Mourad Dridi
email: mourad.dridi@univ-brest.fr

Frank Singhoff

Stéphane Rubini

Jean-Philippe Diguet

ECTM: A network-on-chip communication model to combine task and message schedulability analysis

Keywords: Network-On-Chip (NoC), Real-Time Systems, Communication, Schedulability Analysis, Wormhole, Store-And-Forward

diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Since they provide communication parallelism and limit the energy consumption, Networks-on-Chip (NoC) are widely used in industrial applications.

Recently, the use of NoC [START_REF] Ma | Networks-on-Chip: From implementation to programming paradigms[END_REF] has been extended to real-time systems. Real-time systems are systems that have deadlines to meet [START_REF] Cheng | Tutorial: Hard real-time systems[END_REF].

NoCs introduce communication delays because of possible resource contentions between different flows in the network. Those delays depend on many factors. Some of them are related to the NoC configuration like the switching mode or the arbitration policy, while others result from the network state [START_REF] Shi | Real-time communication services for networks on chip[END_REF]. Thus, due to the NoC architecture, real-time scheduling analysis is a challenge.

In order to analyze schedulability of periodic tasks in NoC-based parallel architectures, we have to take into account at the same time the task scheduling over processing elements and the message communication scheduling over the network.

Unfortunately, classic multiprocessor real-time scheduling solutions consider worst case communication time instead of the actual delays introduced by the network [START_REF] Pop | A survey of techniques for mapping and scheduling applications to network on chip systems[END_REF]. Consequently, it leads to pessimistic schedulability analysis results.

In this article, we propose a NoC communication model in order to assess the scheduling analysis of periodic tasks over NoC architectures. The proposed model simplifies combined scheduling analysis of the periodic tasks and the NoC communications.

Our approach converts NoC flows of messages scheduling to periodic tasks scheduling. Each flow of message is transformed into a set of dependent periodic tasks. As a result, the scheduling analysis is simplified as the problem of the tasks and NoC communications scheduling is similar to the scheduling of periodic tasks deployed on a multiprocessor, which has been well studied [START_REF] Qamhieh | Scheduling of parallel real-time DAG tasks on multiprocessor systems[END_REF][START_REF] Adam | A comparison of list schedules for parallel processing systems[END_REF]. We have proven the correctness of the transformations. Furthermore, by a set of experiments, we show the efficiency of this approach.

Unlike conventional solutions which consider pessimistic scenarios to evaluate the communication times, ECTM only accounts real traffic contentions in the network. In fact, ECTM selects interference which arrives due to the actual flows in the network thanks to a temporal characterization of the traffic. For that, ECTM is intended to be more accurate than the state-of-the-art solutions for a given class of NoC architecture. More precisely, we can only apply our proposition to Virtual Channel Store-And-Forward (SAF) NoC and Private Virtual Channel Wormhole NoC.

The remainder of the article is organized as follows. The next section presents related works. Section 3 introduces background about the NoCs and the periodic task/flow models. Assumptions about the NoC architectures supported in this work are defined in the section 4. Then, the next section describes our approach for analyzing the scheduling of periodic tasks over such NoC-based parallel architectures. Section 5 demonstrates the correctness of the transformation of our analysis model. Implementation and evaluation of the proposed approach are explained in section 7 and section 8 concludes this article.

Related Work

NoC-based communications have recently attracted significant attention because of their potential for performance improvement and their impact on task

The next sections detail a new NoC communication model that addresses the limitations highlighted above.

Background

This section sums up the background required to understand the contributions proposed in the next sections. First, we introduce the main concepts about NoCs. Then, we present the models of flow and task assumed in this article.

Network-on-Chip

A NoC is a network of nodes. Each node may be a processing element, a memory, a peripheral or a cluster.

Fig. 1 illustrates the major components of a NoC. Nodes access the network through a network interface (NI) and receive data encapsulated in packets [START_REF] Ma | Networks-on-Chip: From implementation to programming paradigms[END_REF]. Then, processing elements communicate by exchanging messages over the network. The network is composed of routers and unidirectional physical links. We note e RxRy the unidirectional link between the two routers R x and R y , and e P ExRy the unidirectional link between the processing element P E x and the router R y . Finally, e RyP Ex is an unidirectional link between the router R y and the processing element P E x . In order to ensure the communication in the network, routers implement arbitration policy and switching mode.

Switching Mode: It determines how a packet is allocated to buffers and channels and when it will receive service. In this article, we assume two switching modes: Store And Forward (SAF) and Wormhole.

For the SAF mode, each router waits for a full packet to arrive before sending it to the next router [START_REF] Jetly | Experimental comparison of store-and-forward and wormhole NoC routers for FPGAs[END_REF].

With the Wormhole mode, the packet is divided into a number of fixed size flits [START_REF] Shi | Real-time communication services for networks on chip[END_REF]. More precisely, the packet is split into an header flit, one or several body flits and a tail flit. The header flit stores the routing information and is used to build the route. As the header flit moves ahead along the selected path, the remaining flits follow in a pipeline way and possibly span over multiple routers.

Arbitration Policy: Its aim is to select one packet among many in a router. When several incoming packets request the same output port of a router, an arbitration is required to select one of these packets.

Several arbitration mechanisms have been used in NoC routers [START_REF] Ma | Networks-on-Chip: From implementation to programming paradigms[END_REF]. Roundrobin and priority-based are 2 examples of these mechanisms. Round-robin arbiters give the lowest priority to the last served request in the next arbitration. Priority-based arbiters choose one packet from many requests based on their fixed priority.

Task model

In this article, we consider real-time systems designed as a set of dependent periodic tasks deployed on a NoC.

We assume a set of tasks Γ composed of n periodic tasks: Γ ={τ 1 , τ 2 , . . . , τ n } Each task τ i is defined as follows:

τ i = { O τi , T τi , C τi , D τi , Π τi , N ode τi , E } where:
• O τi is the first release time of the task τ i .

• T τi is the period of the task.

• C τi specifies the computation time needed by the task defined as its Worst Case Execution Time.

• D τi is the deadline to meet.

• Π τi is the fixed priority of the task. The value 1 denotes the highest priority level while a larger value is a lower priority.

• N ode τi identifies the NoC node (i.e. the processing element) running the task. This parameter allows us to introduce the mapping configuration, i.e. to which processing element each task is assigned to.

• E : Γ -→ Γ p τ i -→ E(τ i) ={τ j , . . . , τ k }
The function E introduces the precedence constraints of the task model. For a given task τ i , the function E determines all the tasks {τ j , . . . , τ k } that receive messages from the task τ i .

From the previous task model, in [START_REF] Dridi | DTFM: a flexible model for schedulability analysis of real-time applications on noc-based architectures[END_REF], we have proposed DTFM (Dual Task and Flow Model) in order to compute the flow model from the task model, the mapping of the tasks on the processing elements and the NoC model. The flow model specifies the messages that have to be transmitted in the NoC to make effective the communications between the tasks.

