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Abstract: Phytoplankton plays a key role in the carbon cycle and supports the oceanic food web. While its
seasonal and interannual cycles are rather well characterized owing to the modern satellite ocean
color era, its longer time variability remains largely unknown due to the short time-period covered
by observations on a global scale. With the aim of reconstructing this longer-term phytoplankton
variability, a support vector regression (SVR) approach was recently considered to derive surface
Chlorophyll-a concentration (Chl, a proxy of phytoplankton biomass) from physical oceanic model
outputs and atmospheric reanalysis. However, those early efforts relied on one particular algorithm,
putting aside the question of whether different algorithms may have specific behaviors. Here, we show
that this approach can also be applied on satellite observations and can even be further improved by
testing performances of different machine learning algorithms, the SVR and a neural network with
dense layers (a multi-layer perceptron, MLP). The MLP outperforms the SVR to capture satellite Chl
(correlation of 0.6 vs. 0.17 on a global scale, respectively) along with its seasonal and interannual
variability, despite an underestimated amplitude. Among deep learning algorithms, neural network
such as MLP models appear to be promising tools to investigate phytoplankton long-term time-series.

Keywords: phytoplankton time-series reconstruction; ocean color; neural networks; support vector
regression; multi-layer perceptron; physical predictors

1. Introduction

Phytoplankton—the microalgae that populates the upper sunlit layers of the ocean—fuels the
oceanic food web and regulates oceanic and atmospheric carbon dioxide levels through photosynthetic
carbon fixation ([1,2]). Seasonal and inter-annual cycles of phytoplankton biomass are now relatively
well characterized, thanks to the large amount of studies based on radiometric satellite observations
(e.g., [3,4]). Since the launch of the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) in late 1997,
satellite radiometric observations are continuous. However, 20 years of observations is still too short to
thoroughly investigate decadal Chlorophyll-a concentration (Chl, a proxy of phytoplankton biomass)
variations. The unavailability of global scale observations over a continuous time-series longer than
two decades led the scientific community to rely on coupled physical–biogeochemical ocean modeling
to investigate phytoplankton biomass decadal variability. While models are able to resolve seasonal
to interannual biogeochemical variability to an ever-improving degree (e.g., [5,6]), they diverge in
reproducing decadal observations, in particular phytoplankton regime shifts [7–9]. Consequently, it is
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still not possible on a global scale to clearly separate the phytoplankton long-term response to climate
change from natural variability.

However, well-characterized decadal cycles of phytoplankton (in terms of biomass,
community composition, and carbon fluxes) are crucial as (1) They can accentuate, weaken, or even
mask the climate-related trends (the recent debate about the observed North Atlantic regional cooling in
the context of climate change illustrates the crucial need for better understanding decadal variability [10];
(2) The observed changes in phytoplankton during decadal cycle warm phases may provide insights
into how future climate warming-induced changes will alter carbon cycle and the marine food web.

The distribution of phytoplankton is strongly controlled by physical processes over a large part
of the global ocean (e.g., [11–14]). Consequently, past Chl variations may be reconstructed from
past physical environmental factors. To our knowledge only two studies have been performed
to reconstruct surface Chl in order to investigate its decadal variability. The first one allowed the
derivation of spatio-temporal surface Chl variations over the 1958–2008 period in the tropical Pacific [15].
This reconstruction used a linear canonical correlation analysis on sea surface temperature (SST) and
sea surface height to improve the description of the Chl response to the diversity of observed El Niño
events and decadal climate variations in the tropical Pacific. The second one investigated the ability of
a non-linear statistical approach based on support vector regression (SVR) to reconstruct historical
Chl variations on a global scale using selected surface oceanic and atmospheric physical variables
from a numerical model as predictors [16]. The SVR method was able to reproduce trends as well as
the main modes of the interannual Chl variability depicted by satellite observations in most regions.
Changes observed by satellite Chl between the 1980s and 2000s were also qualitatively captured by the
SVR. The main bias of this approach was to underestimate the amplitude of the Chl variations by a
factor of two.

