N

N

APPLICATION OF THE CONVERGENCE OF THE
SPATIO-TEMPORAL PROCESSES FOR VISITS TO
SMALL SETS

Francoise Péne, Benoit Saussol

» To cite this version:

Francoise Péne, Benoit Saussol. APPLICATION OF THE CONVERGENCE OF THE SPATIO-
TEMPORAL PROCESSES FOR VISITS TO SMALL SETS. Thermodynamic Formalism, 2290,
Springer International Publishing; Springer International Publishing, pp.263-288, 2021, Lecture Notes
in Mathematics, 10.1007/978-3-030-74863-0_8 . hal-02909125

HAL Id: hal-02909125
https://hal.univ-brest.fr /hal-02909125
Submitted on 30 Jul 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.univ-brest.fr/hal-02909125
https://hal.archives-ouvertes.fr

APPLICATION OF THE CONVERGENCE OF THE

SPATIO-TEMPORAL PROCESSES FOR VISITS TO SMALL

4.
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Appendix A. Visits of the Sinai billiard flow to a finite union of

SETS

FRANCOISE PENE AND BENOIT SAUSSOL

ABSTRACT. The goal of this article is to point out the importance of
spatio-temporal processes in different questions of quantitative recur-
rence. We focus on applications to the study of the number of visits to
a small set before the first visit to another set (question arising from a
previous work by Kifer and Rapaport), the study of high records, the
study of line processes, the study of the time spent by a flow in a small
set. We illustrate these applications by results on billiards or geodesic
flows. This paper contains in particular new result of convergence in
distribution of the spatio temporal processes associated to visits by the
Sinai billiard flow to a small neighbourhood of orbitrary points in the
billiard domain.
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1. INTRODUCTION
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Let (2, F,u,T) or (2, F,u,Y = (Y1)i>0) be a probability preserving dy-

namical system in discrete or continuous times.

Let (A:)e be a family of

measurable subsets of Q with p(A;) — 0+ as ¢ — 0. Given a family of mea-
surable normalization functions H. : A. — V where V is a locally compact
metric space endowed with its Borel o-algebra V, we study the family of
spatio-temporal point processes (N:). on [0,400) x V given by

Ne(z) :=N(T, A, he, He) := Z O(nhe,Heo(T"(z))) for amap T

(1)

n>1: Tn(x)EA:
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2 FRANCOISE PENE AND BENOIT SAUSSOL

or

Ne(x) = N(Y, Ac, he, He) = Z O(the,H(Ye(x))) for aflow Y.
t>0 : Y; enters A.
(2)

We are interested in results of convergence in distribution of (N:):~o to a
point process P as ¢ — 0 with a particular focus on applications of results
of such kind. Various results of convergence of such processes to Poisson
point processes have been proved in [21, 13] for billiard maps and flows.
Let us point out the fact that these spatio-temporal processes contain much
information: they do not only contain information on the visit time but
they also contain informations on the spatial position at these visit times.
For these reasons, on may extract further information from results of con-
vergence of these processes. Among the applications that have already been
studied, let us mention:

e Study of the visits in a small neighborhood of an hyperbolic peri-

odic point of a transformation (see [21, Section 5], with application
to Anosov maps).
Such visits occurs by clusters (once a point visits such a neighbour-
hood, it stays close to the periodic point during an unbounded time
before living this area). The idea we used to study these clusters
was to consider a process N corresponding to the last (or first)
position of the clusters.

e Convergence of a normalized Birkhoff sum processes

[nt]—1
_1 k
n- e E foTl
k=0 >0/ p>1

to an a-stable process. In [25] Tyran-Kaminska provided criteria
ensuring such a result. One of the conditions is the convergence of

Nijn = N(T{|f] > yn=},1/n,n "= f(5)

(for every v > 0) to some Poisson point process. The general results
of [21] combined with the criteria of [25] have been used in [13] to
prove convergence to a Lévy process for the Birkhoff sum process
of Holder observable of billiards in dispersing domains with cusps.

We won’t detail again the above applications. Our goal here is to emphasize
on further ones.

After recalling in Section 2 below the general results of convergence of
spatio-temporal point processes to Poisson point processes established in
[21], we present in the remaining sections four other important applications
of such convergence results:

e The number of visits to (or of the time spent in) a small set before
the first visit to a second small set (motivated by Kifer and Ra-
paport [16]), with application to the Sinai billiard flow with finite
horizon,

e The evolution of the number of records larger than some threshold,
with an application to billiards with corners and cusps of order
larger than 2,
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e The Line process of random geodesics (motivated by Athreya, Lal-
ley, Sapir and Wroten [2]),

e The time spent by a flow in a small set, with application to the
Sinai billiard flow with finite horizon.

