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Abstract :   
 
To date, the empirical literature on spatial closures has focused on specific fleets and/or areas, and 
relatively less attention has been paid to the evaluation of responses to large-scale spatial restrictions on 
ocean fishing. Where such restrictions occur, a broad range of fleets may be affected, with diverse 
response mechanisms determining the redistribution of fishing effort and the associated welfare impacts. 
We propose a methodological approach to address such situations. Using hypothetical scenarios 
regarding the closure of the UK exclusive economic zone (EEZ) to a diverse subset of French vessels as 
an example, we develop a spatial discrete choice model that incorporates the possibility to adjust the 
resolution of choice sets at the fleet level to account for heterogeneous behavioral patterns across fleets. 
We show how neglecting fleet diversity in the choice of the spatial resolution of analysis may bias the 
results of an impact study on large spatial closures. 
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Introduction 

With the development of marine spatial planning and the growing enclosure of the 

maritime domain, spatial restrictions have become popular for allocating access to maritime 

areas and resources (Collie et al., 2013; Sanchirico et al., 2010). This includes restrictions on 

commercial fisheries for biodiversity conservation (with the implementation of marine protected 

areas), fisheries management measures (seasonal closures, TURFs), or the access to other uses of 

the marine areas (e.g., aquaculture, maritime transport, renewable energy farms). The impacts of 

spatial restrictions on fisheries are complex and multi-dimensional, with consequences in the 

ecological, socio-economic, and political realms (Eagle et al., 2008). While conservationists have 

widely praised ecosystem-based approaches (FAO, 2009; Pikitch, 2004), they may be hard to 

implement in practice, because of a mismatch with the scale and scope of policies, or because of 

the lack of institutions able to resolve ocean-uses externalities (Sanchirico et al., 2010; Scott, 

1955; Sievanen et al., 2011). Many have called for a better and systematic identification and 

assessment of trade-offs in maritime activities as a pre-requisite for the success of marine spatial 

plans (Collie et al., 2013; Jones, 2016; Sanchirico et al., 2010).  

Stakeholders involved in the development and implementation of large-scale spatial 

closures often focus primarily on the immediate economic consequences of such measures. 

Provided the data are available, what could be called “first-order” effects can be easily evaluated 

by identifying lost catch possibilities and valuing them at their current landing prices, taking into 

account price variations across species, gear and areas from which the catches originate. 

However, the overall economic impacts of spatial closures are likely to be determined by 

intricate secondary and higher order effects (see section A of the Appendix section). The greatest 
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of these effects is from fishers adapting to the new regulations in an attempt to mitigate impacts 

on their fishing enterprise (Branch et al., 2006; Fuller et al., 2017; Fulton et al., 2011). 

With the increased availability of information on the spatial distribution of fishing 

activities, discrete-choice models (DCMs) of fishing location choices have become established as 

a powerful and popular framework for modelling spatial and temporal fishing behavior (Eales 

and Wilen, 1986; Smith, 2010). DCMs can both identify the patterns of fishing effort 

reallocation induced by the changes in accessible fishing areas, and measure the likely welfare 

implications of the changes1. 

However, the literature on the response of fishing fleets to spatial closures has largely focused on 

specific fleets and/or areas. Relatively less attention has been paid to the evaluation of responses to large-

scale spatial restrictions on ocean fishing, where multiple fleets are simultaneously impacted. In most 

cases, spatial effort restrictions apply uniformly to all fishing activities, regardless of the diversity 

of fishing activities that often co-exist in a fishery. The implication is that a broad range of fishing 

fleets may be affected, with diverse response mechanisms determining the potential redistribution of 

fishing effort and associated welfare impacts. Soulié & Thébaud (2006) have shown for instance that 

the costs of a fishing ban may be either exacerbated or mitigated depending on vessels’ levels of 

mobility and polyvalence (i.e., ability to change métiers or targeted species) and the status of 

fishing opportunities in the areas surrounding the area closed to fishing. Therefore, neglecting 

fleet heterogeneity in the evaluation of the impacts of a fishing closure may strongly bias the 

evaluation. 

We develop a methodological approach to integrate the diversity of fishing activities and 

associated behavioral patterns. Using potential access restrictions to the UK EEZ for foreign vessels 

following Brexit as a case study, and considering hypothetical scenarios regarding a large scale closure to 
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a subset of French vessels operating in the North East Atlantic region between 2012 and 2015, we 

develop a spatial DCM that we estimate independently for each affected fleet segment. In doing so, we 

allow each segment to have its own spatial choice definition to account for the diversity of effort 

allocation patterns across fleets. Following Depalle et al. (under review) - which also estimate the same 

DCM using choice sets with a decreasing spatial resolution but focus only on a single specific fleet 

segment (longliners) -, and using fine resolution data on the allocation of fishing activity across a range of 

different fishing fleets, the model is used to estimate the potential reallocation of fishing effort under 

various assumptions regarding the definition of the choice sets at fleet level. We show how applying a 

one-size-fits-all choice of the spatial resolution of analysis across a diverse set of fleets may bias the 

results of a study on the welfare impacts from a large scale closure. 

The paper is organized as follows. First, we present our approach to assess the response 

of fleets with different fishing patterns to the same, large-scale, spatial closure. Next, the fleets 

considered for the analysis are described, using the available data for a subset of French fleets 

operating in the North-East Atlantic area. We then describe the model predictions on how vessels 

would react to the closure and how predictions may vary according to the assumptions regarding 

spatial resolution of the choice set for each fleet. Finally, we discuss our results providing 

suggestions to further investigate the full consequences of large-scale spatial closures on multi-

species, multi-fleet fisheries. 

Methods 

The evaluation of the impacts of closure scenarios on the fleets is carried out in two 

stages: first, to elicit the expected first-order impacts on landings, we determine the level of 

dependency of the example fleet to the areas that could be closed, and characterize this 
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dependency in terms of the existence of alternatives for the impacted vessels; second, we 

consider the higher order consequences of likely adjustments in effort allocation of the fleet 

segments in the areas expected to remain accessible. 

First-order impacts 

In order to identify potential heterogenous patterns of dependency to the fishing areas 

that are to be closed, we begin by clustering the impacted fishing fleet by groups of vessels – 

thereafter “fleet segments” - that share similar fishing métiers, defined as combinations of vessel 

sizes, gear types and target species (Girardin et al., 2015). Using data at the highest level of 

spatial aggregation available (
1

20
° ×

1

20
°  statistical squares), we sum catches and revenues from 

areas inside or outside closed waters and we compute – on a yearly basis over a baseline period 

from 2012 to 2015 – the share of fishing effort, catches and catch value from each area at the 

levels of vessels and fleet segments2. This enables us to rank vessels by their level of dependency 

on the closed areas, in terms of the landed catches and landings’ value, and to identify the vessels 

most exposed to the closure scenarios. We further refine the typology of vessels that depend 

highly on the fishing areas to be closed by considering whether they exhibit specific patterns of 

activity that would distinguish them from the rest of the fleet.  Clustering the analysis at the fleet 

segment level, we investigate potential correlations between a vessel’s share of gross revenue 

from the fishing grounds to be closed and its technical characteristics (power and length), trips 

characteristics (average landing, landing’s value and associated fishing effort), fishing efficiency 

(average catch and value per unit of effort, abbreviated as CPUE and VPUE), landing prices 

received, catch composition and landing port locations. For the first four sets of features we rely 

on statistical analysis to test the significance of potential differences, defining a dummy variable 

accounting for when a vessel derives more than half of its gross revenues from the closed waters 
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and performing two-sample t-tests and linear regressions. For the last two features – catch 

composition and landing port locations – we map species bundles and trips’ schedules at the 

vessel level. 

Second-order impacts 

Discrete choice model of fishing relocation decisions 

In order to predict the reallocation of fishing effort that would result from the spatial 

closure, we estimate a DCM of fishing locations 3 . We build on a random utility model 

framework where fishers are assumed to be able to assign utility values to each of the fishing 

alternatives they face and choose the alternative yielding the highest utility (McFadden, 1974; 

Smith, 2010).  

The model we estimate assumes that – conditional on being actively fishing and 

conditional on a given level of fishing effort and on a given location – fishers make a unique 

daily decision on where to fish according to a simple utility criterion that weighs traveling costs 

and expected rewards from a fishing site 𝑗: 

Uijt=βdist*Distijt+βVPUE*E[VPUEijt]+βNb.vs.oth.ft*Nb.vs.other.ftijt-1+βNb.vs.same.ft*Nb.vs.same.ftijt-1 

+βAct.own* Act.ownijt-1+εijt (Eq. 1) 

where i  is the vessel, 𝑗  is the site, 𝑡  is the day, and βdist , βVPUE , βNb.vs.oth.ft, βNb.vs.same.ft and 

βAct.owndenote the marginal utilities of, respectively, the distance to a given location, Distijt, the 

associated expected value per unit of effort (E[VPUEijt]), the number of other vessels from the  

other fleet segments in site 𝑗  the day before, the number of other vessels of the same fleet 

segment in site 𝑗 the day before; and vessel’s own fishing effort in site 𝑗 the day before. εijt is a 

random utility shock. 
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Following the results in the prior literature on DCMs (Smith et al., 2009), our model 

specification assumes that travel costs and expected revenues are the main predictors of the 

choice of the fishing location (Girardin et al., 2016). A commonly used proxy for travel costs is 

the distance to the fishing sites, usually reduced for computational purposes to the distance 

between the centroids of the alternative locations and the centroid of the current location (Abbott 

and Wilen, 2011; Haynie and Layton, 2010). Intuitively, this variable captures that further 

fishing sites incur not only higher fuel costs, but also require more time to be reached4.  

With respect to fishers’ expectations about revenues from a fishing site, we follow the 

literature that utilizes records of past performances for each site, aggregated at the fleet level 

(see, e.g., (Girardin et al., 2015; Smith, 2005)). Specifically, we assume that fishers consider 

both short and long-term information as well as both individual and fleet-level information, and 

weight information signals differently depending on which information is available or not 

(Abbott and Wilen, 2011; Hutniczak and Münch, 2018). Section C of the Appendix provides 

more details on how expected revenue is estimated, which model’s specifications were 

considered, and how the model was selected. 