With DTFM, the set of flows ψ related to Γ can be defined as follow. The flow model comprises m periodic traffic flows ψ ={ρ 1 , ρ 2 , . . . , ρ m }. Each flow ρ i raises a sequence of messages in a similar way that a task raises a sequence of jobs. Each flow ρ i is defined as follows:

ρ i ={ O ρi , T ρi , D ρi , Π ρi , N odeS ρi , N odeD ρi , F }
where:

• O ρi is the release time of the messages, i.e. the first time a message of the flow becomes ready to be transmitted.

• T ρi is the period of the message.

• D ρi is the deadline of the message i.e. the message must be available for the receiver before this time.

• Π ρi is the priority of the messages. The value 1 denotes the highest priority level while a larger value indicates a lower priority.

• N odeS ρi is the node (i.e. the processing element) running the transmitter task.

• N odeD ρi is the node running the receiver task.

• F : ψ -→ Ω p ρ i -→ F (ρ i) ={e P Ej Rj , . . . , e RxRy , . . . , e R k P E k }
where Ω is a set of physical links in the NoC.

F is a function that computes the links used by a flow. In other words, F identifies the physical links that will be used by any messages of the flow.

The function F helps us to understand the relationships between the various flows that transit through the network and to determine the interference between the messages sent by the tasks.

Finally, in this article, we assume the following protocol about message exchanges : tasks send their packets at completion time (at the end) of each instance of their periodic execution and the packets are read before the periodic execution of the receiving tasks. This protocol is called immediate data connection protocol in the standard AADL [START_REF] Feiler | Model-Based Engineering with AADL: An Introduction to the SAE Architecture Analysis & Design Language[END_REF].

NoC communication analysis

Depending on the NoC configuration, we may have different types of latencies. In this section, we focus on latencies introduced by the NoC assumed in this article. Let's see the different types of delays that we must understand to assess schedulability of real-time tasks deployed on such NoCs.

Path delay

The Path Delay P D is the time required to send a packet from the transmitter to the receiver when no traffic flow contention exists.

We assume here that packets of a flow do not share any physical link with other flows along the path. This delay is variable and depends on several parameters such as the number of hops between the transmitter and the receiver, the flow rate and the size of the messages [START_REF] Shi | Real-time communication services for networks on chip[END_REF].

Delay due to Direct Interference

A second kind of delay occurs due to direct interference.

We have a direct interference when two flows share the same physical link at the same time. This delay caused by a direct interference between flows is called a Direct Delay DD.

The direct interference can be presented as a non-deterministic source of delay. In our analysis, we consider the worst case latency introduced by the direct interference. We assume the packet from the observed traffic-flow arrives just after other packets for each shared link. We assume also a maximum size of the packets [START_REF] Shi | Real-time communication services for networks on chip[END_REF].

Delay due to Indirect Interference

Another kind of delay occurs due to indirect interference. There is an indirect interference when two flows do not share the same physical link but interfere directly with the same flows. We call the delay caused by an indirect interference, an Indirect Delay, noted ID.

Considering indirect interference, each flow blocked by direct interference with other flows, will in turn block all other flows which share physical links with it. However those physical links remain available and cannot be used by any flows during the indirect interference situation. Thus, this kind of interference must be avoided because it affects significantly the use rate of the network resources. In addition, in most cases, indirect interference complicates the scheduling analysis and increases the pessimism degree of the worst case communication time.

In the next section, we detail our contributions and the targeted NoC configurations.

Supported NoC Architectures

In this section, we present assumptions about the NoC architectures investigated in this paper. Then, we discuss the rationale of these choices.

• Assumptions 1: We consider 2D NoC with XY/YX routing algorithm.

We take this assumptions in order to consider the most used topology and routing algorithm in NoCs.

• Assumptions 2: We consider Wormhole or SAF as switching mode in the considered NoC router. Wormhole switching minimizes the communication time and it does not require large capacity buffers. But, we also consider SAF switching mode because it decreases the potential congestion over the network [START_REF] Dridi | Design and multi-abstraction-level evaluation of a noc router for mixedcriticality real-time systems[END_REF].

• Assumptions 3: We consider NoC router with virtual channels. This assumptions has been taken in order to reduce blocking situations between flows and to give more flexibility to flows in the considered network.

• Assumptions 4: We consider a fixed priority flit-level arbitration for Wormhole NoC and a fixed priority packet-level for SAF NoC. We take this assumptions since most of NoC routers use those arbitration policies.

• Assumptions 5: In this assumptions, we consider that the NoC router can communicate only one flow per virtual channel. Said differently, two flows cannot share the same virtual channel even if they can share the same physical link using two different virtual channels. We consider this assumption in order to avoid indirect interference situations.

To sum up, we target in our work the 2D mesh NoCs with several virtual channels. For SAF NoC, using virtual channel allows us to avoid indirect interference. With a Wormhole NoC, we need to use a virtual channel for each communication flow in order to also prevent such an interference [START_REF] Dridi | Design and multi-abstraction-level evaluation of a noc router for mixedcriticality real-time systems[END_REF]. Next, we demonstrate how those assumptions avoid indirect interference. Then, we discuss the strengths of those assumptions.

We prove by contradiction that we cannot have indirect interference in a SAF NoC which implements virtual channel. Let assume a SAF NoC with virtual channels. In this configuration, each virtual channel is only used by one flow. Then, two flows cannot share the same virtual channel.

Let consider three flows ρ 1 , ρ 2 and ρ 3 as shown in Fig 2.

• ρ 1 and ρ 2 share the physical link e R1R2 .

• ρ 2 and ρ 3 share the physical link e R3R4 . Now, let assume that we have indirect interference, that's mean the flow ρ 1 is blocked by the flow ρ 2 because they share the same physical link e R1R2 at the same time. To have an indirect interference, the flow ρ 2 must be also blocked by the flow ρ 3 because they share the same physical link e R3R4 . However, since the link e R1R2 is not used by either ρ 2 or ρ 1 , they cannot share the same virtual. We can do the same demonstration for Wormhole NoC with virtual channel. Maybe the weakest assumption in our study is the restricted number of flow per virtual channel, i.e. only one flow per virtual channel (Assumptions 6). In order to enforce this assumption we would note that there are many solutions to mitigate its negative effects.

For M flows per physical link and under those assumptions, we must have M virtual channels per physical link. The value of M can be reduced depending to several parameters such as the task model and the task mapping. On the one hand, for a fixed value of M, we must select a task mapping which allows us to have at most M flows sharing the same physical link. This kind of problems is similar to a Quadratic Assignment Problem (QAP) [START_REF] Al Faruque | Minimizing virtual channel buffer for routers in on-chip communication architectures[END_REF]. QAP is known as an NP-Hard optimization problem. However, there are various heuristics that can be used for defining such mapping as those described in [START_REF] Al Faruque | Minimizing virtual channel buffer for routers in on-chip communication architectures[END_REF] or [START_REF] Al Faruque | Transaction specific virtual channel allocation in QoS supported on-chip communication[END_REF]. Multicriteria heuristics are presented in these articles. Authors in [START_REF] Al Faruque | Transaction specific virtual channel allocation in QoS supported on-chip communication[END_REF][START_REF] Al Faruque | Minimizing virtual channel buffer for routers in on-chip communication architectures[END_REF] try to optimize the total communication volume and the number of VCs. We note that this optimization issue is orthogonal to the scope of this work. On the other hand, for a fixed task mapping, we can select M as the maximum of flows sharing the same link. We note that the higher the number of virtual channel, the larger the overhead of area for the NoC implementation.