Appendix A contains a new theorem of convergence of point processes for
the Sinai billiard flow and for neighborhoods of arbitrary positions in the
billiard domain, which is used in the examples that illustrate the applications
above. Finally we also present an application to the closest approach by the
billiard flow.

2. CONVERGENCE RESULTS FOR TRANSFORMATIONS AND SPECIAL FLOWS

We set E := [0,+00) x V and we endow it with its Borel o-algebra
€ = B([0,+0)) ® V. We also consider the family of measures (m.). on
(V,V) defined by

me = p(H'()|Ae) (3)
and W a family stable by finite unions and intersections of relatively compact
open subsets of V', that generates the o-algebra V. Let \ be the Lebesgue
measure on [0, 00).

We will approximate the point process defined by (1) or (2) by a Poisson
point process on E. Given n a o-finite measure on (E, &), recall that a
process N is a Poisson point process on F of intensity 7 if

(i) NV is a point process (i.e. N = >, d,, with x; E-valued random
variables),

(ii) For every pairwise disjoint Borel sets By, ..., B, C E, the random
variables N(By), ..., N(B,,) are independent Poisson random vari-
ables with respective parameters n(By), ..., n(By).

Let M,(FE) be the space of all point measures defined on E, endowed with
the topology of vague convergence; it is metrizable as a complete separable
metric space. A family of point processes (N:). converges in distribution
to NV if for any bounded continuous function f: M,(E) — R the following
convergence holds true

E(f(Ne)) = E(f(NV)), ase—0. (4)
For a collection A of measurable subsets of €2, we define the following
quantity:
AA) = sip |u(ANB) - u(A)u(B)|. (5)
AcA,Beo(USL T—"A)

We set A for the Lebesgue measure on [0, 00).

Theorem 2.1. (Convergence result for transformations [21, Theorem 2.1])
We assume that
(i) for any finite subset Wy of W we have A(HZWp) = o(u(A.)),
(ii) there exists a measure m on (V,V) such that for every F € W,
m(OF) =0 and lim. o u(H-1(F)|A:) converges to m(F).
Then the family of point processes (N). converges strongly' in distribution,
as € — 0, to a Poisson point process P of intensity A x m.

Le. with respect to any probability measure absolutely continuous w.r.t. pu
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In particular, for every relatively compact open B C E such that (A X
m)(0B) = 0, (Nz(B)): converges in distribution, as ¢ — 0, to a Poisson
random variable with parameter (A x m)(B).

Theorem 2.2. (Convergence result for special flows [21, Theorem 2.3]) As-
sume (Q, 1, Y = (Yy)) can be represented as a special flow over a probability
preserving dynamical system (M, v, F) with roof function T : M — (0, 400)
with M C Q and set I1 : Q — M for the projection such that II(Ys(z)) = =
for all x € M and all s € [0,7(x)).

Assume moreover that Y enters at most once in A; between two consecutive
visits to M and that there exists a family of measurable normalization func-
tions Ge : M — V such that the family of point processes (N (F,11(Ag), he, Ge))e
converges in distribution, as e — 0 and with respect to some probability mea-
sure U KL v, to a Poisson point process of intensity A X m, where m is some
measure on (V, V), then the family of point processes (N(Y, A¢, he /E,[7], G0
IT)). converges in distribution, as € — 0 (with respect to any probability
measure absolutely continuous with respect to u), to a Poisson process P of
intensity A X m.

3. NUMBER OF VISITS TO A SMALL SET BEFORE THE FIRST VISIT TO A
SECOND SMALL SET

Suppose B? and B! are two disjoint sets. We define the spatio-temporal
process N with A, = BYU B!, H.(z) = ¢ if z € B, ¢ = 0,1, that is on
[0, +00) x {0,1}

e’} 1
Ne(z) = Z Z S(nu(Ac),0) 1pe(T"T) (6)

n=1¢=0

in the case of a transformation 7" or

1
NE (CC) = Z Z 5(th5 ,K)lYt enters B¢ (7)

t>0 ¢=0

in the case of a flow Y. In [16] Kifer and Rapaport studied the distribution of
a (multiple) event 7"z € B! until a (multiple) hazard T"(z) € BY. We stick
here to single event and hazard and define, in the case of a transformation
T,