The behaviors of other fishers along with fishers’ past fishing patterns having been 

shown to influence fishers’ decision-making (Girardin et al., 2016; Huang and Smith, 2014; Poos 

and Rijnsdorp, 2007), we account for those aspects by including the lagged level of other fishers’ 

activity – in terms of number of vessels – in a given alternative 

(Nb.vs.other.ftijt-1 and Nb.vs.same.ftijt-1), as well as fishers’ own level of fishing activity – in 

terms of number of fishing hours – in a given site the day before (Act.ownijt-1).
5 
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The choice of the spatial resolution of analysis must be carefully examined in the context 

of a discrete-choice framework. Numerous studies have shown that an ill-specified spatial choice 

set may bias parameter estimates and substantially impair the reliability of model results 

(Depalle et al., under review; Haab and Hicks, 1999; Jones et al., 2015; Manski, 1977; Parsons 

and Hauber, 1998).  

For instance, Hicks and Schnier (2010) showed that welfare estimates are increased when 

accounting for endogenous consideration sets (“macro-regions”) and using a two-stage decision-

making framework. However, their study focused only a single-species fishery, for Atka 

mackerel. In line with this, latent class models have been commonly used in the recreation 

literature to account for heterogeneous choice sets resulting from decision-makers considering 

different sets of options (von Haefen, 2008). Nevertheless their application to spatial choices 

makes them prone to the dimensionality curse and leaves open the issue of defining the 

consideration sets. Explicitly accounting for observable heterogeneous characteristics of fishing 

vessels, Zhang and Smith (2011) investigated how a spatial closure - a marine reserve in this 

case – had different impacts across fishers. Yet, limited by the resolution of their dataset, they 

could not explore how such heterogeneity impacted the choice of the spatial definition of the 

choice set. 

Data permitting, the choice of the model’s spatial resolution (i.e., the size of the fishing 

sites in our case) must be considered alongside the temporal resolution at which decisions are 

made, the spatial extent of mobility patterns for the individual decision-maker, as well as the 

questions being investigated. In a study focusing on the spatial reallocation of fishing effort, a 

finer spatial resolution should allow a more refined analysis of potential reallocation patterns. 

However, we are also constrained in our choice of spatial resolution by the temporal scale of the 
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dataset (daily aggregation). As a consequence, fishing sites must be defined with a spatial extent 

corresponding to the area that a vessel is likely to cover over a day of fishing. Analysis of the 

dataset shows that the specific spatial extent varies across vessels but tends to be more 

homogeneous within a fleet segment (Table 1)6. It is thus likely that the resolution at which 

choices are defined for different fleet segments will vary, and that this should be accounted for in 

the estimation of the model. 

We follow the methodology established by Depalle et al. (under review) to test the 

sensitivity of our model to different spatial resolutions of the alternatives, for the different fleet 

segments. Across the different spatial resolutions, we evaluate the reliability of the estimated 

models for predicting new choices of fishing locations, for each fleet segments. As an additional 

robustness check, we partition the data intro a training dataset and a test dataset to perform out-

of-sample predictions. We then compute the percentage of wrong predictions for each estimated 

model and use this information to select our preferred specification to predict the reallocation of 

fishing effort for each of the fleet segments. We also make predictions with the non-preferred 

spatial specifications to show the extent of the bias that would arise by assuming a homogeneous 

fleet and considering only a single spatial resolution of analysis.  

A powerful feature of discrete-choice models based on a random utility framework is 

that, in addition to predicting new choices, they can be used to undertake a welfare analysis. In 

our case, the closure of UK waters to French fishers amounts to a restriction of their choice set 

which may prevent them from selecting their most preferred fishing location7, thereby incurring 

a welfare loss. We compute the welfare loss for a vessel facing a set of possible fishing sites as 

the utility difference (normalized by the marginal utility of distance) between the chosen site 
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without the spatial restriction and the chosen site restricting the choice set to sites that lie outside 

the exclusion area8.  

Case study 

We consider a hypothetical case study simulating the closure of the UK EEZ to a subset 

of the French commercial fishing fleet, as could occur following the exit of the UK from the 

European Union9 (see Figure 1). Data was extracted from the SACROIS database developed by 

the French Research Institute for Exploitation of the Sea (Ifremer) under the supervision of the 

French Directorate for Marine Fisheries and Aquaculture (DPMA). The SACROIS database 

combines and reconciles French Vessel Monitoring System (VMS), logbooks and sales data 

from different sources (“SACROIS,” 2017, see section A of the Appendix for further details).  

We estimated the DCM described above on five key fleet segments – large exclusive 

bottom trawlers (BTR exc >=18m), large dominant bottom trawlers (BTR dom >=18m), vessels 

using traps (TRP >=12m), netters (DFN >=12m), and dredgers (DRD >=12m), and we explore 

three levels of spatial aggregation for the size of the fishing sites. Table 2 summarizes the main 

characteristics of the fleet segments retained in the analysis. To make their daily decisions, we 

assumed fishers consider either: (1) 2° × 2° squares; (2) 1° ×  ½° squares (as defined by the 

ICES for its statistical analyses); or, (3) ½° ×½° squares. We trained the model on 2013 and 

2014 data and we used 2015 data for the test dataset. 
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Results 

First-order impacts: economic importance of UK waters for the selected fleet 

segments 

Ranking fleet segments by the share of landings originating from UK waters, the top 

three segments – bottom trawlers, exclusive or dominant, and vessels using traps – derived more 

than a third of their catches from UK waters. The levels of dependency drop to 15% and 10% for 

the next four segments and remain below 5% for the other segments. Dominant and exclusive 

bottom trawlers accounted for more than one fourth of vessels and one third of landings from our 

subset of fleets. In contrast, vessels using pots and traps – even though highly dependent on UK 

waters – only accounted for about 3% of the landings from the same subset. 

When assessing the extent to which vessels depending highly on UK waters compared 

with the rest of the fleet, we did not find any significant differences10 regarding their technical 

characteristics (power and length), trips characteristics (average landing, landing’s value or 

fishing effort), and fishing efficiency (average CPUE or VPUE). We also did not find that the 

exploitation of fishing grounds located in UK waters focused on a specific bundle of species: 

vessels from a same fleet segment caught the same sets of species in and outside the UK waters. 

Similarly, we did not find specific patterns of landing locations related to exploiting UK waters. 

The vast majority of vessels from the segments under study that fished in UK waters left and 

landed their catches in France, and more generally the majority of vessels left and landed their 

catch in the same port. 

Finally, we assessed whether vessels fishing mainly in UK waters received different 

landing prices. Differences could stem, for example, from a premium on catches from this region 
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(e.g., because the quality or the size of the fishes would be different), a greater ability of fishers 

to target higher valued fishes, or from some specificities in fishers’ network of fishmongers. A 

statistical analysis of the imputed landing prices of twelve main species between 2012 and 2015 

revealed that fishing in UK waters did not lead to fishers extracting higher landing prices. This 

finding implies, all else equal – in particular catch rates and other market prices – that the loss of 

access to UK waters for the segments under study would likely not result in lower prices for their 

catch. 

Given these results, our use of the same métier structure to examine fishing choices 

before and after a hypothetical closure to the selected fishing fleets seems as an appropriate 

assumption. 

Second-order impacts: fishing effort reallocation and welfare impact 

We first present the results regarding the model estimates given the choice of spatial 

resolution for the alternatives. We then look at the model predictions regarding effort 

reallocation and welfare impacts of the closure scenarios on the selected fleets. Finally, we 

present the extent of estimates biases when not accounting for fleet heterogeneity. 

Model’s estimates given the spatial resolution of the choice set 

 Examination of the model’s goodness of fit and prediction performance across the five 

fleet segments and the three spatial resolutions validates our approach in estimating segment-

specific models using varying spatial resolutions for the choice sets. Indeed, as shown in Table 3 

our model of daily decisions performs poorly at high spatial resolutions for the most mobile fleet 

segments – exclusive and dominant large bottom trawlers, whose daily fishing activities span 

larger areas than those covered by the less mobile segments. Thus, reducing the choice of fishing 

location to a single 1° × ½° (ICES rectangle) or ½° ×½°  rectangle per day appears to be 
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inappropriate for these former segments11. Yet, it is an assumption that is commonly made by 

researchers estimating spatial choice models in a similar setting, who tend to use the ICES 

statistical grid as the default and unique spatial resolution of analysis (Batsleer et al., 2013; Poos 

and Rijnsdorp, 2007; Rijnsdorp et al., 2011; Simons et al., 2015). 

 In addition, even though data might allow the use of fine spatial resolutions, the levels of 

prediction errors for out-of-sample observations indicate that the spatial analysis should not be 

carried out at resolutions finer than 2° × 2° for the bottom trawlers and 1° ×½° for the netters, 

dredgers, and for the vessels using traps. Based on these results, we retain the following different 

spatial resolutions for each fleet segment: 2° × 2°  squares for the two segments of bottom 

trawlers and ICES squares for the other. 

 Considering only those selected resolutions, our simple model fits the data rather well, 

with pseudo-R² ranging from 0.63 to 0.81, and is able to predict out-of-sample observations with 

an error rate between 20% and 31%12.   

Table 4 illustrates the parameter estimates.  Consistent with the prior literature, we find 

that the distance variable is significant statistically and negative. We also find that the variables 

accounting for the level of past activity of other vessels in a site are significant and positive for 

vessels from other fleet segments but significant and negative for vessels of the same fleet 

segment. The latter effect is commonly attributed to congestion and competition but the former 

effect is often not addressed given the scope of prior studies. Interestingly, other activity appears 

to attract vessels and mechanisms for this could be due in part to “safety in numbers” and the 

oceanographic characteristics of the sites.  
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The discrete-choice literature has reported various effects regarding the effect of other 

fishers (Girardin et al., 2016). Girardin (2015) for instance found that the contemporaneous 

presence of other French vessels in a given site in the English Channel often had a significant 

negative effect on the choice of a fishing location. However, they also found that the presence of 

English vessels had a positive effect, which they explain by the fact that some French and 

English fleet segments targets scallops, a relatively sedentary species. Similarly, Russo et al. 

(2015) reported an attractive effect on the location choice of pair trawlers from fishing units but a 

repulsion effect from vessels that are not fishing, which would signal the absence of resources13.  

Vessels’ own activity the day before is found to be positively significant across all of the 

models. This means that vessels are more likely to stay fishing in the same ground rather than to 

move to exploit another fishing site. This finding is in line with the general result in the literature 

which usually reports – though over sometimes different time-windows – a significant positive 

effect of past fishing patterns (Abbott and Wilen, 2011; Girardin et al., 2016, 2015; Hynes et al., 

2016). 

As for the different components of the expected revenues from a site, a higher fleet-

average productivity of a site the past 30 days is found to be positively significant for exclusive 

bottom trawlers and netters, and not significant for other fleet segments.  

