(by definition of CECTMρi
)

CΓρi
=

n∑
j=0

Cτρi,j (tasks are sequentially dependents)

CΓρi
=

n∑
j=0

Cτρi,1 (Cτρi,1 = Cτρi,2 = · · · = Cτρi,n)

CΓρi
=

n∑
j=0

PDOneLink (rule 4 of ECTM i.e. C(τρi,1) = PDOneLink)

CΓρi
= n · PDOneLink

CΓρi
= PDρ1 (see Eq. 2)

Then, without interference, we know that:

PDρi = Ceffρi = Cρi

and then the property 1 est true in that case, and Eq. 1 holds.

6.1.2. Case with interference

In this paragraph, we assume that the flow ρi shares physical links with j
other higher priority flows but only k (with k ≤ j) of them actually interfere
with it.

We remind equations of the worst communication time and effective com-
munication time of the flow ρi for such NoC configurations [3]:

Cρi = PDρi +

j∑
1

PDOneLink (3)

Ceffρi = PDρi +

k∑
1

PDOneLink (4)

In this case, we have

CECTMρi
= CΓρi

CΓρi
= PDρ1 +

k∑
x=1

Cτx (Rule 3 of ECTM)

Notice that the processing element which executes τx tasks, is an abstrac-
tion of a NoC router. It applies a scheduling algorithm in agreement with the
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arbitration policy of the router to ensure that the execution interval of each task
of the set Γρi is equal to the transmission interval of the corresponding message
in the architectural model.

Considering Rule 4 of ECTMSAF , we have:

CΓρi
= PDρ1 +

k∑
x=1

PDOneLink (Rule 4 of ECTM i.e.

C(τρi,1) = PDOneLink)

CΓρi
= PDρ1 + k · PDOneLink ≤ PDρ1 + j · PDOneLink (k ≤ j)

CΓρi
= Ceffρi ≤ Cρi (Eq. 4 and Eq. 3)

So, we can deduce:

PDρi ≤ Ceffρi = CECTMρi
≤ Cρi

To conclude, ECTM keeps all possible communication interference of the
architectural model in the analysis model for a SAF NoC and computes a com-
munication time exactly equal to the effective communication time of the flow
ρi.

6.2. ECTM for Wormhole NoC

In this paragraph, we consider two dependent periodic tasks τ1 and τ2. The
task τ1 sends the flow ρi to the task τ2. The flow goes through m physical links.
The size of ρi is n flits.

Applying ECTMWormhole, the flow ρi of the architectural model will be
transformed into a set of (n ·m) tasks in the analysis model, leading to the task
set Γρi = {τρi,1,1, ...τρi,n,m}.

We note that under such NoC configurations (see Tab. 1), we cannot have
indirect interference. Indeed, using virtual channel for each flow allows us to
avoid indirect interference [18]. Consequently, we have two different cases: with-
out and with direct interference. Next, we verify the property 1 for these two
cases.

6.2.1. Case without interference

Before starting our demonstration for Wormhole NoC, we remind the equa-
tions of path delay [3] of the flow ρi:

PDρi = n · PDOneflit/Onelink +Rhop · (m− 1) (5)

where

• PDOneflit/Onelink specifies the communication time of one flit over one
link without considering the possible conflicts in the network.
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• n is the message size of the flow ρi.

• m denotes the number of physical links used by the flow ρi.

In the without interference case, and according to Fig. 10, we have:

CECTMρi
= CΓρi

(by definition of CECTMρi
)

CΓρi
= n · Cτρi,1,1 + (m− 1) · Cτρi,1,1 (see Fig. 10)

CΓρi
= n · Cτρi,1,1 + (m− 1) ·Rhop (Rhop = PDOneflit/Onelink)

CΓρi
= n · PDOneflit/Onelink + (m− 1) ·Rhop (Cτρi,1,1 = PDOneflit/Onelink)

CΓρi
= PDρi (see Eq. 5)

In addition, without any interference, we know that PDρi = Ceffρi = Cρi .
So, we can deduce:

PDρi ≤ Ceffρi = CECTMρi
≤ Cρi

Figure 10: ECTM transformation for Wormhole NoC
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6.2.2. Case with interference

In this paragraph, we assume that the flow ρi shares physical links with j
other flows but it actually only interferes with k flows (with k ≤ j).