TBg (:B)

Mc(z) = Y 1 (T"z), (8)
n=1
where we set 75(x) :=inf{n > 1 : T"(x) € B} or, in the case of a flow Y:

M (z) = Z Ly, enters Bl> (9)

te (OvTBg (z))

where we set 7p(x) := inf{t > 0 : Y;(x) € B}. The process M, counts the
number of entrances of the flow in the 1-set before its first visit to the 0-set.
In the case of a flow, it is also natural to consider the following process M.
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measuring the time spent by the flow in the 1-set before its first visit to the
0-set:

, TB(E)(‘T)
M (x) = / Ip1oYs(z)ds. (10)
0

In view of the study of this last process, we will consider the following process
measuring the time spent by the flow in each set:

1
Le = E E 5mfma4%ﬁon

J=0¢.v, enters BZ >0
with Dy := T\ a-

Theorem 3.1. Let p € (0,1) and P be a probability measure on Q. Assume,
in the case of a flow, that lim._,o P(B% U Bl)=0.

If the spatio-temporal process N defined as in (6) or (7) converges,
with respect to P, to a PPP of intensity A x B(p) where B(p) denotes the
Bernoulli measure with parameter p (for a transformation we expect p =
lim. o u(BL)/u(AL)), then the process (M.). has asymptotically geometric
distribution, more precisely it converges in distribution to M with P(M =
k) = pF(1 = p) for any k > 0; in particular the asymptotic value for the
commitor function is

lim P(750 < 7p51) = lim P(M. =0) =1 —p.

e—0 e—0

In the case of a flow, if (af_ﬂ'Q\B;)E converges in probability P to 0 and if
(L:)es0 supported on [0,+00) x {0,1} x Ry converges in distribution with

respect to P to a PPP Ly with intensity A X Z}:O pj(d; x m’;) where the m’;

are probability measures, then (acM.). converges to Z/\;‘l X, where (X;); is
a sequence of i.i.d. random variables with distribution m/; and independent
of M where M is as above.

Proof. We first observe that the mapping
J - € € My([0,+00) x {0,1}) = £([0,7°] % {1})

is continuous where 79 = sup{t > 0: £([0,¢] x {0}) = 0} is continuous at a.e.
realization £ of x := PPP(AxB(p)). Indeed, £(-x{0}) and £(-x {1}) are the
realization of two homogeneous independent Poisson process hence 70 is a.s.
not an atom of £(- x {1}). Observe that, in the case of a transformation,
M. = J(N.) and in the case of a flow P(M. # J(N.)) = P(Yy € B U
Bl) — 0. Therefore, by the continuous mapping theorem, M. converges in
distribution to G := J(x).

We now compute the law of G. The first hazard 70 has an exponential
distribution with parameter 1 — p, while x!'(-) := x(- x {1}) is a Poisson
point process with intensity pA, and the two are independent. Therefore,
for any k € N

P(G = k) =P(x'([0,7") = k)

oo_ tk o
:A P ()t = (1
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This ends the proof of the first points of the Theorem. Let us now prove the
last one. We use the fact that the mapping J : £ € M,([0, +00) x {0,1} x
Ry) — f[o,ro}x{l}x[o,Ko] zd&(t,j,z) is continuous at a.e. realization £ of y
and conclude as above by the continuous mapping theorem and the Slutzky
lemma since a. ML = 1y, ¢po} (J(Le) + aETQ\BEI). O

Example 3.2. Consider the billiard flow (Y;); associated to a Sinai billiard
with finite horizon in a domain Q C T? (see Appendiz for details). Let P be
any probability measure on Q := Q x S' absolutely continuous with respect
to Lebesque. We fix two distinct point positions qo,q1 € Q and two positive
real numbers ro,m1 > 0. Set Bl := B(g;,ri€) x St and d; =2 — 14,c00-

Then (Me): converges in distribution with respect to P to M with P(M =

k) = p*(1 — p) for any k > 0 and with p = m.

Moreover (71 ML), converges in distribution with respect to P to rq Zgl Y;
where (Y;); is a sequence of i.i.d. random variables with density y
\/%71[0,1] (y) independent of M, with M as above.

Proof. Recall that the billiard flow Y preserves the normalized Lebesgue
measure 4 on @ x S'. In view of applying Theorem 3.1, observe first that
lime 0 P(B U BY) = 0 and Ele™ 7\ 1] < 2rP(BL), thus (e7g\p1)e con-
verges in probability P to 0.