When considering the impacts of past productivity on current location choices, the 

expectation is that fleet segments might weight past information in different ways due to the 

ephemeral characteristics of information in their respective fisheries. For example, we find that 

productivity of a site at the same point in time in the last season is statistically significant for 

dominant bottom trawlers, netters and dredgers with a positive effect when considering fleet-
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based historical average, whereas it is found to be statistically significant and negative for 

exclusive bottom trawlers, netters and dredgers when considering vessel-specific historical 

average. We also find across all fleet segments that vessel-specific past short-term average 

productivity is not statistically significant. When considering fleet-based short-term historical 

average, a significant positive effect is found for exclusive bottom trawlers and netters only.  

A combination of a positive effect of short-term public information with a negative or 

non-significant effect of long-term private information appears consistent for vessels targeting 

highly mobile species with changing seasonal spatial pattern. In these cases, the value of 

information likely deprecates quickly implying that vessels are likely better off basing their 

expectations on a larger pool of information sources or on tracking technologies equipping the 

majority of vessels in the segment.   

Overall, we find differentiated effects across the five fleet segments and across the four 

types of information. This supports our approach of estimating segment-specific models and 

considering different types of information for vessels having fundamentally different fishing 

strategies (see Section B in the Appendix for the estimated parameters at each spatial resolution 

as well as for a more detailed interpretation of the estimates).  

Effort reallocation and welfare impact predictions  

By using a daily temporal framework for the fishing decisions, our model provides a 

snapshot of where fishers would go given the set of fishing sites available at a given time of the 

year. Holding the distribution of choice occasions and of the associated levels of fishing effort 

fixed, we produce an estimate of the short-term reallocation of fishing effort for any given day of 

an observed fishing season. In order to have a representative picture of the new spatial 

distribution of fishing effort, we choose to estimate effort reallocation for each choice occasion 
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observed in 2015 and to average fishing efforts over the year. Our approach is less susceptible to 

having a specific day of the year given undue weight in these calculations.  

Figure 2 shows the predicted change – in terms of mean fishing hours per day – of the 

fishing pressure of each of the five key fleet segments in response to the hypothetical closure of 

the UK EEZ, using models estimated at the relevant spatial resolution for each fleet. Not 

surprisingly the sites that are the closest to the initial fishing grounds of French vessels in UK 

waters are those that are predicted to face the highest increases in fishing effort. For bottom 

trawlers, this involves an increase in fishing effort in the west of Brittany and in the Channel, as 

well as in the northern part of the Celtic Sea, south of the Irish shores. For vessels using traps, 

there is mainly one cluster of increased fishing pressure, north of Brittany. Netters are also 

predicted to relocate their fishing effort in this area as well as in the area north of the west end of 

the UK EEZ. Dredgers are predicted to increase their fishing pressure north of Normandy, in the 

eastern part of the Channel (see Figures D.1 to D.5 in the appendix).  

According to our estimation, exclusive bottom trawlers and vessels using pots and traps  

are the most impacted, due in particular to the large welfare losses incurred by the loss of access 

to the fishing areas surrounding Cornwall (see Figure 2 top right panel). When excluding those 

sites, the magnitude of the mean utility loss of those two fleet segments becomes similar to the 

magnitude of the losses of the other fleet segments. Overall, the level of welfare losses of each 

fleet reflects their level of dependency to the closed areas. Dominant bottom trawlers show larger 

levels of impact than those for dredgers and netters (which derive less catches from the closed 

areas). Such a pattern of correllation is consistent with the assumption of utility maximization of 

our model: the more attractive a site, the more likely it is to be visited by vessels. 
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The magnitude of the welfare losses and changes in the fishing effort intensifications we 

predict needs, however, to be qualified. Indeed, choosing a simplistic model for the sake of 

clarity, the predictions we present here do not take into account the dynamic nature of the 

behavior of fishers, which are likely to smooth the reallocation of their fishing effort through 

space and time.  We attempted to assess the implications of such dynamic behavior by updating 

the day-to-day predictions of the model14. Chaining predictions over the first 30 days of 2015 

(the process is computationally demanding and the updating assumptions become weaker as the 

time span expands) we obtained welfare losses that are noticeably smaller for exclusive bottom 

trawlers and vessels using pots and traps (about 80% smaller), moderately smaller for dominant 

bottom trawlers and netters (about 20% smaller), and noticeably larger for dredgers (about 300% 

larger) than the welfare losses that would be estimated without chaining the predictions (cf. 

Figure E.5 in the appendix). 

Similarly, we also do not model for the timing of the decisions to go on a fishing trip. 

Neither does our model account for the heterogeneity of choices within a fishing trip. As 

suggested in the literature by Sun et al. (2016) and Kuriyama et al. (2019) for instance, fishers 

may be, for example, more likely to choose fishing sites further away for the first day of a trip. 

We investigated the first day of trip effects and found, as in previous studies, that those effects 

are significant (see Section E of the Appendix for results). We leave this question as an 

interesting area for future research, as the quantitative exploration of the impacts of these effects 

on the analysis is beyond the scope of the present study.  

Accounting for this nuance in the choice of the fishing location of the first days of trips 

can have mixed implications for the re-allocation of effort that is predicted by the model. On one 

side, sites that are located close to the French shores may be predicted to be less likely chosen, 
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thereby alleviating part of the fishing intensification in the Channel for instance. However, on the 

other side it may also lead sites located near the south west end of the UK EEZ to be predicted to 

be more likely chosen, thereby increasing the fishing pressure in this area.   

A key consideration in the analysis of impacts of closures is calibrating the spatial choice 

set with the decision-making process and scale of the closures. Any potential bias in the impact 

measures is also likely specific to fleet heterogeneity. For example, considering the same spatial 

scale with a fleet which includes vessels forming their decisions over largely different spatial 

ranges can lead to overestimate the impact for some and underestimate the impact for others, 

with an uncertain aggregate effect.Figure 3 shows the deviation of the predicted relative change 

in the total fishing effort of the five fleet segments when the same spatial resolution is used for 

the choice sets of all segments (results are aggregated at the coarser spatial resolution considered 

to allow comparisons, disagregated results for each spatial resolution are available in Section C 

of the Appendix).  

Using only the coarsest resolution in model estimation leads to predicted relative changes 

that are relatively close to the predicted changes with specific choice set resolutions for each 

segment. The largest discrepancies in the predictions, neglecting marginally exploited areas, are 

the predicted increases in the fishing effort located at the edge of the UK EEZ, south of the 

Celtic sea (+216% vs +228% increased effort pressure), and north of Brittany (+171% vs. 

+161%). Carrying out the analysis using ICES spatial resolution (1° × ½° rectangles) produces 

results that differ more noticeably across the fleet segments. The increases in the fishing effort 

south of Ireland and north of Brittany are substantially overestimated with deviations of, 

respectively, +17% and +30%, and compensated by lower predicted increases in the Celtic Sea 

close to the UK EEZ (- 33%) and further West (-50%).  Figure 4 shows the estimated welfare 
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losses when using the same spatial resolution for all fleet segments, expressed in terms of % 

deviation from the estimates presented in Figure 2. Losses are generally estimated to be less 

important as the spatial resolution chosen gets finer.  This is likely due to the large weight given 

to the distance factor relative to other factors in our model, combined with the mechanical 

reduction of the differences in distance characteristics between two options, when considering 

finer scales.     

Discussion and Conclusion 

Large-scale spatial closures are increasingly considered as part of the marine policy 

toolbox. At the same time, there have been growing efforts to develop approaches that help 

assess the impacts of such closures on marine fisheries, beyond the first-order consequences 

associated with the loss of access to certain areas, and including the cascading effects due to the 

reallocation of fishing effort. We propose a methodology to assess such impacts while 

accounting for the diversity of fishing strategies among fishing fleets. Using a hypothetical 

scenario regarding the exclusion of selected French fleet segments from the UK exclusive 

economic zone, we first provide a thorough analysis of the current economic dependencies of 

these fleet segments to UK fishing grounds. While this produces a first-order assessment of the 

magnitude of the economic stakes and of where future points of friction may arise, on which 

stakeholders are likely to focus when examining alternative spatial management scenarios, it 

does not provide an actual assessment of the total effects resulting from the reallocation of 

fishing effort because it misses the adaptation of the fleets. 

We then model the immediate reallocation of fishing effort in the areas remaining 

accessible, which would be the most obvious response of fishers to an area closure in the short-
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term. Supported by our finding that the bundle of species caught by vessels exploiting fishing 

grounds in UK waters is not different from the bundle of species of other vessels, we assume that 

fishers would still be able to target the same set of species as in UK waters. Focusing on five 

main fleet segments, we provide a snapshot of the average short-term reallocation of fishing 

effort. This points to three critical hotspots of potentially increased fishing pressure: the western 

and eastern parts of the Channel close to the French coast, as well as the northern part of the 

Celtic Sea, south of the Irish shores. An intensification of the fishing activities in these areas is 

likely to increase the potential for conflicts of use of resources and of the maritime domain.  

Our results also show that the ability to account for this diversity increases the reliability 

and the accuracy of impact assessments. The approach illustrates the value of fine-resolution 

spatial data to analyze fishing activities and to assess the robustness of predictions regarding the 

response of fishers to changes in their fishing opportunities by testing different spatial scales. If 

we could not tailor the spatial resolution of choice sets to specific fleet segments, our results 

show that an impact assessment could be misleading. For example, we find that, provided our 

identification of more relevant resolution is correct, using the resolution of the ICES rectangles 

when modeling choices of all vessels would over-predict reallocation of effort towards regions 

close to the south shores of Ireland, and under-predict effort reallocation towards regions closer 

to the delineation line of the UK EEZ. 

Regarding welfare impacts on the fleets, we find that using a finer resolution for the 

choice sets when coarser resolutions may be more relevant (as suggested by better prediction 

performances for instance) leads to an under-estimate of the losses. At the same time, we also 

show that model predictions may be highly unreliable with such resolution. Given that we find 

that the probabilities of choosing a site are mostly determined by how far sites are from a vessel 
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location (recall the larger estimated coefficients for the distance variable), this may not be 

surprising as the gap in the distance to alternative site options gets larger as the spatial resolution 

gets coarser. However, this result does not apply for dredgers and netters at the finest spatial 

resolution. This may be explained by the specific spatial configurations of the sites and of the 

closure area in the Channel. Indeed, all the spatial resolutions we considered in this region are 

still rather coarse relatively to the eastern part of the Channel15, the region where netters and 

dredgers operate and would relocate their fishing effort. Thus, depending on the spatial 

configuration of the statistical squares in the region, the attractiveness of the sites located outside 

the closed area may be extremeley heterogenous. Should the spatial resolution allow for a finer 

description of the area, distance or productiviy differentials may be more homogeneously 

distributed between sites. 