We note here that the j other flows will be transformed into j task sets in
the analysis model { Γρ1 · · · Γρj }. These task sets will share same processing
element with tasks of Γρi .

We remind the equations of the worst communication time and effective
communication time of the flow ρi for such a NoC configuration:

Cρi = PDρi +

j∑
x=1

PDOneflit/Onelink · sizemaxx (6)

Ceffρi = PDρi +

k∑
x=1

PDOneflit/Onelink · sizemaxx (7)

where sizemaxx denotes the maximum message size of the flow ρx.
In the with interference case, we have:

CECTMρi
= CΓρi

(by definition of CECTMρi
)

CΓρi
= PDρ1 +

k∑
y=1

sizemaxx∑
x=1

Cτρi,y,x

(Rule 3 of ECTM)

CΓρi
= PDρ1 +

k∑
y=1

Cτρi,y,1 · sizemaxx

(Cτρi,y,x = Cτρi,y,1)

CΓρi
= PDρ1 + k · Cτρi,1,1 · sizemaxx
(Cτρi,y,1 = Cτρi,1,1)

CΓρi
= PDρ1 + k · PDOneflit/Onelink · sizemaxx
(Cτρi,1,1 = PDOneflit/Onelink)

CΓρi
= Ceffρi ≤ PDρ1 + j · PDOneflit/Onelink · sizemaxx
(see Eq. 7 ; k ≤ j)

CΓρi
= Ceffρi ≤ Cρi
(see Eq. 6)

So, we can deduce that:

PDρi ≤ Ceffρi = CECTMρi
≤ Cρi
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To conclude, ECTM keeps the impact of all possible communication inter-
ference of the architectural model in the analysis model for a Wormhole NoC.
ECTM provides a communication time that is equal to the effective communi-
cation time of the flow ρi.

The next section gives an overview of the software framework where the
transformations we proposed have been implemented.

7. Implementation and Evaluation

We have produced several experiments in order to evaluate the accuracy
and the scalability of the proposed models. To perform this evaluation, we have
implemented our communication models into a real-time scheduling simulator
called Cheddar [24]. Then, with a first experiment, we evaluate the accuracy of
ECTM and WCCTM. A second experiment tests the scalability of our approach.
Finally, we present a comparative analysis between ECTM and the holistic
verification approach.

7.1. Implementation of ECTM and WCCTM

Cheddar is a GPL framework that provides a scheduling simulator, schedu-
lability tests and various features related to the design and the scheduling anal-
ysis of real-time systems. To model the system to analyze, Cheddar provides
a specific architecture design language, called CheddarADL [24]. CheddarADL
allows users to describe both the software and the hardware parts of the system
they expect to analyze.

Fig. 11 is an overview of the software architecture of our prototype and a
subset of Cheddar framework libraries.

Figure 11: Implementation in Cheddar. The NoC Architecture Generator produces a random
real-time system deployed over a NoC architecture. WCCTM and ECTM boxes are for the
NoC communication models described in this article. Finally, the module HLFET extends
the scheduling algorithms implemented in the scheduling simulator of Cheddar.
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7.2. Evaluation process

Figure 12: Simulation Details

As shown in Fig. 12, the evaluation process consists of two stages: generation
of an architectural model and its scheduling simulation1.

1. Generation of an architectural model. In this first stage, we produce the
input data for the simulations. To do so, we randomly generate a set of
architectural models using the UUniFast [25] algorithm. Each architec-
tural model is stored in an XML file which describes the task model, the
NoC model, the task mapping and the dependencies between tasks.

2. Scheduling simulation. In this step, we launch a set of simulations. As
shown in Fig. 12, for each simulation, we perform the following two oper-
ations:

(a) Model Transformation: The input data of this operation is the ar-
chitectural model (XML file). Using a model transformation, we
generate the analysis model from the architectural model. The model
transformations used are WCCTM, ECTMWormhole and ECTMSAF .
The analysis models obtained are also stored in XML files.