As a direct consequence of Theorem A.1, the family of spatio-temporal
processes (N:):o given by (7), with h. = %, converges in distri-
bution to a PPP of intensity A\ x B(7—2%—) and so the first conclusions

doro+diT1

of Theorem 3.1 holds true with p = %. This ends the proof of the

convergence (M;)e.
Due to Theorem 6.2, (L.). with a. = ¢ and h. as previously converges in dis-

tribution to a PPP with intensity \ x Z}:o pj(d; xmj;) where p; := %

and where m/; has density y 4 1(9,2,1(y). Thus the last conclu-
2r; 47"]2.7y2 =

sion of Theorem 3.1 holds also true with these notations. We conclude by

taking Y; = X;/(2r1). O

4. NUMBER OF HIGH RECORDS

We define the high records point process by

oo
Rf(u7 e) = Z 5ku1{foTk>max(£,f,...,foTk—1)} .

k=1
The successive times of records of an observable along an orbit are obviously
tractable from the time and values of the observations along this orbit. The
following proposition states that this is still the case for the corresponding
asymptotic distributions. This has already been noticed in [11], in particular
in the context of Extremal events. Our result is similar to the proof of [11,
Theorem 3.1] from [11, Theorem 5.1].

Proposition 4.1. Let (Q, F, u,T) be a probability preserving dynamical sys-
tem and f : Q — [0,400) be a measurable function. Assume the family
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(N = N (T, {f > e '}, he, 1/(6f)))€>0 of point processes on [0, +00) x [0,1]
converges in distribution with respect to P to a Poisson point process of
intensity A X m with m a probability measure on [0,1] without any atom.
Then (Rf(hs,s_l))DO converges in distribution, as € — 0 to a Point pro-

cess R =2y Zidr, where Ty = Zle X, the X; are independent standard
exponential random variable and the Z; are independent random variable of
Bernoulli distribution with respective parameters £~1, and the two sequences
are independent.

Proof. Define the mapping

F:&= 610 € Mp([0,00) x [0,1]) = > &,
i )

€l(€

where I(§) are the records of £, defined by those ¢ such that for any j one
has t; <t; = v; > v;. The map F is continuous at each § such that the
t;’s, and the v;’s, are distincts. This is the case for a.e. realization £ of a
Poisson process of intensity A x m. Therefore by the continuous mapping
theorem R ¢(he,e71) = F(N;) converges to x = F(PPP(A x m)).

We are left to compute the distribution. Observe that PPP(A x m)
is distributed as 3,2, d(,,w,) with (T7) as in the statement and the W,
are i.i.d. with distribution m, the two sequences being independent. Let
Zy = 14w, is a record}- By [23, Proposition 4.3] the Z, are independent, have
probability 1/¢, and when Z;, = 1 we keep the point Tj. O

In particular, for every ¢ > 0 the number of records exceeding the value
e~ ! before the time thZ! corresponds to Rs(he,e71)([0,¢]) and the conclu-

sion of Proposition 4.1 implies that it converges to Zévztl Zy where Z, are as
in Proposition 4.1 and where (Ng); is a standard Poisson Process indepen-
dent of (Zg)g.

Example 4.2. Consider a dispersive billiard with corner and cusps of mazx-
imal order B, > 2 as in [13]. Consider the induced system (Q, u,T) cor-
responding to the successive reflection times outside a neighbourhood U of
cusps and write R(z) for the number of reflections in U starting from x. Set
a =52 € (1,2).

Setting Ac := {RoT~! > &1}, it has been proved in [13, Lemma 4.5] that
there exists an explicit co > 0 such that pu(Az) ~ coe® as e — 0.

The assumptions of Proposition 4.1 hold true with f = RoT~! and h, =
w(Ag) ~ coe®. So the same assumptions hold true with he = coe®.

Furthermore the number R, of records of R higher than n'/® before the
n-th reflection outside cusps converges to Zévzl Zy where Zy are as in Propo-
sition 4.1 and where N is a Poisson random wvariable of parameter cy and
independent of (Zy)g.
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Proof. Tt follows from the proof of [13, Lemma 4.8] that? the family of point
processes (N(T, Ac, u(A:),eR o T71)). on [0,+00) x [1,+00] converges in
distribution to a PPP with intensity of density (t,y) — ay=* 1,50 with
respect to the Lebesgue measure.

Therefore the assumptions of Proposition 4.1 hold true with f = Ro T—!
and he = p(A:) ~ cpe®. So the same assumptions hold true with h. = cpe®.
This ends the proof of the first part.