NoC Communication Time Models

In order to analyze the scheduling of periodic tasks running on a NoC architecture, communication delays in the NoC have to be investigated.

Shi et al. in [START_REF] Shi | Real-time communication services for networks on chip[END_REF][START_REF] Shi | Real time communication analysis for on-chip networks with wormhole switching[END_REF][START_REF] Shi | Real-time communication analysis with a priority share policy in on-chip networks[END_REF] proposed NoC communication models based on worst case scenarios. Those communication models compute worst case communication delays that can be used to assess schedulability of periodic tasks running on the NoC.

Next, we formalize WCCTM, the Worst Case Communication Time Model, base on the Shi's analysis. Then, we propose ECTM (Exact Communication Time Model), an exact communication model that improves WCCTM. As shown in Fig. 3, the goal of a NoC communication model is to assess schedulability of periodic tasks running on the NoC. Next, we present an overview of our schedulability approach before introducing both WCCTM and ECTM.

Overview of our approach

Fig. 4 shows an overview of the approach we propose. The system to analyze is expressed by a model of the NoC, a model of the application as a set of dependent periodic tasks and how such tasks are deployed on the processing elements. In the sequel, we call this input model the architectural model.

Then, to achieve schedulability analysis of the overall system, we apply the following steps:

1. The communication delay model of the architectural model is transformed into an analysis model to validate the scheduling of the communications.

For such a transformation, we use ECTM and WCCTM. WCCTM is used in this article to evaluate ECTM efficiency. 2. By a scheduling simulation with a list scheduling policy over the feasibility interval, we assess the schedulability of the system. Feasibility intervals are choosen according to [START_REF] Goossens | Periodicity of real-time schedules for dependent periodic tasks on identical multiprocessor platforms[END_REF]. In the next paragraphs, we define the architectural model and the analysis model.

Architectural model

For the architectural model, we consider a set of periodic tasks exchanging messages, and deployed over a NoC. The task set is defined by the parameters introduced in Section 3.2.

The NoC is characterized by its topology, the switching mode and arbitration policy it implements. Table 1 summarizes the assumptions related to the NoC, i.e. mainly a 2D mesh NoC with virtual channels. We recall here that allocating a virtual channel for each flow allows us to avoid indirect interference.

Moreover, a task mapping completes the architecture model, that allows to apply the DTFM [START_REF] Dridi | DTFM: a flexible model for schedulability analysis of real-time applications on noc-based architectures[END_REF] algorithm to generate a temporal specification of the communication flows inside the NoC.

Analysis model

The analysis model is composed of a set of periodic tasks running on a multiprocessor execution platform. We assume a multiprocessor with identical processors [START_REF] Goossens | Periodicity of real-time schedules for dependent periodic tasks on identical multiprocessor platforms[END_REF] and no hardware shared resource.

Scheduling analysis of such models can be performed with list scheduling [START_REF] Hagras | Static vs. dynamic list-scheduling performance comparison[END_REF][START_REF] Adam | A comparison of list schedules for parallel processing systems[END_REF]. List scheduling algorithms build scheduling list of tasks when assigning them their priorities. There are several means to determine the priorities of tasks such as Highest Level First, Longest Path and Longest Processing Time [START_REF] Kwok | Static scheduling algorithms for allocating directed task graphs to multiprocessors[END_REF]. [START_REF] Qamhieh | Scheduling of parallel real-time DAG tasks on multiprocessor systems[END_REF][START_REF] Adam | A comparison of list schedules for parallel processing systems[END_REF]. Now we describe the communication time models considered in this article: WCCTM and two ECTM models, one for SAF switching mode and the second for Wormhole switching mode.

Worst Case Communication Time Model (WCCTM)

Let us see now how the architectural model is transformed into a WCCTM analysis model. To achieve this transformation, we apply the following rules:

• Rule 1: All routers and unidirectional links of the architectural model will be removed in the analysis model while keeping all the processing elements.

• Rule 2: We keep all tasks of the architectural model in the analysis model.

• Rule 3: Each flow ρ i of the architectural model is modeled as a processing element P E ρi in the analysis model. The tasks running in the new processing element P E ρi are scheduled according to a fixed priority policy.

• Rule 4: Each flow ρ i of the architectural model will be abstracted by one task τ ρi in the analysis model.

• Rule 5: If the architectural model contains two periodic tasks τ source and τ destination and if τ source sends the messages of the flow ρ i to τ destination , then applying WCCTM leads to the flow ρ i transformed in the analysis model as a periodic task τ ρi with the following parameters:

-

O τρ i = O ρi -T τρ i = T ρi -C τρ i = W CCT i
where W CCT i is the Worst Case Communication Time of a ρ i 's message. We compute W CCT i with the methods proposed in [START_REF] Shi | Real-time communication services for networks on chip[END_REF][START_REF] Shi | Real time communication analysis for on-chip networks with wormhole switching[END_REF][START_REF] Shi | Real-time communication analysis with a priority share policy in on-chip networks[END_REF] for Wormhole NoCs or in [START_REF] Shi | Real-time communication services for networks on chip[END_REF] for SAF NoCs.

- We illustrate the WCCTM transformation by the example shown in Fig. 5. We consider 4 periodic tasks τ 1 , τ 2 , τ 3 and τ 4 . τ 1 sends messages of the flow ρ 1 to the task τ 2 , and τ 3 sends messages of the flow ρ 2 to the task τ 4 .

D τρ i = D ρi -N ode τρ i = P E ρi -E(τ ρi)= τ destination
In addition, the tasks τ 1 , τ 2 , τ 3 and τ 4 are respectively executed by the processing elements P E 1 , P E 3 , P E 2 and P E 4 .

When applying the WCCTM transformation rules, we get:

• (Rule 1) Routers and links of the architectural model are removed in the analysis model.

• (Rule 2 + Rule 1) All tasks and processing elements of the architectural model are kept in the analysis model.

• (Rule 3 + Rule 4) The flow ρ 1 is transformed into a task τ ρ1 . The processing element P E ρ1 executes τ ρ1 . The flow ρ 2 is transformed into a task τ ρ2 . Last, the processing element P E ρ2 executes τ ρ2 .

In order to assess the schedulability of such system, we run scheduling simulation over the feasibility interval. In this simulation, we consider a list scheduling algorithm for processing elements P E 1 , P E 2 , P E 3 and P E 4 . For the rest of processing elements, we consider a fixed priority algorithm.

In the architectural model, the flows ρ 1 and ρ 2 share the same physical link e R2R3 , while, in the analysis model, there is no shared resources between τ ρ1 and τ ρ2 . We explain that by considering the worst case communication time of each flow as the capacity of each corresponding task.