(b) Scheduling analysis: We run the scheduling simulation which applies
the HLFET list scheduling algorithm. Then, the simulator verifies
whether all the deadlines are met.

In the next section, we present the results of the evaluation.

1The used artifacts for the evaluation in this work are available from the link http://beru.

univ-brest.fr/svn/CHEDDAR/trunk/artefacts/ae2019/
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7.3. Accuracy of WCCTM and ECTM

The purpose of this evaluation is to make a comparative study between the
two ECTM and WCCTM models in terms of accuracy. To do so, we evaluate
the rate of schedulable task sets found as schedulable by ECTM and WCCTM
models.

Figure 13: Accuracy of the NoC analysis models for All-To-One traffic

In this experiment, we randomly generate 100 sets of dependent periodic
tasks using UUniFast [25]. We choose a random task mapping and we vary the
number of flows in the network and the number of tasks.

We consider two traffic patterns: All-To-One and One-To-One.
With a All-To-One traffic pattern, the source node will be randomly selected

using UUniFast, while the destination node is fixed arbitrarily. All flows of the
same set have the same destination node.

With a One-To-One traffic pattern, the destination node and the source node
are selected randomly using UUniFast. The chosen packet size is 4 flits.

To perform the experiment, we first use DTFM in order to compute the flow
model from the task model, the task mapping and the NoC model. Then, we
apply ECTM or WCCTM and we compute the scheduling simulation with a list
scheduling algorithm. Since it presents the best results in term of robustness
and complexity, scheduling analysis is performed with HLFET [6]. Simulation
intervals are choosen according to [21].

We also consider two NoC models. The first one is a Wormhole NoC, and the
second is a SAF NoC. The two NoCs have the same size and the same topology
(4× 4 2D mesh).

Fig. 13 presents the rate of task sets considered as schedulable according to
the overall processing element utilization rate for the All-To-One traffic pattern.
The figure shows that ECTM is more accurate than WCCTM with an improve-
ment of 30% for Store-And-Forward NoCs. From a use rate equal to 0.15, some
schedulable task sets are no more considered as schedulable by WCCTMSAF
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model. However, with the ECTMSAF , all the task sets remain as schedulable
up to a use rate of 0.2.

Fig. 14 presents results equivalent to those shown in Fig. 13 but for the
One-To-One traffic pattern. It confirms the previous experimentation.

ECTM is less pessimistic than WCCTM. For a Wormhole NoCs, the thresh-
old of the processing element utilization beyond which some task sets are con-
sidered as not schedulable is increased by 100%. Using WCCTMWormhole, the
schedulable task sets are no more seen as schedulable from a use rate equal to
0.08. However, with the ECTMWormhole, the schedulable task set is seen as
schedulable up to 0.16 of use rate.

Figure 14: Accuracy of the NoC analysis models for One-To-One uniform traffic

7.4. Evaluation of the scalability of our approach

In order to evaluate the scalability of our approach, we measured the com-
putation time of the WCCTM and ECTM transformations. We keep the same
configurations than the previous experiments. Fig. 15 presents this result for
different numbers of flows ranging from 15 to 120.

WCCTM provides shorter computation time than ECTM. For 105 flows
in the network, WCCTM takes 2.32 seconds to compute the analysis model,
while ECTMSAF takes 2.86 seconds, and ECTMWormhole takes 6.80 seconds
for 2 flits flows and 8.13 seconds for 3 flits flows. In terms of computation
time, WCCTM has a shorter computation time comparing to ECTM, with a
reduction of 17% for the SAF NoCs and upto 54% for the Wormhole NoCs.

7.5. Holistic Analysis versus ECTM

The holistic theory is a formal approach which assesses the feasibility of real-
time systems composed of tasks exchanging messages. It makes the analysis of
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Figure 15: Computation time for the model transformations

distributed systems tractable. In this paragraph, we discuss the efficiency of this
approach in the context of NoCs, and then we present a comparative analysis
between ECTM and holistic approaches. Finally, we discuss the disavantages
and the avantages of each solution.