Here, we investigate how a multi-layer perceptron (MLP) may be more skillful than this SVR
approach to reconstruct satellite Chl on a global scale. While, in [16], we used physical outputs from an
ocean forced model to train the SVR and reconstruct surface Chl, here we choose to only use physical
predictors from satellite observations and numerical atmospheric reanalysis. This choice is motivated
by (i) our ultimate objective, which is to reconstruct Chl from physical observations (i.e., not relying
on biogeochemical numerical models); and (ii) the use of the most realistic environmental conditions
that those observations allow. However, those observations are mainly available through remotely
sensed surface data (oceanic observations below the surface are indeed usually not accessible at large
spatial-scales or interannual time-scales) and predictors are then limited to surface variables. With such
limited 2D sampling, we are aiming at building a statistical model that may challenge more complex
numerical models which simulate complex three-dimensional processes. Indeed, such models may
not only strongly diverge in capturing Chl variations at a timescale of a decade but they are also not
straightforward to run and require large computing resources.

2. Materials and Methods

2.1. Oceanic and Atmospheric Datasets

Phytoplankton needs light and nutrients to grow. Physical processes strongly control spatial
distribution and time-variability of nutrient inputs in the upper-sunlit layer, and thus of phytoplankton
over a large part of the global ocean. Thus, we make use of this physical (bottom-up) control to derive
statistical models that relate several physical variables (predictors) to satellite Chl (output) as detailed
in Table 1.
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Table 1. Physical predictors, their relevance to Chl variability, the products used, and their resolution.

Proxy Used as Predictors Relevance to Chl Variations and Associated References Products Spatio-Temporal Resolutions

SST Vertical mixing and upwelling [17–20]
Impacts on phytoplankton metabolic rates [21] Reyn_SmithOIv2 SST dataset [22] Monthly on a 1◦ × 1◦ spatial grid

Sea level anomaly Thermocline/pycnocline depths [11,23,24] Ssalto/Duacs merged product of CNES/SALP project [25] Weekly on a 1/3◦ × 1/3◦ spatial grid
Zonal and meridional surface winds Surface momentum flux forcing and vertical motions driven by Ekman pumping [20,26] Atmospheric model reanalysis ERA interim 4 [27] Every 5-days on a 0.25◦ × 0.25◦ spatial grid

Zonal and meridional surface total currents Horizontal advective processes [4,28] OSCAR unfiltered satellite product [29] Every 5-days on a 0.25◦ × 0.25◦ spatial grid
Short-wave radiations Photosynthetically active radiation NCEP/NCAR Numerical reanalysis [30] Daily on a 2◦ grid
Month (cos and sin) Periodicity of the day of the year (day 1 is very similar to day 365 from a seasonal perspective) [31]

Longitude (cos and sin) and latitude Periodicity (longitude 0◦ = longitude 360◦) [31]
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Chl was retrieved from the Ocean Colour–Climate Change Initiative (OC-CCI) from the European
Space Agency (ESA, [32]). This product has generated global, ocean-colour products for climate
research by merging observations from different sensors while attempting to reduce inter-sensor
biases [33]. The V4.2 product was extracted on a 1◦ grid and with a monthly temporal resolution over
1998–2015. It is referred hereafter to as ChlOC-CCI.

Predictors have been extracted over the same time period than ChlOC-CCI. Those with a higher
resolution than 1◦ and a month have been averaged to match the Chl grid. The 2◦ × 2◦ bins of the
short-wave radiation product have been divided to match the Chl grid.

The Multivariate El Niño Southern Oscillation Index (MEI) has been provided by the National
Oceanic and Atmospheric Administration (NOAA) website [34].

2.2. Machine Learning Models

2.2.1. Support Vector Regression (SVR)

Support vector machine is a kernel-based supervised learning method [35] developed for
classification purposes in the early 1990s and then extended for regression by [36]. The basic
idea behind SVR is to map the variables into a new space, possibly in a non-linear way using
the so-called kernel function, so that the regression task hopefully becomes linear in this space.
Because SVR can efficiently capture complex non-linear relationships, it has been used in a variety of
fields, and more specifically for oceanographic, meteorological and climate impact studies [37–39],
as well as in marine bio-optics [40–42]. Considering a Gaussian kernel, SVR only involves the selection
of two hyperparameters: the penalty parameter C of the error term and the kernel band with gamma.
Following [16], (i) these two parameters have been set to 2 and 0.3, respectively; and (ii) the SVR was
trained on only 9% of the database (randomly selected) due to computational limitations. The SVR is
set up with python and the Scikit-learn library. Reconstructed Chl is hereafter referred to as ChlSVR.