The relocation that we predict of the large bottom trawlers closer to French coastal 

fishing grounds would have the potential to trigger important domino effects on the coastal fleet 

segments in the region, as well as on coastal ecosystems. Examining the full consequences of the 

same number of vessels fishing in a smaller area would also require information on a number of 

other uses of marine space. Indeed, areas such as the Channel, are already experiencing intense 

competition for space between maritime activities (Girardin, 2015; Halpern et al., 2008). 

Moreover, even though our study focuses on French fleet segments, a number of other European 

vessels also exploit UK waters. For example, Belgian and Dutch vessels have been reported to 

fish side by side with French vessels in the eastern part of the English Channel (Girardin, 2015), 

while the Celtic Sea is known to be an economically important fishing site for Irish, Belgian and 

Spanish fishers (Mateo et al., 2016). Interactions with smaller vessels, not accounted for in our 

study, should also be considered.  
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The reallocation of fishing effort can also have consequences downstream, across the 

fishery value chain from the ports of landing to the consumers. In this regard – and leaving aside 

issues related to market access – how a new distribution of fishing effort and a new distribution 

of catches would translate into new landings’ locations and new market dynamics is a central 

matter. Changes in fishers’ level of activity in one place can have important impacts on the local 

fishing communities, notably in the processing sector that may be confronted to over- or under-

capacity issues. This may in turn impact fishers, who may face changing landing prices and may 

have to establish new networks of wholesale fishmongers. 

Finally, the impact of the spatial reallocation of fishing effort on the dynamics of the 

biological stocks should also be taken into account, as this would entail changes in the catch 

rates and revenues per unit of effort associated to different métiers applied to different areas. 

While the state and the dynamics of some of the most important fish stocks are now generally 

well-understood and regularly monitored, the understanding of their spatial distribution at fine 

scales is not as strong, and many of the species contributing to the economic returns of the fleets 

remain poorly known. This makes the anticipation of the impact of changes in the intensity and 

spatial distribution of fishing pressure by the fleets even more uncertain.   

Accounting for the full suite of these dynamic effects is a complex task that would 

require the development of a complete bio-economic model of the different fleets and their 

interactions with the fish stocks, as well as the European fish supply chain.  

Acknowledgments 

We gratefully acknowledge the French DPMA who provided access to anonymized VMS 

and logbook data and the team of the SIH (French fisheries information system) who processed 



23 

 

it. Special thanks go to Jérôme Weill and Patrick Berthou who provided precious support 

through their expertise of the dataset and of the empirical setting. All data used were aggregated 

in such a way that the confidentiality of vessels was not compromised. The statements, findings, 

conclusions and recommendations are those of the authors and do not necessarily reflect the 

views of the French DPMA. 

This work was also supported by the "Laboratoire d'Excellence" LabexMER (ANR-10-

LABX-19) and co-funded by a grant from the French government under the program 

"Investissements d'Avenir". 

References 

Abbott, J.K., Wilen, J.E., 2011. Dissecting the tragedy: A spatial model of behavior in the 

commons. J. Environ. Econ. Manag. 62, 386–401. 

https://doi.org/10.1016/j.jeem.2011.07.001 

Batsleer, J., Poos, J., Marchal, P., Vermard, Y., Rijnsdorp, A., 2013. Mixed fisheries 

management: protecting the weakest link. Mar. Ecol. Prog. Ser. 479, 177–190. 

https://doi.org/10.3354/meps10203 

Branch, T.A., Hilborn, R., Haynie, A.C., Fay, G., Flynn, L., Griffiths, J., Marshall, K.N., 

Randall, J.K., Scheuerell, J.M., Ward, E.J., Young, M., 2006. Fleet dynamics and 

fishermen behavior: lessons for fisheries managers. Can. J. Fish. Aquat. Sci. 63, 1647–

1668. https://doi.org/10.1139/f06-072 

Collie, J.S., (Vic) Adamowicz, W.L., Beck, M.W., Craig, B., Essington, T.E., Fluharty, D., Rice, 

J., Sanchirico, J.N., 2013. Marine spatial planning in practice. Estuar. Coast. Shelf Sci. 

117, 1–11. https://doi.org/10.1016/j.ecss.2012.11.010 

Depalle, M., 2018. Geospatial Data and Fishery Management: Innovative Modelling 

Approaches. University of California, Davis, Davis. 

Depalle, M., Sanchirico, J.N., Haynie, A.C., Thébaud, O., O’Farrell, S., Perruso, L., under 

review. Scale-dependency in discrete choice models: a fishery application (Working 

paper). UC Davis. 

Fuller, E.C., Samhouri, J.F., Stoll, J.S., Levin, S.A., Watson, J.R., Handling editor: Robert 

Blasiak, 2017. Characterizing fisheries connectivity in marine social–ecological systems. 

ICES J. Mar. Sci. 74, 2087–2096. https://doi.org/10.1093/icesjms/fsx128 

Fulton, E.A., Smith, A.D.M., Smith, D.C., van Putten, I.E., 2011. Human behaviour: the key 

source of uncertainty in fisheries management: Human behaviour and fisheries 

management. Fish Fish. 12, 2–17. https://doi.org/10.1111/j.1467-2979.2010.00371.x 



24 

 

Girardin, R., 2015. Ecosystem and fishers’ behaviour modelling : two crucial and interacting 

approaches to support ecosystem based fisheries management in the eastern english 

channel (Thèse de doctorat). Université Lille 1. 

Girardin, R., Hamon, K.G., Pinnegar, J., Poos, J.J., Thébaud, O., Tidd, A., Vermard, Y., 

Marchal, P., 2016. Thirty years of fleet dynamics modelling using discrete-choice 

models: What have we learned? Fish Fish. https://doi.org/10.1111/faf.12194 

Girardin, R., Vermard, Y., Thébaud, O., Tidd, A., Marchal, P., 2015. Predicting fisher response 

to competition for space and resources in a mixed demersal fishery. Ocean Coast. Manag. 

106, 124–135. https://doi.org/10.1016/j.ocecoaman.2015.01.017 

Haab, T.C., Hicks, R.L., 1999. Choice set considerations in models of recreation demand: 

History and current state of the art. Mar. Resour. Econ. 14, 271–281. 

Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C., Bruno, J.F., 

Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, 

E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., Watson, R., 2008. A Global 

Map of Human Impact on Marine Ecosystems. Science 319, 948–952. 

https://doi.org/10.1126/science.1149345 

Haynie, A.C., Layton, F.D., 2010. An expected profit model for monetizing fishing location 

choices. J. Environ. Econ. Manag. 59, 165–176. 

https://doi.org/10.1016/j.jeem.2009.11.001 

Huang, A., Levinson, D., 2015. Axis of travel: Modeling non-work destination choice with GPS 

data. Transp. Res. Part C Emerg. Technol. 58, 208–223. 

https://doi.org/10.1016/j.trc.2015.03.022 

Huang, L., Smith, M.D., 2014. The Dynamic Efficiency Costs of Common-Pool Resource 

Exploitation. Am. Econ. Rev. 104, 4071–4103. https://doi.org/10.1257/aer.104.12.4071 

Hutniczak, B., Münch, A., 2018. Fishermen’s location choice under spatio-temporal update of 

expectations. J. Choice Model. 28, 124–136. https://doi.org/10.1016/j.jocm.2018.05.002 

Hynes, S., Gerritsen, H., Breen, B., Johnson, M., 2016. Discrete choice modelling of fisheries 

with nuanced spatial information. Mar. Policy 72, 156–165. 

https://doi.org/10.1016/j.marpol.2016.07.004 

Jones, J., Thomas, I., Peeters, D., 2015. Forecasting jobs location choices by Discrete Choice 

Models: A sensitivity analysis to scale and implications for LUTI models. Region 2, 67–

93. 

Jones, P.J.S., 2016. Marine spatial planning in reality_ Introduction to case studies and 

discussion of findings. Mar. Policy 9. 

Kuriyama, P.T., Holland, D.S., Barnett, L.A.K., Branch, T.A., Hicks, R.L., Schnier, K.E., 2019. 

Catch shares drive fleet consolidation and increased targeting but not spatial effort 

concentration nor changes in location choice in a multispecies trawl fishery. Can. J. Fish. 

Aquat. Sci. https://doi.org/10.1139/cjfas-2019-0005 

Manski, C.F., 1977. The structure of random utility models. Theory Decis. 8, 229–254. 

https://doi.org/10.1007/BF00133443 

Mateo, M., Pawlowski, L., Robert, M., 2016. Highly mixed fisheries: fine-scale spatial patterns 

in retained catches of French fisheries in the Celtic Sea. ICES J. Mar. Sci. J. Cons. 

fsw129. https://doi.org/10.1093/icesjms/fsw129 

McFadden, D., 1974. Conditional Logit Analysis of Qualitative Choice Behaviour, in: Frontiers 

in Econometrics. Zarembka, New York. 



25 

 

Parsons, G.R., Hauber, A.B., 1998. Spatial Boundaries and Choice Set Definition in a Random 

Utility Model of Recreation Demand. Land Econ. 74, 32. 

https://doi.org/10.2307/3147211 

Poos, J.-J., Rijnsdorp, A.D., 2007. An “experiment” on effort allocation of fishing vessels: the 

role of interference competition and area specialization. Can. J. Fish. Aquat. Sci. 64, 304–

313. https://doi.org/10.1139/f06-177 

Rijnsdorp, A.D., Poos, J.J., Quirijns, F.J., Grant, J., 2011. Spatial dimension and exploitation 

dynamics of local fishing grounds by fishers targeting several flatfish species. Can. J. 

Fish. Aquat. Sci. 68, 1064–1076. https://doi.org/10.1139/f2011-032 

Russo, T., Pulcinella, J., Parisi, A., Martinelli, M., Belardinelli, A., Santojanni, A., Cataudella, 

S., Colella, S., Anderlini, L., 2015. Modelling the strategy of mid-water trawlers targeting 

small pelagic fish in the Adriatic Sea and its drivers. Ecol. Model. 300, 102–113. 

https://doi.org/10.1016/j.ecolmodel.2014.12.001 

SACROIS [WWW Document], 2017. . Système Inf. Halieut. URL 

http://sih.ifremer.fr/Description-des-donnees/Donnees-estimees/SACROIS 

Sanchirico, J.N., Eagle, J., Palumbi, S., Jr, B.H.T., 2010. Comprehensive Planning, Dominant-

Use-Zones, and User Rights: a New Era in Ocean Governance. Bull. Mar. Sci. 86, 15. 

