
HAL Id: hal-02912889
https://hal.univ-brest.fr/hal-02912889v1

Submitted on 7 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Position paper: the use of retro-construction tools
Vincent Ribaud, Philippe Saliou

To cite this version:
Vincent Ribaud, Philippe Saliou. Position paper: the use of retro-construction tools. [Research
Report] Lab-STICC_UBO_CACS_MOCS. 2020. �hal-02912889�

https://hal.univ-brest.fr/hal-02912889v1
https://hal.archives-ouvertes.fr

Abstract— To the question “If the construction phase can be

completely automated, what do we need to teach students of

software engineering about it?” we answer “teach them the

tools that are able to automate the construction phase”

I. INTRODUCTION

HE question we set for Software Engineering Workshop

is “If the construction phase can be completely

automated, what do we need to teach students of software

engineering about it?” In our opinion, the shortest answer is

“teach them the tools that are able to automate the

construction phase”. Hence, we should teach them how to

provide inputs to such tools, and how the tools transform

these inputs in software. From the point of view of

constructing software, such inputs are design models (in the

broad sense of model).

A. Topics

If we consider the SWEBOK topics addressed with these

issues (http://www.computer.org/portal/web/swebok), they

belong to two Knowledge Areas (KA) and are listed here:

KA Software Design: 1. Software design fundamentals, 3.

Software structure and architecture, 5. Software design

notations, 6. Software design strategies and methods; KA

Software Construction: 3. Practical considerations.

Annex D of SWEBOK presents a classification of KA

topics according to Bloom's taxonomy: Knowledge (K),

Comprehension (C), Application (AP), Analysis (AN),

Synthesis (S), Evaluation (E). A closer look on the subtopics

of these selected topics let us discard the subtopics classified

K or C, because such knowledge will be taught somewhere in

a software engineering degree, at least on a broad level.

Then, we can consider the topics remaining together with the

associated Bloom level in brackets.

For the KA Software Design: 1. Enabling techniques

(AN); 3. Architectural structure and viewpoints (AP),

Architectural styles (AN), Design patterns (AN);

 5.Structural descriptions (AP), Behavioural description

(AP); 6. General strategies (AN), Structured design (AP),

Object-oriented design (AN).

For the KA Software Construction: 3. Construction

design (AN), Construction language (AP), Coding (AN),

Construction testing (AP), Construction quality (AN),

Integration (AP).

B. Topics

Model-based engineering provides a systematic approach

for producing software systems [1] based on the

transformation of elements of a given abstraction level

towards constructs of the level immediately inferior. We have

to distinguish those models suitable for data from those

suitable for processing, in particular related to time: data

models are structural and static, whereas processing models

are event-based and dynamic.

Automated tools for the construction phase are based on

code generation. This is a typical top-down approach that

might be hard for students. The proposal is to use an

inductive method and the retro-engineering feature of such

tools to let them learn the transition from design to code.

Michalski defines inductive learning as “a process of

acquiring knowledge by drawing inductive inferences from

teacher- or environment-provided facts. Such a process

involves operations of generalizing, transforming, correcting

and refining knowledge representations. [2]”

II. DATA MODELS

A. Physical Data Models

In an Information System or in any software using a

database, a physical data model comprises a set of

programming constructs in the SQL language. Learning the

construction of a physical data model can benefit from the

assistance of retro-engineering tools. Any modelling tool

yields an automatic transformation from a logical model

(using the relational model) to a physical model (using SQL

language). Since the transformation process is completely

controlled, many tools provide the user with an inverse

transformation (called retro-engineering or retro-design

depending on the tool) from the physical to the logical level.

The retro-feature ability yields new learning activities:

from the retro-engineered logical (relational) model produced

by the tool, students can reproduce the physical (SQL) model

with the same or another tool, compare and analyse

differences, infer transformation rules used by the tool,

criticise tools’ generation choices, look for better way of

T

Position paper: the use of retro-construction tools

Vincent Ribaud
Université de Brest,

Informatics,

20 avenue Le Gorgeu, 29200 Brest

Email: ribaud@univ-brest.fr

 Philippe Saliou
Université de Brest,

Informatics,

20 avenue Le Gorgeu, 29200 Brest

Email: psaliou@univ-brest.fr

using the tool. All these activities rely on verbs associated

with the Analysis level (or higher) of Bloom’s taxonomy.