2.2.2. Neural Networks

Deep learning models and neural networks (NNs) are at the core of the state-of-the-art in machine
learning and artificial intelligence for a large range of applications [43]. NNs are particularly appealing
due to their capacity to learn complex relationships from raw data better than other models, when data
are abundant. Though the concept of NNs has been around for a long time, these state-of-the-art
approaches recently obtained impressive results for many supervised or unsupervised learning
problems thanks to the availability of very large datasets, and the increase in computational power in
the last few decades [44]. NNs learn complex patterns through the composition of simple elementary
operations forming a global highly-nonlinear input/output relationships, whose parameters can be
efficiently trained using the back-propagation algorithm. These recent advances motivate an increasing
number of applications in spatial oceanography, (e.g., [45,46]). In this context, physics-informed and
theory-guided NNs [47] are of key interest as new means to exploit the computational and learning
efficiency of NNs, while exploiting prior knowledge and making easier model interpretation. Here,
we follow such an approach with a MLP architecture, which uses the same physical features and
geospatial information as inputs as the SVR.

NN frameworks exploit mini-batch gradient descent schemes during the training phase. This can
allow us to exploit the entire dataset contrary to the SVR model. Indeed, SVR is known not to scale up
well with large training datasets. The considered MLP architecture exploits LeakyReLU activation
functions after each dense layer (Figure S1). Dropout layers [48] are added to the last 3 layers to reduce
overfitting. Since we are dealing with a regression task, the last layer is linear. Thanks to its benefit of
penalizing large errors, MSE is used as the loss function for the MLP. The MLP is set up with python
and the Keras library. Configurations details are provided in Table S1.

As for the SVR, we first train a MLP on 9% of the training dataset, randomly selected. The reconstructed
Chl is hereafter referred to as ChlMLP-9%. The aim is to provide a first consistent comparison with
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ChlSVR using the same training setting. Then, we take advantage of the MLP ability to be trained on
larger database and a second MLP is trained on 80% of the dataset. Reconstructed Chl is referred to as
ChlMLP. The two learning curves are provided in Figure S2.

2.2.3. Data Preprocessing and Procedure

Predictors and log(Chl) are normalized by removing their respective average and dividing them by
their standard deviations. The SVR and the two MLP are trained from 1998 (the first complete year of the
satellite ChlOC-CCI time-series) to 2015 between 50◦ S and 50◦ N (Step 1 in Figure 1). Thus, the resulting
SVR and NN schemes are applied on the physical predictors over 1998–2015, and the annual means and
standard deviations initially removed are applied to perform the back transformation and reconstruct
Chl values, namely either ChlSVR, ChlMLP-9% and ChlMLP outputs (Step 2 in Figure 1). These three Chl
reconstructed whole datasets are then compared to ChlOC-CCI to evaluate their skills in reconstructing
satellite observations (Step 3 in Figure 1).
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Figure 1. Three-step procedure to train the machine learning models, reconstruct surface Chlorophyll-a
concentration (Chl) and evaluate the statistical model skills over 1998–2015.

2.3. Statistical Diagnostics and Empirical Orthogonal Functions

First, scatter plots are performed to compare satellite vs. reconstructed Chl for the Atlantic,
Pacific and Indian Oceans between 50◦ S and 50◦ N. Root mean square error (RMSE) is derived at

basin-scale as RMSE =

√∑ (Chlreconstructed−ChlOC−CCI)
2

N , with N the sample number. Pearson correlation
and normalized RMSE (NRMSE) are also derived, with NRMSE = RMSE

<ChlOC−CCI>
and < ChlOC−CCI > the

mean ChlOC-CCI value.
Empirical orthogonal function (EOF) analysis is performed to investigate the model’s ability

to reconstruct Chl seasonal and interannual variability. First, centered seasonal and interannual
ChlOC-CCI are obtained by removing their annual and monthly means over 1998–2015, respectively,
and by dividing them by their standard deviations. Then, the so-called reference EOF analysis is
performed on these centered seasonal and interannual ChlOC-CCI anomalies to avoid an overly dominant
contribution of high values on the analysis [49]. Thus, ChlSVR and ChlMLP outputs are projected onto
the seasonal and interannual ChlOC-CCI spatial patterns to obtain their associated time components
(i.e., principal component-PC). Seasonal and interannual PCs for each dataset are then compared.