For the second we apply Proposition 4.1 with ¢ = na. U

5. LINE PROCESS OF RANDOM GEODESICS

We study the line process generated by a geodesic as in [2] and recover
their main result. Let N be a compact Riemannian surface of negative
curvature. The geodesic flow (Y;); on the unit tangent bundle Q = T'N
preserves the Liouville measure p. Let mn: T'N — N be the canonical
projection (g,v) — q. We denote by D(q,¢) the ball in N of radius e. We
now state the main theorem, postponing the details and precise definitions
thereafter.

Theorem 5.1. Fiz qo € N. For any a > 0, the intersection of the neighbor-
hood D(qo,¢) with the geodesic segment wn({Y;(x),0 <t < ac™'}), where x
is taken at random on (2, 1), converges in distribution, after normalization,
ase — 0, to a Homogeneous Poisson line process in the unit disk of intensity

a/Area(N).

A Poisson line process in the unit disk D of the plane, of intensity x €
(0,00), is a probabilistic process which draw lines in the disk. Each line L
is parametrized by (r,0) € [—1,1] x [0, 7] where

L= {(z,y) € D: r=xcosf+ysinb},
and the parameters (r, #) are produced by a Poisson point process of intensity
[

Zdrdf on [~1,1] x [0,7]. Equivalently, changing the parametrization to

S

FIGURE 1. Parametrization of the line L by (r,0) or (s, ¢).

(s,¢) where s € 9D =: S is one point of intersection of the line with the
unit circle and ¢ is the angle between the line L (directed into the disk)

2[137 Lemma 4.8] states that this convergence is true in the set of point processes on
[0, +00) x [1,+00), but its proof can be adapted in a straighforward way to obtain our
purpose by considering not only intervals of the form (c,c’) but also intervals of the form
(¢, +o0].
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and the normal at s pointing inside the disk (see Figure 1), gives a Poisson
point process of intensity ~5>*dsdy (the jacobian is cos ¢ and each line has
two representations in this parametrization). The intensity  in the theorem
is equal to a/Area(N), therefore the intensity in this parametrization will
be Wea(m cos pdsdyp = m cos pdsdp. The convergence of a point
process in this parametrization implies it in the original one (by continuity
of the change of parameter; see [23, Proposition 3.18]).

The exponential map exp,, is a local diffeomorphism on a neighborhood
U C Ty, N of 0. Thus its inverse is well defined on D(qy, ) for € small enough
so that B(0,e) C U. We identify Ty N with R?. Set V = S x [-Z, Z]. For
q € D(qo,¢) we let s.(q) =~ ! exp;)l(q) and for ¢ € 9D(qo,¢) and v € TyN
we denote by ¢4(v) the angle between the normal at ¢ pointing inside the
disk and v (see Figure 2).

FIGURE 2. A geodesic arc v entering the ball D(qo,¢).

The intersection Z¢(z) := 7N (Y[o,ac-17(z)) N D(qo, ) consists of finitely
many geodesic arcs 7; := TN (Y], t,44)()), where ¢; is the length of the
arc; we drop the dependence on = and e for simplicity. The arcs ~; are
fully crossing the ball, except possibly for the two extremities (at t = 0 or
t = ac™!) which could give an incomplete arc. The later happens with a
vanishing probability as € — 0, therefore we will ignore this eventuality. The
arc -y; enters the ball at the position ¢; with direction v; where (g;,v;) :=
Y, ().

When € — 0, the geodesic arcs «; which compose the intersection Z? be-
come more and more straight. This justifies the definition of the convergence
in distribution of Z¢ as the convergence in distribution of the point process

D s (a) a(w0) (11)

Loosely speaking, we identify the images s-(y;) with the chord of the unit
disk D originated in s.(g;) and direction v;.

We now proceed with the proof of the theorem. Let A. C T'N be the
set of points (g,v) such that ¢ € dD(qp,¢) and v is pointing inside the ball.
We define on A,

He(q,v) = (se(q), dq(v)) € V. (12)
The theorem is a byproduct of the following result for the geodesic flow.
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Proposition 5.2. The process of entrances in the ball for the position for
the geodesic flow N (Y, Ae,2e/Area(N),H:) on [0,4+00[xV converges to a
Poisson point process with intensity ﬁ cos pdtdsdyp.