Sanchirico, J.N., Wilen, J.E., 1999. Bioeconomics of Spatial Exploitation in a Patchy 

Environment. J. Environ. Econ. Manag. 37, 129–150. 

https://doi.org/10.1006/jeem.1998.1060 

Scott, A., 1955. The fishery: the objectives of sole ownership. J. Polit. Econ. 116–124. 

Sievanen, L., Leslie, H.M., Wondolleck, J.M., Yaffee, S.L., McLeod, K.L., Campbell, L.M., 

2011. Linking topdown and bottomup processes through the new U.S. National Ocean 

Policy. Conserv. Lett. 6. 

Simons, S.L., Doring, R., Temming, A., 2015. Modelling fishers’ response to discard prevention 

strategies: the case of the North Sea saithe fishery. ICES J. Mar. Sci. 72, 1530–1544. 

https://doi.org/10.1093/icesjms/fsu229 

Smith, M.D., 2010. Toward an econometric foundation for marine ecosystem-based 

management. Bull. Mar. Sci. 86, 461–477. 

Smith, M.D., 2005. State dependence and heterogeneity in fishing location choice. J. Environ. 

Econ. Manag. 50, 319–340. https://doi.org/10.1016/j.jeem.2005.04.001 

Smith, M.D., Sanchirico, J.N., Wilen, J.E., 2009. The economics of spatial-dynamic processes: 

Applications to renewable resources. J. Environ. Econ. Manag., Frontiers of 

Environmental and Resource Economics 57, 104–121. 

https://doi.org/10.1016/j.jeem.2008.08.001 

Sun, J., Hinton, M. G., & Webster, D. G. (2016). Modeling the spatial dynamics of international 

tuna fleets. PLoS ONE, 11(8). https://doi.org/10.1371/journal.pone.0159626 

von Haefen, R.H., 2008. Latent Consideration Sets and Continuous Demand Systems. Environ. 

Resour. Econ. 41, 363–379. https://doi.org/10.1007/s10640-008-9196-x 

 

  



26 

 

Figures and Tables 

 

Table 1. Spatial extents of fishing activities for each fleet segment, in 

numbers of 1/20°×1/20° squares visited per day (2012-15 period). 

 
Range (1/20°×1/20° squares) 

Fleet segments Mean S.d. Min Max 

Bottom Trawl exc. ≥18m 20 8 1 52 

Bottom Trawl dom. ≥18m 16 8 1 46 

Pots & Traps ≥12m 9 4 1 26 

Drift & Fixed Nets ≥12m 6 3 1 45 

Dredge ≥12m 7 5 1 44 
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Figure 1. Maritime boundaries and main fishing ports in the North East Atlantic regions. ICES 

areas VII and VIII’s delineations are shown in light grey. Source: authors production. Maritime 

boundaries are based on the Maritime Boundaries Geodatabase, version 10 from Flanders 

Marine Institute (2018) (available online at http://www.marineregions.org/). 
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Table 2. Main characteristics of the selected fleet segments (statistics over the 2012-15 

period) 

 

# 

vessels 

Length 

(m) 

 Catch 

(kg/day) 

Trip duration 

(day) 

Fleet segments  Mean S.d.  Mean S.d. Mean S.d. 

Bottom Trawl exc. ≥18m 189  25.6 8.2  1,688 1,638 6.4 3.6 

Bottom Trawl dom. ≥18m 71  24.2 5.0  1,879 3,283 3.4 3.0 

Pots & Traps ≥12m 19 19.7 4.5  1,307 2,013 2.4 3.2 

Drift & Fixed Nets ≥12m 135 19.4 6.6  1,118 1,870 1.8 2.5 

Dredge ≥12m 131 16.0 2.6  872 1,660 1.1 1.0 
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Table 3. Summary statistics of the estimated models of fishing locations. Prediction errors 

were computed performing an out-of-sample prediction in 2015 from the trained model in 

2013-14. 

 
# Goodness of fit  

(pseudo-R²) 

Prediction errors  

(% wrong) 

Fleet segments  2°x2° ICES ½°x½° 2°x2° ICES ½°x½° 

Bottom Trawl exc. ≥18m 28,475 0,71 0,626 0,59 30% 49% 57% 

Bottom Trawl dom. ≥18m 7,330 0,705 0,59 0,549 31% 53% 61% 

Pots & Traps ≥12m 1,725 0,817 0,782 0,746 11% 20% 25% 

Drift & Fixed Nets ≥12m 20,569 0,862 0,805 0,775 13% 25% 30% 

Dredge ≥12m 12,721 0,661 0,63 0,613 15% 30% 36% 
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Table 4. Average marginal effects of the explanatory variables of the discrete-choice model of fishing 

locations for an increase of 1 standard deviation. For each fleet segment the parameters shown are 

those obtained using the appropriate spatial resolution for defining fishing site options, i.e. 2°×2° 

squares for the two segments of bottom trawlers and ICES squares for the other.  Significance levels: 

0.1% ***, 1% **, 5% *, 10% . 

    

Bottom Trawl 

exc.  ≥18m 

Bottom Trawl 

dom. ≥18m 

Pots & Traps 

≥12m 

Drift & Fixed 

Nets ≥12m 

Dredge 

≥12m 

Distance -0.05*** -0.166*** -0.058*** -0.091*** -0.132*** 

N.vs.other.ft.d1 0.012*** 0.031*** 0.022*** 0.009*** 0.019*** 

N.vs.same.ft.d1 -0.993*** -1.471*** -1.272*** -1.74*** -2.854*** 

Vessel’s past fishing effort 0.006*** 0.011*** 0.029*** 0.004*** 0.002*** 

E
x
p
ec

te
d
 r

ev
en

u
es

 Short-term – fleet 

VPUE 
0.008*** -0.001 0.012 0.008*** -0.001 

Short-term – ind. 

VPUE 
-0.003. 0.007 -0.018 -0.001 -0.001 

Long-term – fleet 

VPUE 
0.001 0.02* -0.005 0.024*** 0.013*** 

Long-term –  ind. 

VPUE 
-0.006*** 0.002 -0.005 -0.007* -0.011* 
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 Figure 1 Predicted absolute changes in the mean daily fishing hours and in the mean 

welfare loss of the five key fleet segments considered in response of the closure of the UK EEZ. 

Welfare losses are computed at the choice occasion level and measured in terms of utility loss 

normalized with the marginal utility of distance. 
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Figure 2 Deviation (in % points) with the predicted relative changes in the total fishing hours of 

the five fleet segments when using one spatial resolution for all the segments. To allow 

comparisons, results are aggregated at the coarser spatial resolution considered (2°×2°). A x% 

deviation shown in the figure means that, if the model estimated at the relevant spatial 

resolutions predicted a y% change in the total fishing pressure of the five fleet segments, using 

the same resolution for all the segments leads to a (x+y)% predicted change.  
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Figure 3 Deviation (relatively to the estimates presented in Figure 2) in the normalized mean 

welfare loss by choice occasion when using the same spatial resolution for all the fleet segments. 

 

 
1 DCMs can also be used to assess effort reallocation and ensuing distributional impacts of catch share policies 

(Kuriyama et al., 2019).  

2 We consider that as soon as a statistical square has some of its portion overlapping the closed area, all the catches 

and revenues allocated to this square belong to the closed area. Proceeding similarly using more spatially aggregated 

data (e.g., at the resolutions used for estimated the DCM) would have resulted in an increasing overestimation of the 

losses and smoothed out the levels of dependency to the closed area between the different fleet segments. 

3 Note that instead of using the model to assess where fishers would go if a large-scale closure was implemented, the 

model could be also used to build the counterfactual of where fishers would have gone if a large-scale closure had 

not been implemented. The underlying assumption would be that the drivers of choices for individual vessels 

considered have not changed and are still being adequately captured by the data used (i.e. in the absence of serious 

observation biases), between the before and after situations. In particular, this implies that the model would remain 
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relevant probably only for relatively short-term impact assessments, given the complexity of determinants of fishing 

behavior in a diverse fishery system such as the one considered here. 

4 To take into account the additional cost of visiting a site located further away from the port of return – as in 

Hutniczak and Münch (2018) – we also included the distance of sites to the observed landing port. However, we did 

not find the model to yield significantly different results in most of cases and thus decided not to present it here. 

5 Specifically, we account for the fishing activity across all of the other fleet segments in our dataset, rather just 

focusing on the activity of the other vessels among the five selected fleet segments.  

6 For instance, in our dataset large bottom trawlers cover on average 20 (±8 s.d.) 1/20°×1/20° statistical squares 

within a single day whereas the average for vessels using traps or pots is only 9 (±4 s.d.). 

7 Preferred, not only in terms of higher expected profits, but also in terms of intrinsic preference for a particular site. 

However, in the specification of the model presented here we do not include vessel-specific site dummies that would 

capture this effect. 

8 Statistics regarding the distribution of welfare losses within a fleet segment were computed at the level of the 

choice occasion. Clustering first by vessels did not significantly change the results. 

9 Based on the EU Scientific, Technical and Economic Committee for Fisheries (STECF) data (2018), the French 

fishing fleet is one the main non-UK EU fleet to operate in UK waters, along with the Irish, Dutch, German and 

Danish fleets (see. Andersen et al., 2017 for a study of the possible impact of Brexit on the Danish fishing sector). 

10 Except in a few instances such as the average landing per trip of large dominant bottom trawlers or the average 

CPUE of large exclusive bottom trawler, that turned out not to be consistent from one year to another.  

11 It may seem surprising given that even a  ½° ×½° rectangle encompasses 100 of our « base » 
1

20
° ×

1

20
° squares 

which is about twice the observed maximum of base squares covered by trawlers in a day in our dataset. However, 

most of the time, the observed disaggregated fishing locations of vessels are not confined to a single aggregated 

statistical rectangle and can actually span several, thereby inducing an approximation bias when reducing the 

number of visited rectangles to only one per day. 

12 Unfortunately, we cannot offer a theoretical basis to support the choice of a metrics over another, should there be 

conflicting conclusions regarding the adequate spatial resolution. However, as our welfare analysis is ex-ante and 

based on the estimation of a counterfactual – where fishers would go in the case of a large-scale closure –, it would 
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make sense to favor a metrics accounting for the prediction performance of the model rather than on its ability to fit 

the data well. 