3. Results

3.1. Statistical Performances

A first evaluation of the ChlSVR vs. ChlOC-CCI is provided over 1998–2015 at basin scales and
for the whole dataset (Figure 2, upper row). Determination coefficients between both datasets are
below 0.5 and even get down to 0.26 in the Indian Ocean, while RMSE is about 0.6 in the three basins.
The MLP trained on the same amount of data than the SVR is more skillful than the SVR to reconstruct
ChlOC-CCI (Figure 2, middle row). The regression lines between the log of ChlMLP-9% vs. ChlOC-CCI

are closer to the 1:1 line for each oceanic basin with determination coefficients higher than 0.63 and
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up to 0.73 in the Atlantic Ocean. Increasing from 9% to a usual 80% the MLP training dataset further
increase the skills of the NN approach to reconstruct ChlOC-CCI with a relative gain of about 10%
(Figure 2, lower row). Nevertheless, ChlMLP still underestimates ChlOC-CCI, more specifically in the
Pacific. Some of these differences may be related to changes in Chl, which may due for instance to
photo acclimation (e.g., [50,51]) or by other components that are not Chl such as suspended particulate
matter (SPM) or colored dissolved organic matter (CDOM; [52]). Interestingly, the use of a MLP not
only removes computational restrictions imposed by the SVR (i.e., size of the training samples), but it
also appears to be more efficient in reconstructing surface Chl from oceanic and atmospheric variables.
Thereafter, ChlOC-CCI and ChlSVR are compared to the best NN product, ChlMLP (i.e., trained on 80% of
the dataset).Remote Sens. 2020, 12, 4156 6 of 13 
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The ChlOC-CCI vs. reconstructed Chl regression lines are plotted in black and the 1:1 regression lines
are plotted in red. The figure is color-coded according to the density of observations.

Consistently with the scatterplots, ChlOC-CCI correlations with ChlSVR are significantly lower
than with ChlMLP (Figure 3A,C; r = 0.17 vs. 0.6 on a global scale, respectively). ChlOC-CCI - ChlSVR

correlations are higher than 0.7 (p < 0.001) over limited regions such as the Atlantic, Indian, and Pacific
subtropical areas (Figure 3A). The MLP allows a significant improvement in the correlation with
ChlOC-CCI with values higher than 0.75 over most of the global ocean (Figure 3C). Areas of high and
low NRMSE are similarly distributed for ChlSVR and ChlMLP (Figure 3B,D). For instance, in both
cases NRMSE is higher at the highest latitudes and in the tropical north-western and south-eastern
Pacific. Although the MLP reduces these NRMSE by 50% compared to the SVR, biases in reference to
ChlOC-CCI still remain in these regions. High NRMSE can reflect the influence of other components than
phytoplankton biomass on the Chl signal as mentioned above, or/and the impact of other predictors
not considered to train the neural network models. This is, for instance, suggested from the Amazon
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plume where the Chl signal is known to be influenced by river flow and may thus rather be associated
with CDOM or SPM than phytoplankton biomass [53].
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3.2. Seasonal to Interannual Variability and Trends

EOF analysis provides complementary insights into the MLP and SVR ability in reconstructing Chl
spatio-temporal variability. Seasonal and interannual ChlOC-CCI spatial variability are illustrated through
their respective EOF first modes with a total variance of 27.6% and 12.6%, respectively (Figure 4A,C).
The well-known Chl seasonal patterns are highlighted with a variability out of phase between
the northern vs. southern hemisphere due to the reversal of the season order (Figure 4A,B). It is
also out of phase between high latitudes (light limited) vs. low and mid-latitudes (rather nutrient
limited). ChlMLP and ChlSVR are then projected on this reference ChlOC-CCI spatial seasonal pattern.
Correlations between ChlOC-CCI and ChlSVR or ChlMLP PCs are of 0.64 and 0.99, respectively (Figure 4B).
ChlSVR PC shows a fictive double peak in the seasonal cycle and a largely underestimated amplitude.
Despite the ChlOC-CCI - ChlMLP high correlation, the amplitude of ChlMLP seasonal variability is
also underestimated.