Exact Communication Time Model for SAF NoC

For the SAF NoCs, we propose ECT M SAF . Next, we detail the transformation rules for ECT M SAF :

• Rule 1: Each router of the architectural model will be removed in the analysis model while keeping all the processing elements.

• Rule 2: Each unidirectional link e RxRy in the network between two routers Rx and Ry of the architectural model will be replaced in the analysis model by a new processing element P E RxRy .

Each unidirectional link e P ExRx in the network between a processing element and a router (respectively e RxP Ex between a router and a processing element) of the architectural model will be replaced in the analysis model by a new processing element P E P ExRx (respectively P E RxP Ex).

These new processing elements in the analysis model apply a scheduling algorithm in agreement with the considered arbitration policy in the NoC router.

• Rule 3: We keep all tasks of the architectural model in the analysis model.

• Rule 4: Each flow ρ i of the architectural model will be replaced by a set of nbrlink i tasks Γ ρi , where nbrlink i denotes the number of links used by the flow ρ i , or:

Γ ρi = { τ ρi,1 , τ ρi,2 , . . . , τ ρ i,nbrlink i }.
• Rule 5: If the architectural model contains two periodic tasks τ source and τ destination and if τ source sends messages from the flow ρ i to τ destination , then applying ECT M SAF leads to the flow ρ i transformed in the analysis model as a set of periodic tasks Γ ρi . Parameters of each task τ ρi,j of the task set Γ ρi are computed as follow.

For j in [1, . . . nbrlink i] τ ρi,j is characterized by : -

-O τρ i,j = O ρi -T τρ i,j = T ρi -C τρ i,
D τρ i,j = D ρi -N ode τρ i,j =    P E Rj P Ej if j = nbrlink i P E P Ej Rj if j = 1 P E RxRy if 1 < j < nbrlink i
We note here that e RxRy represents each of the physical links used by the flow ρ i which is transformed to the processing element P E RxRy in the analysis model.

- We apply the ECT M SAF transformation to the previous example (Fig. 5). Figures 6 and7 show the architectural and the analysis models with ECT M SAF . Fig. 6 shows the transformation of ECTM for ρ 1 , while Fig. 7 shows the transformation of ECTM for both ρ 1 and ρ 2 .

E(τ ρi,j) = τ i,j+1 if j < nbrlink i τ destination if j = nbrlink i
When applying the ECT M SAF transformation, we get:

• (Rule 1 + Rule 2) Routers have been removed and the physical links are transformed, in the analysis model, into processing elements.

• (Rule 3) All tasks of the architectural model are kept in the analysis model.

• (Rule 4 + Rule 5) ρ 1 and ρ 2 use 4 physical links. Thus, the flow ρ 1 has been transformed in the analysis model to a task set Γ ρ1 of 4 tasks:

Γ ρ1 = { τ ρ1,1 , τ ρ1,2 , . . . , τ ρ1,4 }.
The flow ρ 2 has been transformed in the analysis model to a task set Γ ρ2 of 4 tasks: Γ ρ2 = { τ ρ2,1 , τ ρ2,2 , . . . , τ ρ2,4 }. τ ρ1,1 , τ ρ1,2 , τ ρ1,3 and τ ρ1,4 are respectively executed by the processing elements P E P E1R1 , P E R1R2 , P E R2R3 and P E R3P E3 .

τ ρ2,1 , τ ρ2,2 , τ ρ2,3 and τ ρ2,4 are respectively executed by the processing elements P E P E2R2 , P E R2R3 , P E R3R4 and P E R4P E4 . We consider a list scheduling algorithm for processing elements P E 1 , P E 2 , P E 3 and P E 4 . For the rest of the processing elements, a scheduling algorithm in agreement with the considered arbitration policy in the considered NoC is assumed.

In the analysis model, flows ρ 1 and ρ 2 share the same physical link e R2R3 . ECTM translates this shared resource in the analysis model by sharing the processing element P E R2R3 between τ ρ1,3 and τ ρ2,2 .

Exact Communication Time Model for Wormhole NoC

For the Wormhole NoCs, we propose ECT M W ormhole . In the following, we detail rules of ECT M W ormhole :

• Rule 1: Each router of the architectural model will be removed in the analysis model while keeping all the processing elements.

• Rule 2: Each unidirectional link e RxRy in the network between two routers of the architectural model will be modeled in the analysis model by a new processing element P E RxRy .

Each unidirectional link e P ExRx in the network between a processing element and a router (respectively e RxP Ex between a router and a processing element) of the architectural model will be replaced in the analysis model by a new processing element P E P ExRx (respectively P E RxP Ex).

These new processing elements use a scheduling algorithm in agreement with the considered arbitration policy in the NoC router.

• Rule 3: We keep all tasks of the architectural model in the analysis model.

• Rule 4: Each flow ρ i of the architectural model will be replaced by a set of nb tasks Γ ρi , where nb = nblink i × nbsize i in the analysis model. nblink i represents the number of links used by the flow, and nbsize i represents the size of message of the flow ρ i .

Γ ρi = { τ ρi,1,1 , τ ρ i,a,b , . . . , τ ρ i,nbsize i ,nblink i }.
For example, with ECT M W ormhole , a flow of 2 flits, which uses 3 physical links, will be transformed in the analysis model into a task set of 6 tasks.

• Rule 5: If the architectural model contains two periodic tasks τ source and τ destination , τ source and τ destination are executed respectively on the two processing elements P E s and P E d . If τ source sends the messages of flow ρ i to τ destination , then applying ECT M W ormhole leads to the flow ρ i transformed in the analysis model as a task set Γ ρi . Parameters of each task τ ρ i,a,b of the task set Γ ρi are computed as follow: -

For (a,b) ∈ [1, size i] x [1,nbrlink i], τ ρ i,a,b is characterized by : -O τ ρ i ,a,b = O ρi -T τ ρ i ,a,b = T ρi -C τ ρ i
D τ ρ i ,a,b = D ρi -N ode τ ρ i ,a,b =    P E P EsRs if a = 1 P E RxRy if 1 < a < nbrlink i P E R d P E d if a = nbrlink i
We note here that e RxRy represents one of the physical links used by the flow ρ i which is transformed to the processing element P E RxRy in the analysis model.

-E(τ ρi,a,b) =        τ ρi,a+1,b , τ ρi,a,b+1 if a < size i and b < nbrlink i τ ρi,a+1,b if a < size i and b = nbrlink i τ ρi,a,b+1
if a = size i and b < nbrlink i τ destination if a = size i and b = nbrlink i We note here that some tasks of Γ ρi have only one successor such as τ ρi,sizei,b , τ ρi,a,nbrlinki and τ ρi,sizei,nbrlinki . The rest of the tasks have two successors.

In order to illustrate the transformation of the proposed model for Wormhole NoCs, we apply ECT M W ormhole on the previous example (Fig. 5). Figures 8 and9 show the architectural and the analysis models with ECT M W ormhole . Fig. 8 shows the transformation of ECTM for ρ 1 , while Fig. 9 shows the transformation of ECTM for both ρ 1 and ρ 2 .

When applying the ECT M W ormhole transformation, we get: • (Rule 3) All tasks of the architectural model are kept in the analysis model.