13 In Russo et al., “units” designate pairs of vessels fishing by means of a pair trawl systems. The distinction 

between fishing and non-fishing units is made applying a speed filter: vessels having VMS points with a speed of 

between 3.5 km.h-1 and 4.5 km.h-1 are considered as units that are fishing.  

14 To do so we needed to make an assumption regarding how the variables related to the productivity of vessels in 

each of the potentially selected sites were updated over time (see section E of the appendix for further details). 

15 In the finest spatial scale the longitudinal size of the statistical squares is 30NM whereas the shortest distance 

between French and British shores is only 18NM. 
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Appendix 

A. Analytics of the 1st and 2nd order effects for the evaluation of the economic 

impact a spatial closure  

Equations A.1 and A.2 show the analytics of the 1st and 2nd order effects for the evaluation of 

the economic impact a spatial closure. We make explicit which variables are subjected to be 

modified by a change in the set of permitted fishing areas by using a tilde accent. 

∆1𝑠𝑡= ∑ ∑ ∑ 𝑃𝑎,𝑔,𝑠 ∗ ∑ 𝐶𝑃𝑈𝐸𝑖,𝑗,𝑠 ∗ 𝐸𝑓𝑓𝑜𝑟𝑡𝑖,𝑗
(𝐼∈𝑔,𝐽∈𝑎)
𝑖,𝑗

𝑆𝑔
𝑠

𝐺𝑎
𝑔

𝐴
𝑎 − ∑ ∑ ∑ 𝑃𝑎,𝑔,𝑠 ∗

𝑆𝑔
𝑠

𝐺𝑎
𝑔

𝐴\Ω
𝑎

∑ 𝐶𝑃𝑈𝐸𝑖,𝑗,𝑠 ∗ 𝐸𝑓𝑓𝑜𝑟𝑡𝑖,𝑗
(𝐼∈𝑔,𝐽∈𝑎)
𝑖,𝑗  (Eq. A.1) 

∆
𝑓𝑢𝑙𝑙

= ∑ ∑ ∑ 𝑃𝑎,𝑔,𝑠 ∗ ∑ 𝐶𝑃𝑈𝐸𝑖,𝑗,𝑠 ∗ 𝐸𝑓𝑓𝑜𝑟𝑡𝑖,𝑗
(𝐼∈𝑔,𝐽∈𝑎)
𝑖,𝑗

𝑆𝑔
𝑠

𝐺𝑎
𝑔

𝐴
𝑎 − ∑ ∑ ∑ 𝑃𝑎,𝑔,𝑠̃ ∗

𝑆𝑔̃
𝑠

𝐺𝑎̃
𝑔

𝐴\Ω
𝑎

∑ 𝐶𝑃𝑈𝐸𝑖,𝑗,𝑠̃ ∗𝐸𝑓𝑓𝑜𝑟𝑡𝑖,𝑗̃(𝐼∈𝑔,𝐽∈𝑎)
𝑖,𝑗  (Eq. A.2) 

where i is a vessel using a gear 𝑔, fishing species 𝑠 in 𝑗 sites located in permitted areas 𝑎. I is the 

set of vessels using a gear 𝑔, J is the set of sites located in the permitted area 𝑎, 𝑆𝑔 is the set of 

species captured by the gear 𝑔, 𝐺𝑎is the set of gears used in area 𝑎, 𝐴 and 𝐴\Ω are the set of 

permitted areas, respectively without and with the spatial restriction Ω. 𝑃𝑎,𝑔,𝑠 is the landing price 

of the species 𝑠 fished in the area 𝑎 using the gear 𝑔, 𝐶𝑃𝑈𝐸𝑖,𝑗,𝑠 is the catch per unit of effort and 

𝐸𝑓𝑓𝑜𝑟𝑡𝑖,𝑗is the fishing effort. We omit the time subscript for the sake of clarity. 
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B. SACROIS Data 

The SACROIS Dataset we used focuses on vessels operating in the fishing areas VII and 

VIII as defined by the International Council for the Exploration of the Sea (ICES), over the 

period from 2001 to 2015 (Figure 1) and for which anonymized data was available. In addition to 

information about vessels’ technical characteristics (e.g., length, power) and vessels’ type of 

fishing activity (categorization into “subfleets”), the data also included trip-level information 

such as fishing time, catches, revenues, gear and métier, broken down by day and species and 

aggregated by 
1

20
° ×

1

20
°  statistical squares (about 3NM × 2NM). 

We categorized vessels into fleet segments based on the métiers used by vessels as 

identified in the data set, and on European Data Collection Framework definition of fishing 

fleets. 
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C. Discrete-Choice Model  

1. Model selection 

Additional explanatory variables 

We originally included in the model a couple of additional variables aimed at explicitly capturing 

sites’ heterogeneity in terms of catch composition. Namely, we estimated Eq.1 for a sub-sample 

of the data and for five key species adding in a linear way:  

Sh𝑠𝑑𝑗
exp

 : the expected share of species s in total catch from site 𝑗, proxy by a combination of the 

fleet historical records of share of landing value from species s over the past month and over the 

same 30 days period of the past year; 

- Diversityexp
𝑑𝑗

 : the expected species diversity for site 𝑗, proxy by a combination of the 

fleet historical records of species diversity over the past month and over the same 30 days 

period of the past year; 

The species diversity of a given site is captured by the entropy index of species value shares: 

Diversity𝑑𝑗 = ∑ −Sh𝑠𝑑𝑗 ∗ ln(Sh𝑠𝑑𝑗)𝑠 . It is inspired from the measures of services’ diversity 

used in the transportation literature (Huang and Levinson, 2015). 

However, those additional variables revealed to be not significant and we chose to drop them for 

further analysis. 

VPUE expectations 

In order to find a specification of the expected VPUE that would the most closely capture 

fishers’ actual expectations, we estimated, separately for each fleet on which we focus in the 
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paper, Eq. 1 with 11 different combinations of information signals for the expected VPUE (Table 

B.1). 

Table B.1 Combinations of information signals considered for the specification of the 

expected VPUE 

Model # Info. 

Source 
Individual level Fleet level 

Time 

span 

[t;t-30] 

(m1) 

[t;t-365] 

(y1) 

[t-350;t-370] 

(ym1) 

[t;t-30] 

(m1) 

[t;t-365] 

(y1) 

[t-350;t-370] 

(ym1) 

1  N N N Y N N 

2  N N N N Y N 

3  N N N N N Y 

4  Y N N Y N N 

5  N Y N N Y N 

6  N N Y N N Y 

7  N N N Y Y N 

8  N N N Y N Y 

9  N N N N Y Y 

10  N N N Y Y Y 

11  Y N Y Y N Y 

 

For each combination of information signals we allow the marginal utility of the expected VPUE 

to vary according to which combination of information is available. In practice, this means that 

for a given specification of the expected VPUE we interact dummies associated with a given 

case of information availability. For instance, for model 8 that accounts for both short-term and 

long-term information signals but only at the fleet-level, the specification for the expected VPUE 

is: 
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β
VPUE

*E[VPUEijt]

=

{
 
 

 
 βVPUE

𝐹𝑢𝑙𝑙 𝑖𝑛𝑓𝑜 − 𝑠ℎ𝑜𝑟𝑡−𝑡𝑒𝑟𝑚
∗ VPUE̅̅ ̅̅ ̅̅ ̅

m−1
ft + βVPUE

𝐹𝑢𝑙𝑙 𝑖𝑛𝑓𝑜 − 𝑙𝑜𝑛𝑔−𝑡𝑒𝑟𝑚
∗ VPUE̅̅ ̅̅ ̅̅ ̅

ym−1
ft  𝑖𝑓 𝑐𝑎𝑠𝑒 1

βVPUE
𝑆ℎ𝑜𝑟𝑡−𝑡𝑒𝑟𝑚 𝑜𝑛𝑙𝑦

∗ VPUE̅̅ ̅̅ ̅̅ ̅
m−1
ft 𝑖𝑓 𝑐𝑎𝑠𝑒 2

βVPUE
𝐿𝑜𝑛𝑔−𝑡𝑒𝑟𝑚 𝑜𝑛𝑙𝑦

∗ VPUE̅̅ ̅̅ ̅̅ ̅
ym−1
ft 𝑖𝑓 𝑐𝑎𝑠𝑒 3

βVPUE
𝑁𝑜 𝑖𝑛𝑓𝑜

 𝑖𝑓 𝑐𝑎𝑠𝑒 4

(Eq. C1) 

With:  

▪ case 1: both short-term and long-term historical VPUE are available 

▪ case 2: only short-term historical VPUE are available 

▪ case 3: only long-term historical VPUE are available 

▪ case 4: neither short-term or long-term historical VPUE are available 

Model selection 

We then selected the best model for each fleet using the AIC. In the end the specifications 

showed very similar performances in terms of goodness of fit, even though Model 11 revealed to 

be systematically the best model for all the fleets (Table B.2). 

Table B.2 ΔAIC with model 11 of the different model’s specifications tried, by segment 

fleet and spatial configuration. 

 
BTR exc >=18m BTR dom >=18m TRP >=12m 

Model 2°x2° ICES ½° ×½° 2°x2° ICES ½°×½° 2°x2° ICES ½°×½° 

1 16 086 21 192 23 530 3 297 3 846 4 228 461 623 710 

2 16 313 22 262 NA 3 625 4 585 5 140 525 762 908 

3 16 181 21 586 24 413 3 386 4 287 4 775 475 631 784 

4 2 438 4 269 5 302 431 642 756 151 201 223 

5 4 962 5 877 NA 1 457 1 795 2 140 186 261 280 

6 6 571 10 192 12 109 2 173 2 924 3 252 173 265 410 

7 16 050 21 176 NA 3 246 3 829 4 209 460 615 705 

8 15 993 20 983 23 218 3 065 3 698 4 090 443 567 651 

9 16 097 21 527 NA 3 250 4 143 4 661 477 623 775 

10 15 980 NA NA 2 989 3 661 4 049 449 564 658 

11 0 0 0 0 0 0 0 0 0 
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DFN >=12m DRD >=12m    

Model 2°x2° ICES ½°×½° 2°x2° ICES ½°×½°    

1 10 034 15 135 16 850 2 506 5 746 6 774    

2 11 437 17 744 19 743 2 538 6 439 7 959    

3 10 498 16 413 18 390 2,293 3,879 NA    

4 1 115 1 809 2 182 -398 839 1 051    

5 2 955 4 637 5 148 613 3 055 3 595    

6 4 800 9 520 11 569 1 142 3 720 4 601    

7 9 921 15 062 16 742 2 325 5 723 6 774    

8 9 827 14 719 16 210 2 393 5 498 6 386    

9 NA 16 162 18 028 2 330 5 931 7 099    

10 9 784 14 637 16 192 2 295 5 498 6 390    

11 0 0 0 0 0 0    

 

2. Model’s estimates 

Table B.3 Average marginal effects of the explanatory variables of the discrete-choice model of 

fishing locations for an increase of 1 standard deviation. Significance levels: 0.1% ***, 1% **, 

5% *, 10%. 