The first EOF mode performed on interannual ChlOC-CCI illustrates the largely reported impact
of El Nino Southern Oscillation (ENSO) [4,17,54–56] (Figure 4C). Here again, the MLP results in a
significant improvement compared with the SVR to reconstruct ChlOC-CCI variability, with its first PC
correlation with ChlOC-CCI of 0.95 vs. 0.63 for ChlSVR (Figure 4D).

Over the last 18 years, observed ChlOC-CCI trends have increased over most of the global ocean
(Figure 5A). Regionally, some decreases are observed such as in the Indian Ocean, the equatorial Pacific
and the Atlantic and Pacific oligotrophic subtropical gyres. While most of these trends are captured by
ChlSVR, inverse trends occur in the South Indian and Atlantic Oceans (Figure 5B). In addition, the trend
estimation for ChlSVR reveals an unrealistic high-frequency pattern, which may relate to the support of
the Gaussian kernels implemented by the SVR model. On its side, ChlMLP better reproduces ChlOC-CCI

trends in terms of spatial distribution, although their amplitude remain underestimated, especially in
the Indian Ocean (Figure 5C).
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A similar conclusion can be done when considering Chl trends in oligotrophic gyres (with surface
Chl < 0.07 mg.m−3 as in [18]) over the last 15 years. Such trends can be weak and not sufficiently well
resolved by the MLP (nor the SVR) in terms of sign or amplitude (Figure 6). While it is crucial to
improve the reconstruction of the signal amplitude on a global scale, it is particularly appealing in
those oceanic deserts which would tend to expand in the context of climate warming and increasing
stratification [18,57,58]. As expected, the spread of these oligotrophic areas is different here from
ChlOC-CCI than those observed by [18] based on a single-sensor Chl product over 1998–2006 [59]. Thus,
training deep learning schemes on Chl products from both single and multi-sensors could provide a
more synoptic view on the impact and interpretation of reconstructed Chl long time-series.
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Finally, a first attempt to investigate predictors’ relative importance is performed with the MLP
approach and the mean decrease accuracy method [60]. As expected, the SST and short-wave radiations
are the most important predictors (Table 2). Interestingly, the zonal surface wind stress component
seems of particular importance while sea level anomaly is far behind. Indeed, redundant indirect
information’s about the ocean circulation can be derived from those predictors, with potentially more
information “embedded” within the wind stress that may also be linked to a meaningful parameter
for phytoplankton growth: the mixed layer depth. Spatial coordinates (latitude and longitude) are
less important for the reconstructions suggesting that the MLP can extract geospatially-dependent
features from other predictors than the coordinates themselves. Thus, a complementary run was
performed, still using 80% of the dataset to train the MLP but based only on the five main predictors
with a relative importance higher than 0.1 in Table 2. As expected, removing spatial information’s
from the MLP training still allows to reconstruct realistic Chl (unlike the SVR, which produces
unrealistic concentrations). Interestingly, although the averaged relative importance of seven of the
eight removed predictors are lower than 0.033, the determination coefficients between this specific
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ChlMLP vs. ChlOC-CCI decrease by more than 0.2 while the RMSE increase to more than 0.12 in
each oceanic basin when compared to the MLP using all the predictors (Figure S3 vs. Figure 2).
This result illustrates that the use of these predictors, apparently weakly significant in average, does not
change significantly the Chl geographical distribution pattern, but can modulate its regional intensity
(Figure S4). The impact of the different predictors on Chl reconstruction according to the oceanic
regions and/or the climate cycles should therefore be specifically considered and investigated in a
dedicated study, once a deep learning scheme will have been considered as sufficiently satisfying.

Table 2. Multi-layer perceptron (MLP) predictor’s relative importance.