• (Rule 4 + Rule 5) The flow ρ 1 and ρ 2 use 4 physical links. The flow size is 2 flits. Thus, the flows ρ 1 and ρ 2 are transformed in the analysis model into 2 task sets Γ ρ1 and Γ ρ2 of 8 tasks: In the architectural model, flows ρ 1 and ρ 2 share the same physical link e R2R3 . ECT M W ormhole translates this shared resource in the analysis model by sharing the processing element P E R2R3 between τ ρ1,3,1 , τ ρ1,3,2 , τ ρ2,2,1 and τ ρ2,2,2 .

Γ ρ1 = { τ ρ1,1,1 , τ ρ1,
After computing the analysis model using ECTM, we perform the scheduling analysis with list scheduling algorithms. In this work, we consider the algorithm Highest Level First with Estimated Time (HLFET).

With HLFET, first we assign a priority to each task. Then, a scheduling list of tasks is built. A ready task will be executed over the corresponding processor if available. If two ready tasks share the same corresponding processor, the higher priority task will be executed first. We note that there is no preemption [START_REF] Hagras | Static vs. dynamic list-scheduling performance comparison[END_REF][START_REF] Adam | A comparison of list schedules for parallel processing systems[END_REF].

In the architectural model, at the Wormhole network level, we have flit level preemption. However when applying ECTM, each flit per physical link will be transformed into one task. This is why we use non preemptive scheduling algorithm for the analysis model.

At the SAF network level, we have packet level preemption. When applying ECTM, each packet per physical link will be replaced by one task in the analysis model. Then again, we use non preemptive scheduling algorithm for the analysis model in order to model the fixed priority packet level arbitration of the architectural model.

In the next section, we present a validation of the proposed approach.

Validation

For the Wormhole and SAF NoC, ECTM transforms every flow ρ i of the architectural model to a set of dependent tasks in the analysis model. We show, in this section, that the communication interference caused by hardware shared resources as expressed the architectural model are kept in the analysis model computed by ECTM, leading to a correct schedulability analysis. We express this property below: Property 1. Let assume a SAF or Wormhole NoC implementing a fixed priority arbitration policy. Let a task τ 1 that sends a flow ρ i to the task τ 2 . If ECTM transforms the flow ρ i to a set of dependent tasks Γ ρi , then the response time of the set Γ ρi is equal to the effective communication time of the flow ρ i .

The following inequality follows from the property 1:

P D ρi ≤ C ef fρ i = C ECT Mρ i ≤ C ρi (1)
where

• P D ρi is the communication time of the flow ρ i in absence of communication interference in the NoC.

• C ef fρ i specifies the effective communication time of the flow ρ i .

• C ECT Mρ i is the sum of the capacity of all the tasks of the task set Γ ρi .

• C ρi specifies the worst case communication time of all messages of the flow ρ i .

Next, we demonstrate that the property 1 is true for the SAF and Wormhole NoCs. To do so, we consider two cases: with and without interference.

ECTM for SAF NoC

We consider two dependent periodic tasks τ 1 and τ 2 . τ 1 sends the flow ρ i to the task τ 2 . ρ i uses n physical links. With ECT M SAF , the flow ρ i of the architecture model is transformed into a set of n tasks Γ ρi in the analysis model (Γ ρi = {τ ρi,1 , ...τ ρi,n })

We remind that under this configuration, we cannot have indirect interference. In addition, the preemption delay is stated as null.

Case without interference

Before starting our demonstration, we remind the path delay equation of the flow ρ i for such a NoC configuration [START_REF] Shi | Real-time communication services for networks on chip[END_REF]:

P D ρi = (size max /B link + R hop) • n = P D OneLink • n (2)
where

• B link specifies the link bandwidth for a physical link in the considered NoC.

• size max is the maximum packet size belonging to ρ i .

• n denotes the number of hops between the source and destination nodes for ρ i .

• F lit size specifies the flit size.

• R hop indicates the constant processing delay in each router.

In the without interference case, we have:

C ECT Mρ i = C Γρ i (by definition of C ECT Mρ i) C Γρ i = n j=0
C τρ i ,j (tasks are sequentially dependents)

C Γρ i = n j=0 C τρ i ,1 (C τρ i ,1 = C τρ i ,2 = • • • = C τρ i ,n) C Γρ i = n j=0 P D OneLink (rule 4 of ECTM i.e. C(τ ρi,1) = P D OneLink) C Γρ i = n • P D OneLink C Γρ i = P D ρ1 (see Eq. 2)
Then, without interference, we know that:

P D ρi = C ef fρ i = C ρi
and then the property 1 est true in that case, and Eq. 1 holds.

Case with interference

In this paragraph, we assume that the flow ρ i shares physical links with j other higher priority flows but only k (with k ≤ j) of them actually interfere with it.

We remind equations of the worst communication time and effective communication time of the flow ρ i for such NoC configurations [START_REF] Shi | Real-time communication services for networks on chip[END_REF]:

C ρi = P D ρi + j 1 P D OneLink (3)
C ef fρ i = P D ρi + k 1 P D OneLink (4)
In this case, we have

C ECT Mρ i = C Γρ i C Γρ i = P D ρ1 + k x=1 C τx (Rule 3 of ECTM)
Notice that the processing element which executes τ x tasks, is an abstraction of a NoC router. It applies a scheduling algorithm in agreement with the arbitration policy of the router to ensure that the execution interval of each task of the set Γ ρi is equal to the transmission interval of the corresponding message in the architectural model.

Considering Rule 4 of ECT M SAF , we have:

C Γρ i = P D ρ1 + k x=1 P D OneLink (Rule 4 of ECTM i.e.
C(τ ρi,1) = P D OneLink) [START_REF] Pop | A survey of techniques for mapping and scheduling applications to network on chip systems[END_REF] and Eq. 3)

C Γρ i = P D ρ1 + k • P D OneLink ≤ P D ρ1 + j • P D OneLink (k ≤ j) C Γρ i = C ef fρ i ≤ C ρi (Eq.
So, we can deduce:

P D ρi ≤ C ef fρ i = C ECT Mρ i ≤ C ρi
To conclude, ECTM keeps all possible communication interference of the architectural model in the analysis model for a SAF NoC and computes a communication time exactly equal to the effective communication time of the flow ρ i .

ECTM for Wormhole NoC

In this paragraph, we consider two dependent periodic tasks τ 1 and τ 2 . The task τ 1 sends the flow ρ i to the task τ 2 . The flow goes through m physical links. The size of ρ i is n flits.

Applying ECT M W ormhole , the flow ρ i of the architectural model will be transformed into a set of (n • m) tasks in the analysis model, leading to the task set Γ ρi = {τ ρi,1,1 , ...τ ρi,n,m }.

We note that under such NoC configurations (see Tab. 1), we cannot have indirect interference. Indeed, using virtual channel for each flow allows us to avoid indirect interference [START_REF] Dridi | Design and multi-abstraction-level evaluation of a noc router for mixedcriticality real-time systems[END_REF]. Consequently, we have two different cases: without and with direct interference. Next, we verify the property 1 for these two cases.