  2°x2° ICES ½°x½° 

Dist.d1 

BTR exc >=18m -0.05*** -0.041*** -0.153*** 

BTR dom >=18m -0.166*** -0.328*** -0.426*** 

TRP >=12m -0.007 -0.058*** -0.087*** 

DFN >=12m -0.029*** -0.091*** -0.252*** 

DRD >=12m -0.088*** -0.132*** -0.176*** 

N.vs.other.ft.d1 

BTR exc >=18m 0.012*** 0.006*** 0.017*** 

BTR dom >=18m 0.031*** 0.024*** 0.026*** 

TRP >=12m 0.019*** 0.022*** 0.03*** 

DFN >=12m 0.003*** 0.009*** 0.021*** 

DRD >=12m 0.011*** 0.019*** 0.02*** 

N.vs.same.ft.d1 

BTR exc >=18m -0.993*** -0.469*** -1.349*** 

BTR dom >=18m -1.471*** -2.178*** -2.504*** 

TRP >=12m -0.678*** -1.272*** -1.399*** 

DFN >=12m -1.108*** -1.74*** -4.256*** 

DRD >=12m -1.135*** -2.854*** -3.426*** 

Act.own 
BTR exc >=18m 0.006*** 0.002*** 0.005*** 

BTR dom >=18m 0.011*** 0.009*** 0.009*** 
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TRP >=12m 0.033*** 0.029*** 0.031*** 

DFN >=12m 0.003*** 0.004*** 0.008*** 

DRD >=12m 0.003*** 0.002*** 0.003*** 

E
x
p
ec

te
d
 r

ev
en

u
es

 

Short-term – fleet info. 

BTR exc >=18m 0.008*** 0.004*** 0.013*** 

BTR dom >=18m -0.001 0.008 0.019** 

TRP >=12m 0.014 0.012 0.023 

DFN >=12m 0.018*** 0.008*** 0.028*** 

DRD >=12m 0.002 -0.001 0.006. 

Short-term – ind. info. 

BTR exc >=18m -0.003. 0.001* 0.001 

BTR dom >=18m 0.007 0.004 0.012. 

TRP >=12m -0.001 -0.018 -0.02 

DFN >=12m 0 -0.001 -0.004 

DRD >=12m 0.003 -0.001 -0.001 

Long-term – fleet info. 

BTR exc >=18m 0.001 -0.004* -0.004 

BTR dom >=18m 0.02* 0 -0.008 

TRP >=12m -0.002 -0.005 -0.022. 

DFN >=12m -0.013. 0.024*** 0.059*** 

DRD >=12m 0*** 0.013*** 0.026*** 

Long-term – ind. info. 

BTR exc >=18m -0.006*** -0.002 -0.006. 

BTR dom >=18m 0.002 -0.003 -0.021* 

TRP >=12m -0.004 -0.005 -0.009 

DFN >=12m -0.007** -0.007* -0.023** 

DRD >=12m 0.001 -0.011* -0.011* 
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Table B.4 Marginal rates of substitution with distance of the explanatory variables of the discrete-

choice model of fishing locations. For each fleet segment the parameters shown are those obtained 

using the appropriate spatial resolution for defining fishing site options, i.e. 2°×2° squares for the two 

segments of bottom trawlers and ICES squares for the other. Significance levels: 0.1% ***, 1% **, 

5% *, 10%.. 

   
Bottom Trawl 

exc.  ≥18m 

Bottom Trawl 

dom. ≥18m 

Pots & 

Traps ≥12m 

Drift & Fixed 

Nets ≥12m 
Dredge ≥12m Unit 

# of other 

vessels 

Other fleets -1.21e-01*** -2.27e-01*** -5.59e-01** -1.99e-01*** -2.19e-02*** 100 km/Nb. 

Vessels Same fleet 4.21e+00*** 3.22e+00*** 8.87e+00*** 3.45e+00*** 9.62e-01*** 

Vessel’s past fishing 

effort 
-5.31e+00*** -5.86e+00*** -1.43e+02** -1.27e+01*** -1.72e+00*** 100 km/h 

Expected 

revenues* 

Short-term – 

fleet VPUE 
-1.96e-02*** 2.70e-03 -9.72e-04 -4.94e-04* 4.98e-06 

100 

km/(€/h) 

Short-term –  

ind. VPUE 
-1.79e-04 -1.50e-03 2.71e-03 7.74e-05 -4.05e-06 

100 

km/(€/h) 

Long-term – 

fleet VPUE 
-2.37e-03 -3.26e-03. 6.23e-04 -1.60e-03*** -1.31e-03*** 

100 

km/(€/h) 

Long-term – 

ind. VPUE 
1.14e-02*** -2.74e-04 5.06e-04 6.16e-04* 1.12e-04* 

100 

km/(€/h) 

*Reported estimates for the expected revenues are those in the case where all the four types of information (individual 

and fleet-level, short and long-term) are available. 

A marginal rate of substitution with distance of -100 km/(€/h) means that 1 €/h of expected revenues compensates for the 

disutility of going to a fishing ground which is 100 km further. 
 

  Besides the expected significant negative effect of distance, we find a significant positive 

effect of the lagged number of other vessels of other fleet segments fishing on a site on the 

probability of visit for this same site, and a significant negative effect of the lagged number of 

other vessels of the same fleet segment fishing on a site on the probability of visit for this same 

site. These opposed both effects would suggest a repulsive effect from the competition with 

vessels sharing the same métier combined with a herding behavior (not undermined by a 

potential congestion effect) of fishers with respect to fishers of other métiers, which presumably 

concentrates in the most productive sites, but do not necessarily target the same species. The 

discrete-choice literature has reported various effects regard the effect of other fishers (Girardin 

et al., 2016). Girardin (2015) for instance found that the contemporaneous presence of other 
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French vessels in a given site in the English Channel often had a significant negative effect on 

the choice of a fishing location. However, they also found that the presence of English vessels 

had a positive effect, which they explain by the fact that some French and English fleet segments 

targets scallops, a lowly mobile species. Similarly, Russo et al. (2015) reported an attractive 

effect on the direction location choice of pair trawlers from fishing units but a repulsion effect 

from vessels that are not fishing. At last, Abbott and Wilen (2011) reported in their Appendix, a 

positive effect of other vessels’ presence in a site with a one-day lag but a negative effect with a 

two-day or three-day lag. In our definition of the activity of other vessels we pooled together 

vessels from all the fleet segments for which we had a full VMS coverage, i.e. all vessels with a 

length over all larger than 12m. Data allowing, it would be interesting for future work to see 

whether that herding effect persists when including smaller vessels as well. 

We find as well a consistent positive and significant effect of vessels’ own fishing effort 

on a given site the day before. This means that vessels are more likely to stay fishing in the same 

ground rather than to move to exploit another fishing site. This findings is in line with the 

general result in the literature which usually reports – though over sometimes different time-

windows – a significant positive effect of past fishing patterns (Abbott and Wilen, 2011; 

Girardin et al., 2016, 2015; Hynes et al., 2016). 

The most surprising results in terms of model’s parameters estimates are perhaps those 

regarding the sign and the significance of the variables related to the expected productivity of the 

sites. First, we find highly differentiated effects across the five fleet segments which supports our 

approach of estimating segment-specific models for vessels having fundamentally different 

fishing strategies. Second, we also find differentiated effects depending on the type of 

information that is considered. This validates our approach of distinguishing between segment-
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level (public) and vessel-level (private) information, which is still rarely undertaken in the 

literature where most models usually only consider fleet-level aggregates (Girardin et al., 2016). 

Our results suggest that fishers primarily base their expectations on fleet-level information but 

correcting it accordingly with their own individual experience, when available.  

For exclusive bottom trawlers, we find that short-term public information has a positive 

effect and long-term private information has a negative effect. This combination can appear 

intuitive for vessels targeting highly mobile species with changing seasonal spatial pattern: the 

value of information deprecates quickly and vessels are better off basing their expectations on a 

larger pool of information sources or on tracking technologies equipping the majority of vessels 

in the segment.  

For large dominant bottom trawlers the story appears to be different: only long-term 

public information is found to be significant, with a positive effect on the probability of choice of 

a site. To explain this somewhat counter-intuitive findings, we can follow some of the arguments 

of Girardin & al. (2015) who report a negative effect of past segment-level productivity in the 

short-term (one month lag) for mid-size demersal trawlers. While they explain those negative 

estimates by a lack of capacity to respond to change in fisheries productivity in the short-term 

and by the result of specific seasonality changes in species abundance in the long-term. Another 

explanation could also be related to deprecation rate of information. It may be the case that, 

depending on the type of targeted species - which may vary greatly within this segment - fishes 

are so mobile from day to day or week to week that there is a lower probability of finding them 

in the same locations over a four week interval. To test this hypothesis, it would be interesting to 

see whether the sign and the significance of the effect changes when choosing tighter time-
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windows (based on weeks instead on months for instance) for computing the average historical 

productivities. 

Noticeably, we find that none of the VPUE-related variables are significant in the case of 

vessels using pots and traps, even when considering each type of possible information 

configurations or different spatial scales. Conversely, for the other one-day lagged and non-

revenue related variables, this fleet segment exhibits the highest MRS with distance among all 

the fleet segment (see Table B.4). Such a pattern would be consistent with fish stocks that are not 

very mobile resulting in an observed highly spatially concentrated fishing sites (see Figure C.3), 

where fishers tend to stick to their fishing habits while adjusting their fishing choices according 

to the observed presence of other vessels. 