B. Logical Data Models

A conceptual data model describes the organization and

structure of a domain data with the help of entities,

relationships, and properties, and this model is generally

known as an entity-relationship (E-R) model. Transforming a

conceptual (E-R) model in a logical (relational) model relies

on a set of rules, normally mastered by any graduates in

computing. What students are lacking is a confrontation with

complexity, heterogeneity and legacy. A learning experience

on a school case with few entities and relationships, easily

transformed in few tables does not provide students with an

understanding of the issues of a large Information System

such as a banking IS or a transport reservation system.

There is a need for having at our disposal a large system

composed of heterogeneous sub-systems, developed over

periods of several years with different methods and different

technologies by successive teams; and to have at our disposal

the corresponding physical and logical models for each sub-

system, and in some cases to have a maintained

synchronization between conceptual and logical levels. We

believe that major software vendors such as Oracle or

Microsoft should be able to provide academy with such

setting.

Most CASE tools master the transformation from the

conceptual (E-R) level to the logical (relational) level and

some CASE tools are mature enough to offer inverse

transformation - an operation called retrofit. Hence, there are

a lot of learning activities that can use the inductive, followed

by deductive, scheme. Students will work on components for

which they master the logical model, thanks to previous

activities. They perform the retrofit of relational (logical)

models and obtain an E-R (conceptual) model. Because the

retrofit is incomplete and imperfect, students have to correct,

enhance and complete it. Different options for retrofitting

models can be experienced and observation of the results

illustrates the transformation rules used by the CASE tool

one way or another. Then students can transform the new E-

R model into a relational model using the various options

offered by the CASE tool. They will have to analyze,

compare, explain, criticize, evaluate (Analysis, Synthesis,

Evaluation levels).

III. PROCESSING MODELS

On the processing modelling side, we do not have robust

models but we do have a profusion of open-source code and

documentation.

A. Physical Processing Models

If we consider a program (in a programming language) to

be a physical processing model, then an algorithm is a logical

processing model. Why should we start from algorithms? The

presentation of complex algorithms to students is a tricky

task, whereas they are able to handle parts of complex

programs. Learning sessions may familiarize students with

real-scale programs: they will assemble, slightly modify,

rewrite, etc. software components and will work on samples

of growing size. When an understanding of a part of the

system (a sub-system) grows, we may ask students to

describe the code organization in packages and to create a

summary of functions’ packages. They can also reorganize

the code according to a set of naming and coding rules. Any

system observation seen as a black box – description of

results, identification of rules, list of services, recognition of

patterns, etc. – can also be used to produce a more abstract

model and it uses explanation, summary, or generalization, all

activities arising out of an inductive approach.

B. Logical Processing Models

There is unfortunately no agreement on the semantics and

conditions of use of different processing abstract models to

be found in most modern methods. However, Krutchen

proposed in [3] five views that have profoundly inspired

UML genesis. The use case view is singular because it guides

and explains the other views. The logical view is the object

model of the design (where an object-oriented design method

is used). The development view describes the static

organization of the software in its development.

An example of inductive activity is the grouping of

different software units into packages. Students can group

units that have similar data usages in the same package. The

grouping can be operated on code organization, analysis of

components hierarchy, identification of components

dependencies, i.e. which components are used by other

components (which are indeed dependent). Once a broad

understanding of the system or sub-system is achieved,

students may perform a reorganization of the system

components, called a refactoring. Refactoring seems to

operate at logical and physical levels only yet it requires

analysis and synthesis activities which reveal an underlying

conceptual model that will be modified and transformed again

into a logical model.

IV. CONCLUSION

What is remarkable in software engineering is the

simultaneous existence of ever-more abstract representations,

and the fact that this existence allows the engineer to think

equally, and even simultaneously, within several levels. An

experienced engineer studying a logical model ‘sees’ the

various physical models that are implied, and conversely,

using a physical model, ‘sees’ the underlying data model, and

is therefore able to think about and act at both levels at once.

Although this also happens in processing models to a certain

extent, it remains a special feature of data models. However

some CASE tools offers very powerful processing

abstraction based on the Model-View-Controller paradigm

and other design patterns.

REFERENCES

[1] S.A. Bohner, and S. Mohan, “Model-Based Engineering of Software:

Three Productivity Perspectives”, in 33rd Annual IEEE Software

Engineering Workshop, 2009, pp. 35-44.

[2] R.S. Michalski, “A theory and methodology of inductive learning”, in

Artificial Intelligence, vol. 20 (2), February 1983, pp. 111-161.

[3] P. Krutchen, “The 4 + 1 View Model of Architecture”, in IEEE

Software, vol. 12 (6), 1995, pp. 42-50.