Case without interference

Before starting our demonstration for Wormhole NoC, we remind the equations of path delay [START_REF] Shi | Real-time communication services for networks on chip[END_REF] of the flow ρ i :

P D ρi = n • P D Onef lit/Onelink + R hop • (m -1) (5)
where

• P D Onef lit/Onelink specifies the communication time of one flit over one link without considering the possible conflicts in the network.

• n is the message size of the flow ρ i .

• m denotes the number of physical links used by the flow ρ i .

In the without interference case, and according to Fig. 10, we have:

C ECT Mρ i = C Γρ i (by definition of C ECT Mρ i) C Γρ i = n • C τρ i ,1,1 + (m -1) • C τρ i ,1,1
(see Fig. 10)

C Γρ i = n • C τρ i ,1,1 + (m -1) • Rhop (Rhop = P D Onef lit/Onelink) C Γρ i = n • P D Onef lit/Onelink + (m -1) • Rhop (C τρ i ,1,1 = P D Onef lit/Onelink) C Γρ i = P D ρi (see Eq. 5)
In addition, without any interference, we know that P D ρi = C ef fρ i = C ρi . So, we can deduce:

P D ρi ≤ C ef fρ i = C ECT Mρ i ≤ C ρi

Case with interference

In this paragraph, we assume that the flow ρ i shares physical links with j other flows but it actually only interferes with k flows (with k ≤ j).

We note here that the j other flows will be transformed into j task sets in the analysis model { Γ ρ1 • • • Γ ρj }. These task sets will share same processing element with tasks of Γ ρi .

We remind the equations of the worst communication time and effective communication time of the flow ρ i for such a NoC configuration:

C ρi = P D ρi + j x=1 P D Onef lit/Onelink • size maxx (6)
C ef fρ i = P D ρi + k x=1 P D Onef lit/Onelink • size maxx (7)
where size maxx denotes the maximum message size of the flow ρ x .

In the with interference case, we have:

C ECT Mρ i = C Γρ i (by definition of C ECT Mρ i) C Γρ i = P D ρ1 + k y=1 sizemax x x=1 C τρ i ,y,x
(Rule 3 of ECTM)

C Γρ i = P D ρ1 + k y=1 C τρ i ,y,1 • size maxx (C τρ i ,y,x = C τρ i ,y ,1)
C Γρ i = P D ρ1 + k • C τρ i ,1,1 • size maxx (C τρ i ,y,1 = C τρ i ,1 ,1)
C Γρ i = P D ρ1 + k • P D Onef lit/Onelink • size maxx (C τρ i ,1,1 = P D Onef lit/Onelink) C Γρ i = C ef fρ i ≤ P D ρ1 + j • P D Onef lit/Onelink • size maxx (see Eq. 7 ; k ≤ j) C Γρ i = C ef fρ i ≤ C ρi (see Eq. 6)
So, we can deduce that:

P D ρi ≤ C ef fρ i = C ECT Mρ i ≤ C ρi
To conclude, ECTM keeps the impact of all possible communication interference of the architectural model in the analysis model for a Wormhole NoC. ECTM provides a communication time that is equal to the effective communication time of the flow ρ i .

The next section gives an overview of the software framework where the transformations we proposed have been implemented.

Implementation and Evaluation

We have produced several experiments in order to evaluate the accuracy and the scalability of the proposed models. To perform this evaluation, we have implemented our communication models into a real-time scheduling simulator called Cheddar [START_REF] Singhoff | Cheddar: a flexible real time scheduling framework[END_REF]. Then, with a first experiment, we evaluate the accuracy of ECTM and WCCTM. A second experiment tests the scalability of our approach. Finally, we present a comparative analysis between ECTM and the holistic verification approach.

Implementation of ECTM and WCCTM

Cheddar is a GPL framework that provides a scheduling simulator, schedulability tests and various features related to the design and the scheduling analysis of real-time systems. To model the system to analyze, Cheddar provides a specific architecture design language, called CheddarADL [START_REF] Singhoff | Cheddar: a flexible real time scheduling framework[END_REF]. CheddarADL allows users to describe both the software and the hardware parts of the system they expect to analyze. Fig. 11 is an overview of the software architecture of our prototype and a subset of Cheddar framework libraries. As shown in Fig. 12, the evaluation process consists of two stages: generation of an architectural model and its scheduling simulation1 .

Evaluation process

1. Generation of an architectural model. In this first stage, we produce the input data for the simulations. To do so, we randomly generate a set of architectural models using the UUniFast [START_REF] Bini | Measuring the performance of schedulability tests[END_REF] algorithm. Each architectural model is stored in an XML file which describes the task model, the NoC model, the task mapping and the dependencies between tasks. 2. Scheduling simulation. In this step, we launch a set of simulations. As shown in Fig. 12, for each simulation, we perform the following two operations:

(a) Model Transformation: The input data of this operation is the architectural model (XML file). Using a model transformation, we generate the analysis model from the architectural model. The model transformations used are WCCTM, ECT M W ormhole and ECT M SAF . The analysis models obtained are also stored in XML files. (b) Scheduling analysis: We run the scheduling simulation which applies the HLFET list scheduling algorithm. Then, the simulator verifies whether all the deadlines are met.

In the next section, we present the results of the evaluation.

Accuracy of WCCTM and ECTM

The purpose of this evaluation is to make a comparative study between the two ECTM and WCCTM models in terms of accuracy. To do so, we evaluate the rate of schedulable task sets found as schedulable by ECTM and WCCTM models. In this experiment, we randomly generate 100 sets of dependent periodic tasks using UUniFast [START_REF] Bini | Measuring the performance of schedulability tests[END_REF]. We choose a random task mapping and we vary the number of flows in the network and the number of tasks.

We consider two traffic patterns: All-To-One and One-To-One.

With a All-To-One traffic pattern, the source node will be randomly selected using UUniFast, while the destination node is fixed arbitrarily. All flows of the same set have the same destination node.

With a One-To-One traffic pattern, the destination node and the source node are selected randomly using UUniFast. The chosen packet size is 4 flits.

To perform the experiment, we first use DTFM in order to compute the flow model from the task model, the task mapping and the NoC model. Then, we apply ECTM or WCCTM and we compute the scheduling simulation with a list scheduling algorithm. Since it presents the best results in term of robustness and complexity, scheduling analysis is performed with HLFET [START_REF] Adam | A comparison of list schedules for parallel processing systems[END_REF]. Simulation intervals are choosen according to [START_REF] Goossens | Periodicity of real-time schedules for dependent periodic tasks on identical multiprocessor platforms[END_REF].

We also consider two NoC models. The first one is a Wormhole NoC, and the second is a SAF NoC. The two NoCs have the same size and the same topology (4 × 4 2D mesh).

Fig. 13 presents the rate of task sets considered as schedulable according to the overall processing element utilization rate for the All-To-One traffic pattern. The figure shows that ECTM is more accurate than WCCTM with an improvement of 30% for Store-And-Forward NoCs. From a use rate equal to 0.15, some schedulable task sets are no more considered as schedulable by W CCT M SAF model. However, with the ECT M SAF , all the task sets remain as schedulable up to a use rate of 0.2. Fig. 14 presents results equivalent to those shown in Fig. 13 but for the One-To-One traffic pattern. It confirms the previous experimentation.