Proof of Theorem 5.1. The counting process
LL(-) :=N(Y, A, 2e/Area(N), H:)([0, 2a/Area(N)] x -) (13)

produces a point (s, ) each time that the geodesic flow Y; enters in D(qy, ¢)
for some t such that 2et/Area(N) < 2a/Area(N), that is t < ae~!. By
Proposition 5.2 and the continuous mapping theorem the point process £
converges to a Poisson point process of intensity ﬁa(l\f)ﬁ cos pdsdp. By
the above discussion, in particular (11), this completes the proof of the

theorem. O

We emphasize that this proof only uses the convergence stated in Propo-
sition 5.2, therefore it applies for more general ’geodesic-like flows’, for in-
stance the argument applies immediately to billiards systems, using Theo-
rem A.1 in place of Proposition 5.2.

Proof of Proposition 5.2. The first step is to construct a Markov section for
the geodesic flow, subordinated to a finite family of disks D; C T'N. Fix
some § > 0 sufficiently small. By Bowen [3] there exists a Markov section
(X;); of size §, in particular diam X; < 6 and T'N = Ui Y50 (X;). One can
choose the disks D; D X; in such a way that

D; € {(g,v): q € Qi [£(ng,v)| > 5 = 3}

where Q; are C? curve in N and ngq is the normal vector to Q; at g (with
q — nq continuous). Without loss of generality we assume that go € U;Q;.

The flow (Y}) is represented by a special flow over the Poincaré section
M := U;X;, with a C? roof function 7. Let II be the projection onto M
along the flow in backward time. The flow (TN, (Y;), ) projects down
to a system (M, F,v), conjugated to a subshift of finite type with a Gibbs
measure of a Holder potential. In order to apply Theorem 2.2 we need to
check that the set A; := IIA. and H.(z) := H-(Ys(x)) where s > 0 is the
minimal time such that Y,(x) € A, fulfills the hypotheses of Theorem 2.1.
For that we will apply [21, Proposition 3.2]. The Poincaré map F' has a
hyperbolic structure with an exponential rate, thus it satisfies the setting of
[21, Proposition 3.2] with any polynomial rate «, in particular aw = 4 works.
Here the boundary is meant in the induced topology on M. It suffices to
prove that for some p. = o(v(A;)) one has (i) v(74. < p:) = o(1) and (ii)
v((0A:)P="1) = o(v(A,)), the two other assumptions being trivially satisfied
in our situation.

Measure of A.: The Liouville measure p is the product of the normalized
surface on N times the Haar measure on T'N. Its projection v to the
Poincaré section satisfies dv = ¢, cos @drdp for some normalizing constant

-1
cy = <ZZ | x; €8 wdrdap) , where r is the curvilinear abscissa on ); and

 the angle between the velocity and the normal to @);. Moreover we have
dp = ([y, 7dv)"tdv x dt|y, where My = {(z,t): x € M,0 <t < 7(z)}.
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The geodesic flow preserves the measure cos pdrdp from A, C M to A,
therefore

v(Ag) = c,,/ cos pdrdyp = cl,/

~ ¢, dme.

/2
cos pdrdp = ¢, / dr / cos pdyp
€ BD(qo,&‘) _7(/2

Short returns: For any ¢ € D(qo,€), let R-(q) be the set of v € quN such
that the geodesic segment 7[0,571/2](%1)) enters again D(qo, ) after leaving
D(qo, 2¢). The result of [2, Lemma 5.3] ensures the existence of K > 0 such
that for any ¢ € D(qo,¢)

Leb(R.(q)) < Ke'™1/2 = K\/e.

Therefore, setting A. = {(¢,v) € Ac: v € Re(q)} we get that the bidimen-
sional Lebesgue measure of A, is 0(63/ 2). A fortiori since the projection II
preserves the measure cos pdrdy we get

V(ITA,) = c,,/ ~ cospdrdy = ¢, / cos pdrdp = O(%/?).
A, Ae
Let p. = |(max 7)~'e~1/2] and notice that A. N {74, < p.} C ILA.. By the
previous estimates we get

v(A: N {ra. < p.}) = O(*?).
Hence

v(Ta. < pelA:) = o(1).

This is the assumption (i).

We now prove (ii). The boundary of A. in the induced topology of M is
included in the set of TI(g, v) where v is tangent to the boundary of 9D (qo, ).
This defines for each i such that X;N A, is nonempty at most two C? curves
in D; of finite length (by transversality), therefore its e2-neighborhood has
a measure O(g?).