Dredgers display a different pattern as well: while public or private information have no 

significant effect in the short-term, both of them have a significant effect in the longer-term, with 

a positive effect for fleet-based information mitigated by a negative effect for vessel-specific 

information. An explanation for these opposite effects could be that fishers would correct their 

expectation base on fleet segment aggregates when their own experience diverges from the 

segment average. The difference in the significance of short-term and long-term information 

could also stem from the mobility pattern of the targeted species. Scallops are the main target 

species of dredgers. In the short-run, dredging is similar to clear-cutting and therefore short-term 

past information is not likely to impact current location choices. At the same time, the bottom 

structure that leads to the sites being the most productive is probably correlated with the sites 

ability to recover from dredging and therefore, the most productive sites might not change very 

much from year to year. 
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Figure D.1 Simulation of the reallocation of fishing effort due to the closure of the UK EEZ for 

BTR exc >= 18m vessels. The upper panels (left purple color key) show the spatial distribution 

of effort for 2015 by deciles. The bottom panels (right green and red color key) show the relative 

change in the mean daily fishing effort . 

D. Maps of the impact of the closures of the UK EEZ on the allocation of 

fishing effort of the selected fleets 
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Figure D.2 Simulation of the reallocation of fishing effort due to the closure of the UK EEZ for 

BTR dom >= 18m vessels. The upper panels (left purple color key) show the spatial distribution 

of effort for 2015 by deciles. The bottom panels (right green and red color key) show the relative 

change in the mean daily fishing effort. 
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Figure D.3 Simulation of the reallocation of fishing effort due to the closure of the UK EEZ for 

TRP >= 12m vessels. The upper panels (left purple color key) show the spatial distribution of 

effort for 2015 by deciles. The bottom panels (right green and red color key) show the relative 

change in the mean daily fishing effort. 
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Figure D.4 Simulation of the reallocation of fishing effort due to the closure of the UK EEZ for 

DFN >= 12m vessels. The upper panels (left purple color key) show the spatial distribution of 

effort for 2015 by deciles. The bottom panels (right green and red color key) show the relative 

change in the mean daily fishing effort . 
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Figure D.5 Simulation of the reallocation of fishing effort due to the closure of the UK EEZ for 

DRD >= 12m vessels. The upper panels (left purple color key) show the spatial distribution of 

effort for 2015 by deciles. The bottom panels (right green and red color key) show the relative 

change in the mean daily fishing effort. 
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E. Complementary results 

1. Accounting for the first day of a fishing trip 

A limitation of our model is that it does not account for the heterogeneity of fishing choices 

during multi-day trips. In particular, suggested by Kuriyama et al. (2019) for instance, the weight 

of choices’ explanatory factors are likely to be different for the first day of trip, for which fishers 

may travel to farther fishing sites. To test this hypothesis we re-estimated the selected model, but 

we interacted a dummy for the first day of a trip with the distance to the fishing sites. Table E.1.a 

shows the resulting estimates for the distance variable with this alternative model. When looking 

at the spatial scale deemed relevant for each fleet segment, estimates remain close to one 

another. 

Table E.1 Average marginal effects of the distance to fishing sites for an increase of 1 standard deviation. 

Significance levels: 0.1% ***, 1% **, 5% *, 10%.. 

 
2°x2° ICES 1/2°x1/2° 

 

Base 

model 
Alternative model 

Base 

model 
Alternative model 

Base 

model 
Alternative model 

Fleet segment Any day Later day First day Any day Later day First day Any day Later day First day 

BTR exc >=18m -0.05*** -0.052*** -0.044*** -0.041*** -0.068*** -0.023*** -0.153*** -0.258*** -0.077*** 

BTR dom >=18m -0.166*** -0.179*** -0.187*** -0.328*** -0.554*** -0.295*** -0.426*** -0.797*** -0.372*** 

TRP >=12m -0.007 -0.028 -0.001 -0.058*** -0.115** -0.035** -0.087*** -0.272*** -0.039* 

DFN >=12m -0.029*** -0.029*** -0.029*** -0.091*** -0.178*** -0.073*** -0.252*** -0.492*** -0.185*** 

DRD >=12m -0.088*** -0.023*** -0.048*** -0.132*** -0.122*** -0.145*** -0.176*** -0.193*** -0.187*** 

 

The hypothesis of a lesser effect of distance for the first day of a trip is validated for the 

all but one – dredgers - fleet segments and for all spatial resolutions except the coarsest one. At 

the coarsest resolution, only exclusive bottom trawlers display a significantly disutility of 

distance during the first day of their fishing trip. Dominant bottom trawlers and netters display 

the opposite pattern and estimates for vessels using pots and traps are not significant.  Dredgers 
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are found to be systematically less likely to choose farther fishing sites during their first day of 

trip than during later days. This pattern may not be surprising when observing the spatial 

distribution of the fishing effort of dredgers: it is very highly concentrated near the French 

shores, in the narrowest part of the Channel suggesting this fleet segments favor shorter trips in 

general. The changing pattern of dominant bottom trawlers and netters when decreasing the 

spatial resolution is perhaps more surprising. Nonetheless, an explanation for this could also be 

related to the closeness to the shores of the fishing effort distribution of these fleet segments, 

combined with the large extent of the fishing sites in the coarsest resolution. Even though vessels 

may travel farther during their first day of trips, their chosen fishing location may remain 

included in the 2°x2° square which is nearest to their point of departure. In this sense, this 

exemplifies even more the importance of testing different spatial configurations and spatial 

scales when estimating a discrete-choice model. 

Accounting for this nuance in the choice of the fishing location of the first days of trips can 

have mixed implications for the re-allocation of effort that is predicted by the model. On one 

side, sites that are located close to the French shores may be predicted to be less likely chosen, 

thereby alleviating part of the fishing intensification in the Channel for instance. However, on the 

other side it may also lead sites located near the south west end of the UK EEZ to be predicted to 

be more likely chosen, thereby increasing the fishing pressure in this area.   

2. Accounting for the dynamic behavior of fishers 

Another important limitation of our modeling efforts is that we do not account for the 

dynamic nature of fisher behavior. That is, fishers are likely to update their decisions through 

time as the spatial closure remains. We attempted to assess the implications of such dynamic 

behavior on effort re-allocation and welfare losses by re-running the discrete-choice model 
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allowing the day-to-day predictions to be updated.  In order to so, we need to make an 

assumption regarding how the variables related to the productivity of vessels in each of the 

potentially selected sites are updated over time. Being unable to observe the contemporaneous 

productivity of vessels in the consecutively chosen sites, we used historical values as proxies. 

Depending on the information available, we primarily used short-term productivity (i.e., average 

over the last 30 days) -  preferably computed at the vessel level if possible - before turning to 

long-term information (i.e. past productivity over the 30 days surrounding the same period of the 

past year) – also preferably computed at the vessel level. If no information was available at all, 

we set the productivity in the selected site to 0. Because of this important caveat as well as 

because of the intensiveness of the computations - values have to be updated accounting for the 

predictions for each vessel of all the five fleet segments for each day - we made predictions only 

for the first 30 days of 2015, and tested only the two coarsest resolutions.  

Figures E.1 to E.4 show the difference in the effort re-allocation when using “static” or 

“dynamic” predictions (vessels using pots and traps did not take fishing trips in January 2015). 

As expected, we observe a spatially larger dispersion of the effort re-allocation which is 

predicted to be smoothed across contiguous sites when chaining the predictions. Notably, with 

such “dynamic” predictions, the increase fishing pressure in the sites neighboring the UK EEZ – 

for January 2015 at least - is found to be partially alleviated toward sites located west of Ireland 

and in the Bay of Biscay.  
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Figure E.1 Simulations of the reallocation of fishing effort due to the closure of the UK EEZ for 

BTR exc. >= 18m vessels when using static or dynamic predictions. The left panel (left purple 

color key) show the spatial distribution of effort between 01/01/2015 to 30/01/2015. The center 

and right panels (right green and red color key) show the absolute change in the mean daily 

fishing effort (in hours of fishing) when using “static” or “dynamic” predictions. 

 

 

Figure E.2 Simulations of the reallocation of fishing effort due to the closure of the UK EEZ for 

BTR dom. >= 18m vessels when using static or dynamic predictions. The left panel (left purple 

color key) show the spatial distribution of effort between 01/01/2015 to 30/01/2015. The center 

and right panels (right green and red color key) show the absolute change in the mean daily 

fishing effort (in hours of fishing) when using “static” or “dynamic” predictions. 
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Figure E.3 Simulations of the reallocation of fishing effort due to the closure of the UK EEZ for 

DFN >= 12m vessels when using static or dynamic predictions. The left panel (left purple color 

key) show the spatial distribution of effort between 01/01/2015 to 30/01/2015. The center and 

right panels (right green and red color key) show the absolute change in the mean daily fishing 

effort (in hours of fishing) when using “static” or “dynamic” predictions. 

 

 

Figure E.4 Simulations of the reallocation of fishing effort due to the closure of the UK EEZ for 

DRD >= 12m vessels when using static or dynamic predictions. The left panel (left purple color 

key) show the spatial distribution of effort between 01/01/2015 to 30/01/2015. The center and 

right panels (right green and red color key) show the absolute change in the mean daily fishing 

effort (in hours of fishing) when using “static” or “dynamic” predictions. 
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Computing the welfare losses resulting from this reallocation the same way as in Figure 2 

(i.e., using the weighted average mean of the aggregated welfare losses for each fishing ground), 

we obtained welfare losses that are noticeably smaller for exclusive bottom trawlers and vessels 

using pots and traps (about 80% smaller), moderately smaller for dominant bottom trawlers and 

netters (about 20% smaller), and noticeably larger for dredgers (about 300% larger) than the 

welfare losses that would be estimated without chaining the predictions (cf. Figure E.5).  

While obtaining reduced losses when accounting for the dynamic behavior of fishers is 

expected, finding such larger losses in the case of dredgers is more surprising. A reason for that 

may be related to the way productivity is updated, favoring vessel-specific past productivities 

while this information tends to decrease the utility level of sites for this fleet segment. Another 

explanation could stem from the model leading to an increased concentration of the number of 

dredgers in the same sites, which have a particularly negative effect on utility. The inadequacy of 

using a 2°x2° resolution for this fleet segment, which is obviously too large given the initial 

concentration of fishing sites in the narrowest part of the Channel, may also play a role. When 

computing welfare losses based on ICES rectangles, the increase persists but is of a lesser 

magnitude, with only a 36% rise. 

Note, however, that these results should be consider cautiously as the updating 

assumptions made to chain day-to-day predictions become weaker as the time span expands. 
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Figure E.5 Relative change in the mean welfare loss due to the closure of the UK EEZ when 

using dynamic predictions instead of static predictions. Welfare losses are computed only for the 

first 30 days of 2015, using a 2°x2° resolution.  The increase in the welfare loss for dredgers 

when using a dynamic model is +316 %. 
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