ECTM is less pessimistic than WCCTM. For a Wormhole NoCs, the threshold of the processing element utilization beyond which some task sets are considered as not schedulable is increased by 100%. Using W CCT M W ormhole , the schedulable task sets are no more seen as schedulable from a use rate equal to 0.08. However, with the ECT M W ormhole , the schedulable task set is seen as schedulable up to 0.16 of use rate.

Evaluation of the scalability of our approach

In order to evaluate the scalability of our approach, we measured the computation time of the WCCTM and ECTM transformations. We keep the same configurations than the previous experiments. Fig. 15 presents this result for different numbers of flows ranging from 15 to 120.

WCCTM provides shorter computation time than ECTM. For 105 flows in the network, WCCTM takes 2.32 seconds to compute the analysis model, while ECT M SAF takes 2.86 seconds, and ECT M W ormhole takes 6.80 seconds for 2 flits flows and 8.13 seconds for 3 flits flows. In terms of computation time, WCCTM has a shorter computation time comparing to ECTM, with a reduction of 17% for the SAF NoCs and upto 54% for the Wormhole NoCs.

Holistic Analysis versus ECTM

The holistic theory is a formal approach which assesses the feasibility of realtime systems composed of tasks exchanging messages. It makes the analysis of In this paragraph, we discuss the efficiency of this approach in the context of NoCs, and then we present a comparative analysis between ECTM and holistic approaches. Finally, we discuss the disavantages and the avantages of each solution.

Holistic approach

The holistic approach has been introduced by Tindell and Clark [START_REF] Tindell | Holistic schedulability analysis for distributed hard real-time systems[END_REF]. The authors describe how to assess the feasibility of real-time distributed systems considering fixed priority tasks and a TDMA (Time Division Multiple Access) network. Later, in [START_REF] Tindell | Analysis of hard real-time communications[END_REF], Tindell and Burns have extended the analysis to systems with real-time and token communication protocols.

In the holistic approach, feasibility is assessed by computing how timing behavior of the messages affects the response time of the tasks and respectively. In the seminal Tindell proposal, jitter of a task i models lateness introduced by tasks run before task i or messages sending data to task i. The key aspect of the holistic approach is the ability to compute worst case response times for both tasks and messages by a step by step approach. Response times are computed by several approximations upto convergency. At each approximation, for each task i, its jitter is updated by response time approximations of tasks/messages delaying i. Many publications have extended the seminal work of Tindell to various task models, scheduling policie or distributed systems such as [START_REF] Garcia | Schedulability analysis of distributed hard real-time systems with multiple-event synchronization[END_REF][START_REF] Palencia | Schedulability analysis for tasks with static and dynamic offsets[END_REF][START_REF] Tindell | Adding time-offsets to schedulability analysis[END_REF] and [START_REF] Palencia | Response time analysis of edf distributed real-time systems[END_REF].

Holistic NoC communication analysis

Several holistic analyses for distributed systems have been proposed, but in the context of NoCs, the holistic analyses must take into account the specification of the considered switching mode, the arbitration policy and the routing algorithm.

In [START_REF] Shi | Real time communication analysis for on-chip networks with wormhole switching[END_REF], Shi and Burns have proposed a holistic communication analysis for a 2D mesh Wormhole NoC with XY routing algorithm. In this work, the routers implement a priority based flit-level preemption policy. Many virtual channels are available in the network but each virtual channel is used by only one flow. The authors identify higher priority direct and indirect interference. Then, the path delay of higher flows is affected by lower priority flows which share the same physical link and by flows which suffer higher indirect interference. Similar to the holistic approach proposed by Tindell and Clark, the overall of the different subsystem is repeated several times until stability is reached.

Next, we present a case example in order to compare an holistic approach with ECTM.

A Case example

In the following, we present a comparison, based on an analytical case example, between the ECTM analysis and the holistic analysis proposed by Shi.

Let's take an example, adapted from [START_REF] Shi | Real time communication analysis for on-chip networks with wormhole switching[END_REF], of a real-time system deployed over a NoC. We consider three communication flows ρ 1 , ρ 2 and ρ 3 ; Table 2 lists the attributes of this flow model. The NoC model, the task model and the task mapping are resumed in Fig. 16. We note that the size of the flow ρ 1 and ρ 3 is 3 flits while the size of ρ 2 is 2 flits. As in the original work presented in [START_REF] Shi | Real time communication analysis for on-chip networks with wormhole switching[END_REF], we do not consider the task execution time and their impact on the communication time of flows.

Holistic analysis

• ρ 1 and ρ 2 do not suffer any higher direct or indirect interference. Thus, their worst case communication time (R) is equal to their path delay. Flow • Shi and Burns have proposed the following equation in [START_REF] Shi | Real time communication analysis for on-chip networks with wormhole switching[END_REF] in order to compute the worst case communication time of a flow (ρ i) which suffers higher priority direct interference :

C i Π i T i D i J R i Size ρ 1 2 1 6 6 0 3 ρ 2 1 2 5
R i = j∈S D R i + J R j T j C j + C i
Where -R i represents the worst case communication time of the flow ρ i .

-J R j represents the jitter of the flow ρ j . -T j represents the period of the flow ρ j .

-C i is the path delay of the flow ρ j .

-C j denotes the path delay of the flow ρ j .

-S D denotes a set of higher priority flows which share same physical links with ρ i .

ρ 3 shares the physical link with the higher priority flows ρ 1 and ρ 2 . Thus, the worst case communication time R 3 of the flow ρ 3 is computed and equals to 9 (i.e. R 3 = 9). ECTM consider the same path delay as the previous analysis. We present the path delay of each flow in Fig. 17 • Similar to holistic analysis, ρ 1 and ρ 2 do not suffer higher priority direct or indirect interference. Thus, their communication time is equal to their path delay.

ECTM

• ρ 3 may suffer higher direct interference from the flow ρ 1 or/and ρ 2 . Considering the emission time of each flow, ECTM can compute which flow may delay ρ 3 . In this example, we may have several cases depending on source tasks parameters. In the following, we will specify some of those cases :

1. No direct interference: In this case, the communication time of ρ 3 is equal to its path delay (see Fig 17 (c)) (R 3 = 3). 2. Direct interference with ρ 1 or ρ 2 for only one time per period: In this case, the flow ρ 3 will suffer higher priority interference from one flow. In Fig. 18 we present the case where the flow ρ 3 suffers a direct interference from the flow ρ 1 for one time during the period of ρ 3 . In this case, the communication time for ρ 3 computed by ECT M is (R 3 = 4; see Fig. 18). 3. Direct interference with ρ 1 and ρ 2 for more than one time per period if possible: In this case, the flow ρ 3 will suffer higher priority interference from both ρ 1 and ρ 2 for many times if possible during one period. In this case, we consider the worst case communication time. Thus, (R 3 = 9).