7.5.1. Holistic approach

The holistic approach has been introduced by Tindell and Clark [26]. The
authors describe how to assess the feasibility of real-time distributed systems
considering fixed priority tasks and a TDMA (Time Division Multiple Access)
network. Later, in [27], Tindell and Burns have extended the analysis to systems
with real-time and token communication protocols.

In the holistic approach, feasibility is assessed by computing how timing
behavior of the messages affects the response time of the tasks and respectively.
In the seminal Tindell proposal, jitter of a task i models lateness introduced by
tasks run before task i or messages sending data to task i. The key aspect of the
holistic approach is the ability to compute worst case response times for both
tasks and messages by a step by step approach. Response times are computed
by several approximations upto convergency. At each approximation, for each
task i, its jitter is updated by response time approximations of tasks/messages
delaying i. Many publications have extended the seminal work of Tindell to
various task models, scheduling policie or distributed systems such as [28, 29, 30]
and [31].

7.5.2. Holistic NoC communication analysis

Several holistic analyses for distributed systems have been proposed, but in
the context of NoCs, the holistic analyses must take into account the specifica-
tion of the considered switching mode, the arbitration policy and the routing
algorithm.
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In [7], Shi and Burns have proposed a holistic communication analysis for a
2D mesh Wormhole NoC with XY routing algorithm. In this work, the routers
implement a priority based flit-level preemption policy. Many virtual channels
are available in the network but each virtual channel is used by only one flow.
The authors identify higher priority direct and indirect interference. Then, the
path delay of higher flows is affected by lower priority flows which share the same
physical link and by flows which suffer higher indirect interference. Similar to
the holistic approach proposed by Tindell and Clark, the overall of the different
subsystem is repeated several times until stability is reached.

Next, we present a case example in order to compare an holistic approach
with ECTM.

7.5.3. A Case example

In the following, we present a comparison, based on an analytical case ex-
ample, between the ECTM analysis and the holistic analysis proposed by Shi.

Let’s take an example, adapted from [7], of a real-time system deployed over
a NoC. We consider three communication flows ρ1, ρ2 and ρ3; Table 2 lists the
attributes of this flow model. The NoC model, the task model and the task
mapping are resumed in Fig. 16. We note that the size of the flow ρ1 and ρ3 is
3 flits while the size of ρ2 is 2 flits. As in the original work presented in [7], we
do not consider the task execution time and their impact on the communication
time of flows.

Figure 16: ECTM versus Holistic analysis - case example

Holistic analysis

• ρ1 and ρ2 do not suffer any higher direct or indirect interference. Thus,
their worst case communication time (R) is equal to their path delay.

29



Figure 17: ECTM versus Holistic analysis - case example (a) The path delay for the flow ρ1.
(b) The path delay for the flow ρ2. (c) The path delay for the flow ρ3.

Flow Ci Πi Ti Di JRi Size
ρ1 2 1 6 6 0 3
ρ2 1 2 5 5 0 2
ρ3 3 3 10 10 0 3

Table 2: Case example: Flow model. All the times are expressed as a multiple of a same time
unit.
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• Shi and Burns have proposed the following equation in [7] in order to
compute the worst case communication time of a flow (ρi) which suffers
higher priority direct interference :

Ri =
∑
j∈SD

⌈
Ri + JRj

Tj

⌉
Cj + Ci

Where

– Ri represents the worst case communication time of the flow ρi.

– JRj represents the jitter of the flow ρj .

– Tj represents the period of the flow ρj .

– Ci is the path delay of the flow ρj .

– Cj denotes the path delay of the flow ρj .

– SD denotes a set of higher priority flows which share same physical
links with ρi.

ρ3 shares the physical link with the higher priority flows ρ1 and ρ2. Thus,
the worst case communication time R3 of the flow ρ3 is computed and
equals to 9 (i.e. R3 = 9).

ECTM

Figure 18: The communication time of ρ3 computed by ECTM - case example. The flow ρ3
suffers higher priority direct interference from the flow ρ1.