Finally, the measure dm. = (H.).v(:|A:) is equal to the measure dm :=
ﬁ cos pdsdp, since the measure cos pdrdy is preserved by the inverse of the
projection II from A. to A. and H. has constant jacobian ¢ in these coor-
dinates. By Theorem 2.1 the point process N (F, A, v(A.), H.) converges
to a Poisson point process of intensity A x m. Applying Theorem 2.2 with
h. = ¢,4me and h. = h./E, (1) we get that N(Y, A, hl, H.) converges to a
Poisson point process of intensity A x m. In addition,

/ Tdy = c,,/ T cos pdrdp = c,,/ cos pdtdrdy = ¢, Vol(T'N).
M M .

Area
proposition. O

Thus, since Vol(T'N) = 2rArea(N) we get that h. = %, proving the

6. TIME SPENT BY A FLOW IN A SMALL SET

Given a flow Y = (V;); defined on Q and a set A C 2, a very natural
question is to study the time spent by the flow in the set A, that is the local
time Lp(A) given by following quantity :

Lr(A):=X({t€[0,T] : Y € A}) .
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This quantity measures the time spent by the flow Y in the set A between
time 0 and time 7" (the symbol L refers to the local time). We also write
Dy :=inf{t >0 : Y; ¢ A} for the duration of the present visit to the set A.

Proposition 6.1. Let J > 1 and Y = (Yi)i>0 be a flow defined on (2, F,P).
Assume that (Nz = N(Y, Ac, he, H.)) .~ converges in distribution (with re-
spect toP) to a PPP Ny of intensity Axm with H.(Az) CV = {1, ..., J}xW
where m = ijl(pjéj X mj), with 23'121 p; = 1 and where m; are prob-
ability measure on some separable metric space W. Suppose in addition
that, for some a. and each x entering in A., a:Da_(x) = D(H(x)) with
lim. 0D (j,w) =: Dj(w) uniformly in w € W, where D; : W — Ry is
continuous.
Then

Le= Z 5th5,H§1) (Yi(z)),as D, oYi ()

t:Yi(x) enters A. >0

converges in distribution with respect to P to a PPP Ly on [0, +00)x{1, ..., J} x
R with intensity A x Z}]:1(pj5j X (D))« (my)).

b .
If moreover a:D 4. — 0, then, for everyT > 0, ((aeL(Li}hEJ (Ae))te[O’TLj:L_wJ)DO

€] ;

o N,

converges in distribution to (Zktl X,g”) as ¢ — 0, where
te[0,T],j=1,...,J

(Nt(]:))t>0 are independent Poisson process with parameter p; and where
(X,EJ))/@ are independent sequences of independent identically distributed

random variables with distribution ijl P (®;)«(m;) independent of (Nt(j))t>0

Proof. Observe that, for every € > 0, L. = (¢)«(N:) with 9. : (¢, 7, w) —
(t,7,D:(j,w)) if € > 0 and with ¥ : (¢,75,w) — (t,7,D;(w)). Using [23,
Proposition 3.13] we prove the first statement.

Assume now that a.Dy4_ % 0. Then

aSLE% = acsmin(t/he, Da_) + / .
: [0, x {5} xR+

zdﬁg(s,i,z)>

t€[0,T),j=1,...,J

which converges to (a.LV) = | 5 2dLo(s,1,2) O
& it = 0y BN ] oy

We apply the previous result to the dispersive billiard flow in a Sinai bil-
liard with finite horizon.

Theorem 6.2 (Time spent by the billiard flow in a shrinking ball for the
position). Consider the billiard flow associated to a Sinai billiard with finite
horizon in a domain Q C T? (see Appendiz for details). Recall that this
flow preserves the normalized Lebesgue measure on Q x S'. Let J be a
positive integer. Let q1,...,q;5 € Q be a J pairwise distinct fived position in
the billiard domain and r1,...,7; be J positive real numbers. We set dj = 2
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if ¢j 0Q and d;j =1 if ¢; € 0Q and d := ijl djr; and also

J
E - Z E 5 dmet Ra— |
N =iy Area(Q) € DB(qj,rjs)xsl"Yt(m)

Yi(z) enters B(gjrje)xSt >0

and
LY .= : 1 ds
t/e |, {Ys(-)€B(g;,rje)x St} 4= -
Then, (Lc)e>0 converges strongly in distribution to a PPP Ly with intensity
A X Z}]:l djdrj (05 x m7;) where m’; is the distribution of 7; X with X a random
y

variable of density y — 4. arccos’(§)102(y) = ml[o,z] (y).