In this case example, we do not take into account source and destination tasks in our analysis in order to be consistent with the holistic solution proposed in [START_REF] Shi | Real time communication analysis for on-chip networks with wormhole switching[END_REF].

As we can see, while holistic analysis only consider the worst case scenario, ECTM is able to consider cases that are under the worst case, leading to a better accuracy of ECTM. However, the disadvantage of the proposed solution is the limitation of its practical exploitation, as for example, we need to extend ECTM to support shared resources or jitter for example. Holistic analysis is less accurate than the proposed solution since it considers worst case scenarios but can be easily extended to support extra sources of delay, as it was extended for jitter or shared resources.

Conclusion

Delays introduced by a NoC make the schedulability analysis challenging. Classic NoC real-time scheduling solutions consider worst case scenarios to analyse the communication schedulability instead of the actual delays introduced by the network and lead to pessimistic schedulability analysis results.

In this article, we propose a new NoC communication model called Exact Communication Time Model (ECTM) in order to analyze the scheduling of periodic tasks exchanging messages over a NoC. Our approach supports Wormhole and Store-And-Forward NoC switching techniques. With ECTM, we perform scheduling analysis with a list scheduling algorithm called HLFET.

We have implemented our approach in a real-time scheduling simulator called Cheddar. The results show that ECTM is more efficient than the classic solution WCCTM with an improvement of 30% for Store-And-Forward NoCs and of 100% for Wormhole NoCs, while in terms of computation time of the analysis model, WCCTM is better than ECTM with 17% for Store-And-Forward NoCs and with 54% for wormhole NoCs.

ECTM only captures the interference the flows meet in the network by considering the temporal parameters of the task and flow models contrary to classic solutions based on WCCTM. This explains why ECTM is more accurate for the schedulability analysis of the system.

On the analysis overhead point of view, a larger computation time is required for ECTM which is explained by the complexity of ECTM transformations. The computation time is proportional to the message size and the number of used physical links. Moreover, ECTM does not consider all type of interference such as indirect interference, and then, ECTM is not able to support all configurations of NoCs. ECTM can be applied to virtual channel SAF NoC and private virtual channel wormhole NoC.

In future work, we will evaluate the overhead on the computation time introduced by the proposed model on the scheduling analysis. Furthermore, we intend to use ECTM and its associated tools to investigate the scheduling analysis of mixed criticality systems deployed over NoC architectures. We will also extend ECTM to support SpaceWire networks [START_REF] Parkes | SpaceWire: a spacecraft onboard network for real-time communications[END_REF]. In this technology, flows are transferred with Wormhole switching mode without using virtual channel. Consequently, we cannot avoid indirect interference situations in SpaceWire networks. We investigate a possible solution to master such indirect interference by using shared resources in the computed analysis model.

Figure 1 :

 1 Figure 1: Network On Chip

Figure 2 :

 2 Figure 2: Indirect interferences in NoC architectures

Figure 3 :

 3 Figure 3: NoC Communication Model -Goal

Figure 4 :

 4 Figure 4: Overall approach

Figure 5 :

 5 Figure 5: Worst Case Communication Time Model (WCCTM) -Example

 j = P D OneLink P D OneLink is the Path Delay of one link, i.e. the time required to send one flow over one link without considering the possible conflicts in the network.

Figure 6 :

 6 Figure 6: Example of ECT M SAF for one flow

Figure 7 :

 7 Figure 7: Example of ECT M SAF for two flows

 ,a,b = P D Onef lit/Onelink P D Onef lit/Onelink is the time required to send one flit over only one link without considering the possible conflicts in the network.

Figure 8 :

 8 Figure 8: Exact Communication Time Model for Wormhole: Example -1 flow

Figure 9 :

 9 Figure 9: Exact Communication Time Model for Wormhole: Example -2 flows

Figure 10 :

 10 Figure 10: ECTM transformation for Wormhole NoC

Figure 11 :

 11 Figure 11: Implementation in Cheddar. The NoC Architecture Generator produces a random real-time system deployed over a NoC architecture. WCCTM and ECTM boxes are for the NoC communication models described in this article. Finally, the module HLFET extends the scheduling algorithms implemented in the scheduling simulator of Cheddar.

Figure 12 :

 12 Figure 12: Simulation Details

Figure 13 :

 13 Figure 13: Accuracy of the NoC analysis models for All-To-One traffic

Figure 14 :

 14 Figure 14: Accuracy of the NoC analysis models for One-To-One uniform traffic

Figure 15 :

 15 Figure 15: Computation time for the model transformations

Figure 16 :

 16 Figure 16: ECTM versus Holistic analysis -case example

Figure 17 :

 17 Figure 17: ECTM versus Holistic analysis -case example (a) The path delay for the flow ρ 1 . (b) The path delay for the flow ρ 2 . (c) The path delay for the flow ρ 3 .

Figure 18 :

 18 Figure 18: The communication time of ρ 3 computed by ECTM -case example. The flow ρ 3 suffers higher priority direct interference from the flow ρ 1 .

Table 1 :

 1 Assumptions on the NoC for each communication model Highest Level First with Estimated Time (HLFET), Modified Critical Path (MCP), Earliest Time First (ETF) and Dynamic Level Scheduling (DLS) are examples of list scheduling algorithms which can be applied on the analysis model we assume

	Noc Communication	WCCTM	ECT M SAF	ECT M W ormhole
	Model			
	Topology and	2D mesh	2D mesh	2D mesh
	dimension			
	Routing algorithm	XY / YX	XY / YX	XY / YX
	Switching mode	Wormhole / SAF	SAF	Wormhole
	Arbitration	Fixed priority	Fixed priority	Fixed priority
	policy	Round Robin	Round Robin	Round Robin
	Virtual channel	With	With	With
	Preemption level	Flit / Packet	Packet	Flit

 1,2 , . . . , ..., τ ρ1,4,2 } and Γ ρ2 = { τ ρ2,1,1 , τ ρ2,1,2 , . . . , ..., τ ρ2,4,2 }.

Table 2 :

 2 Case example: Flow model. All the times are expressed as a multiple of a same time unit.

The used artifacts for the evaluation in this work are available from the link http://beru. univ-brest.fr/svn/CHEDDAR/trunk/artefacts/ae2019/

http://beru.univ-brest.fr/ ~singhoff/cheddar/

Acknowledgements

This work and Cheddar 2 are supported by Brest Métropole, Ellidiss Technologies, CR de Bretagne, CD du Finistère, H2020 MOSAR and Campus France PESSOA programs 27380SA and 37932TF.

The authors would like to thank all the supporting staff and partners of the MOSAR Project: Space Applications Services N.V. (Belgium), Deutsches Zentrum Fuer Luft -Und Raumfahrt Ev (DLR), GMV Aerospace And Defence Sa (GMV), Thales Alenia Space UK Ltd (TAS-UK), Sitael Spa (SITAEL), MAG SOAR S.L. (MAG SOAR S.L.), the University of Strathclyde (UK), Thales Alenia Space S.p.A (France) and Ellidiss Technologies (ELLIDISS). MOSAR is part of the PERASPERA project on Space Robotics Technologies, and has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 821996.