Weight Predictors

0.6691 +/− 0.0021 SST
0.2672 +/− 0.001 Short-wave radiations
0.2316 +/− 0.0013 Zonal surface wind
0.1526 +/− 0.0008 cos(month)

0.1449 +/− 0.0004 Meridional surface
wind

0.0641 +/− 0.0003 sin(month)
0.0328 +/− 0.0004 Zonal surface current
0.0328 +/− 0.0004 Sea level anomalies
0.0260 +/− 0.0003 Year

0.0180 +/− 0.0002 Meridional surface
current

0.0002 +/− 0.0001 lat
0.0002 +/− 0.0001 cos(lon)
0.0002 +/− 0.0001 sin(lon)

4. Discussion

To our knowledge, the only study that has been performed to reconstruct satellite surface Chl
on a global scale used a SVR approach [16]. In this former study, we also used ChlOC-CCI and
the same physical predictors than in the present study, but the predictors were originating from a
numerical model (vs. satellite observations and numerical atmospheric reanalysis here). The SVR
accurately reproduced most aspects of the satellite Chl variability (although underestimated by half)
and spatial patterns. Here, we show that the SVR, trained on satellite data and atmospheric reanalysis,
also encounters difficulties to well reproduce the Chl signal. The MLP demonstrates the ability of
deep learning schemes to reproduce satellite Chl with far better skill than the SVR, not only to capture
the general patterns of Chl seasonal and interannual signals and trends, but also their amplitude.
Neither the training of the MLP nor that of the SVR involve time information, as the training loss only
involves a grid point-wise reconstruction error criterion. Thus, our results support the greater ability
of the MLP to generalize time patterns than the SVR and the relevance of neural network approaches
compared with kernel methods.

However, further efforts still remain to alleviate the issue of Chl underestimation. One plausible
hypothesis would be that complementary predictors may provide additional insights to this issue.
For instance, precipitation is among a key driver of coastal run-off and river discharge could be
considered. Thus, applying similar learning-based schemes to CDOM and SPM, especially jointly to
Chl, would be note-worthy. Such combined approaches could help improving both reconstruction and
interpretation of Chl in regions where satellite Chl products from case 1 waters may reflect changes
from other components than phytoplankton biomass. Particulate backscattering (as a proxy of the
Particulate Organic Carbon) retrieved from satellite also deserves to be considered in addition to Chl
in the training/reconstruction process. Indeed, it would allow us to investigate the extent to which
the Chl variability reflects changes in phytoplankton biomass vs. cellular changes in response to
light [51,61,62], which is of particular importance in oligotrophic gyres.
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If, in this study, we demonstrate the better potential of NNs to accurately represent Chl seasonal
and interannual signals, compared to the SVR, so far, only a MLP was used. MLP is known to
not explicitly consider the spatial and temporal correlations in the dataset. Specific architectures
to handle spatially or temporally structured data, i.e., convolutional neural networks and recurrent
neural networks (such as long short-term memory networks) are currently under investigation and are
expected to further improve the Chl reconstruction performance, in particular for the Chl seasonal cycle
amplitude. Interestingly, such NN architectures would provide additional insights on the physical
variables of interest through sensitivity tests, which could drive the reconstruction of Chl beyond the
set of predictors considered in this study. Recent advances in deep learning for irregularly-sampled
datasets also suggest that future work could learn such NN representations from datasets involving
missing data patterns, which may be of key interest for Chl patterns in some regions [63,64].

5. Conclusions

The present study investigates two statistical approaches to derive from satellite observations
the Chl seasonal to interannual variability and trends, as well as their potential in reconstructing
biological past long-term time-series. The MLP is more skillful than the SVR to capture both the
spatio-temporal patterns and amplitude of ChlOC-CCI on a global scale over 1998–2015. ChlMLP and
ChlOC-CCI seasonal and interannual first mode of variability are highly correlated (r-PCs = 0.99 and
0.95, p < 0.001), suggesting that the MLP is reliable to reproduce ChlOC-CCI, at least over the last
18 years. However, some underestimation in ChlMLP amplitudes as well as regional bias need to
be fixed in future studies and the predictors’ importance in Chl reconstruction deserve to be more
deeply investigated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/24/4156/s1,
Figure S1: MLP architecture. Table 1: MLP configuration. Figure S2: Learning curves of ChlMLP-9% and ChlMLP.
Figure S3: Scatter plots of ChlMLP trained only for predictors with a relative importance higher than 0.1 in Table 2.
Figure S4: Correlation and NRMSE of ChlOC-CCI vs. ChlMLP trained only for predictors with a relative importance
higher than 0.1 in Table 2.
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