ECTM consider the same path delay as the previous analysis. We present
the path delay of each flow in Fig. 17

• Similar to holistic analysis, ρ1 and ρ2 do not suffer higher priority direct
or indirect interference. Thus, their communication time is equal to their
path delay.
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• ρ3 may suffer higher direct interference from the flow ρ1 or/and ρ2. Con-
sidering the emission time of each flow, ECTM can compute which flow
may delay ρ3. In this example, we may have several cases depending on
source tasks parameters. In the following, we will specify some of those
cases :

1. No direct interference: In this case, the communication time of ρ3 is
equal to its path delay (see Fig 17 (c)) (R3 = 3).

2. Direct interference with ρ1 or ρ2 for only one time per period: In
this case, the flow ρ3 will suffer higher priority interference from one
flow. In Fig. 18 we present the case where the flow ρ3 suffers a direct
interference from the flow ρ1 for one time during the period of ρ3.
In this case, the communication time for ρ3 computed by ECTM is
(R3= 4; see Fig. 18).

3. Direct interference with ρ1 and ρ2 for more than one time per period
if possible: In this case, the flow ρ3 will suffer higher priority inter-
ference from both ρ1 and ρ2 for many times if possible during one
period. In this case, we consider the worst case communication time.
Thus, (R3 = 9 ).

In this case example, we do not take into account source and destination
tasks in our analysis in order to be consistent with the holistic solution proposed
in [7].

As we can see, while holistic analysis only consider the worst case scenario,
ECTM is able to consider cases that are under the worst case, leading to a
better accuracy of ECTM. However, the disadvantage of the proposed solution
is the limitation of its practical exploitation, as for example, we need to extend
ECTM to support shared resources or jitter for example. Holistic analysis is
less accurate than the proposed solution since it considers worst case scenarios
but can be easily extended to support extra sources of delay, as it was extended
for jitter or shared resources.

8. Conclusion

Delays introduced by a NoC make the schedulability analysis challenging.
Classic NoC real-time scheduling solutions consider worst case scenarios to anal-
yse the communication schedulability instead of the actual delays introduced by
the network and lead to pessimistic schedulability analysis results.

In this article, we propose a new NoC communication model called Exact
Communication Time Model (ECTM) in order to analyze the scheduling of pe-
riodic tasks exchanging messages over a NoC. Our approach supports Wormhole
and Store-And-Forward NoC switching techniques. With ECTM, we perform
scheduling analysis with a list scheduling algorithm called HLFET.

We have implemented our approach in a real-time scheduling simulator called
Cheddar. The results show that ECTM is more efficient than the classic solution
WCCTM with an improvement of 30% for Store-And-Forward NoCs and of
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100% for Wormhole NoCs, while in terms of computation time of the analysis
model, WCCTM is better than ECTM with 17% for Store-And-Forward NoCs
and with 54% for wormhole NoCs.

ECTM only captures the interference the flows meet in the network by con-
sidering the temporal parameters of the task and flow models contrary to classic
solutions based on WCCTM. This explains why ECTM is more accurate for the
schedulability analysis of the system.

On the analysis overhead point of view, a larger computation time is required
for ECTM which is explained by the complexity of ECTM transformations. The
computation time is proportional to the message size and the number of used
physical links. Moreover, ECTM does not consider all type of interference such
as indirect interference, and then, ECTM is not able to support all configurations
of NoCs. ECTM can be applied to virtual channel SAF NoC and private virtual
channel wormhole NoC.

In future work, we will evaluate the overhead on the computation time in-
troduced by the proposed model on the scheduling analysis. Furthermore, we
intend to use ECTM and its associated tools to investigate the scheduling anal-
ysis of mixed criticality systems deployed over NoC architectures. We will also
extend ECTM to support SpaceWire networks [32]. In this technology, flows
are transferred with Wormhole switching mode without using virtual channel.
Consequently, we cannot avoid indirect interference situations in SpaceWire net-
works. We investigate a possible solution to master such indirect interference
by using shared resources in the computed analysis model.
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