Moreover, for every T > 0, ((6_1.[/5;35)t€[07TLj:17“.,J)€>O converges strongly

o distributi M () ()

in distribution to ;Y Xy as € — 0, where (N;”)i>0
tE[O,T],]ZI,,J

are independent Poisson process with parameter %E:(Q), where (Xi)g>1

is a sequence of independent identically distributed random wvariables with

density x — 2\/%71[072} () independent of (N¢)i>0-

Proof of Theorem 6.2. Due to Theorem A.l, we know that the family of
processes

J

Z Z 6( o nQ(my))—qj’HV(Yt(y)))

3=1t: (Yi(y))s enters B(g;,e)xS! at time t \Aree(@)’ c

converges in distribution (when y is distributed with respect to any prob-

ability measure absolutely continuous with respect to the Lebesgue mea-

sure on M) as ¢ — 0 to a Poisson Point Process with intensity A x g

where 7mq is the probability measure on {1,...,J} x S' x S! with density
. = J idi 1 — . J

(j,p, @) — Zj:l rjdj 2dj7r<(_p)7u>+1{(p,ﬁqj)20} with d := Zj:l djr;.

We will apply Proposition 6.1 with A, := U}']:1 B(gj,erj)x St and H.(q,?) =

<j, ;{j—jé,ﬁ’) if ¢ € 9B(qj,rj¢).

Let z = (g, 7) entering in B(gj, ) x S*. If the billiard flow crosses B(qy, ) x

S1 before any collision off 9Q, then

671DB(qj,7"je2)><S1 (q,7) = 2671(‘]—97_]}’27) = Do(H:(z)),

with Dg(j,p,4) = 2rj(—/p,\f[). This is always the case if ¢; € 0Q. But, if
gj € 0Q), it can also happen that the billiard flow collides 0Q at a point
¢’ € B(g;,e) before exiting B(gj,¢) x S'. Then the point ¢’ is at distance
in O(g?) of the tangent line to dQ at ¢;j, and the tangent line of Q at ¢’
makes an angle in O(e) with the tangent line of Q) at g;. In this case

E71DB(qj,7"j6)><Sl (qaﬁ) = 2571((1—(1_]}76) + 0O (8) = DO(Ha(x)) +0 (E) )

uniformly in # = (¢,7) and . In any case, we set a. = ¢ ! and ©. =
Dy + O(e).
Applying now Proposition 6.1, we infer that (L:)e>o converges strongly in
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. . . . . . J d;r;
distribution to a PPP Lo with intensity Ax 5, W(éj X (Dj)«(m;)),
with D;(p, @) = 2r;(—p, @) and m; the probability measure on S x S with
density

- d; L,
(p7 u) = i((_p% u>+1{(p,ﬁqj)20} .
It remains to identify the distribution (Dj;).(m;). By the transfer formula,

we obtain

it . L 1 _, . .
[0 im0, = 5 [ b2 @) 0 L 20y dp
0 2d;m Jg !

1y g1

1 jus
= 5/2 h(2r; cos @) cos p dp

(ME]

us

= /2 h(2r; cos @) cos p dyp
0

2 Y
— [ ey ascoos(-/2)) () .
0

Thus we have proved that the probability distribution (D;).m; is the distri-

bution of 7; X with X a random variable of density y — §.arccos’(§)1j92(y) =

y
2@1[072} (y)
We can apply the last point of Proposition 6.1 sincee D4 < 2 max; r;14, L
0 for any probability measure P absolutely continuous with respect to the
Lebesgue measure on Q x S*.

O

APPENDIX A. VISITS OF THE SINAI BILLIARD FLOW TO A FINITE UNION
OF BALLS FOR THE POSITION

In this appendix we are interested in spatio temporal processes for the
Sinai billiard flow with finite horizon.
Let us start by recalling the model and introducing notations. We consider
a finite family {O;, i = 1,..., I} of convex open sets of the two-dimensional
torus T2 = R2/Z2. We consider the billiard domain Q = T2\|JL_, O; and call
the O; obstacles. We assume that these obstacles have C3-smooth boundary
with non null curvature and that their closures are pairwise disjoint. We
consider a point particle moving in @) in the following way: the point particle
goes straight at unit speed in ) and obeys to the classical Descartes reflexion
law when it collides an obstacle. We then define the billiard flow (Y})ier
as follows. Yi(q,¥) = (q,v¢) is the couple position-velocity of the point
particle at time ¢ if the particle has position ¢ and velocity ¥ at time 0.
To avoid any confusion, we consider that the billiard flow is defined on the
quotient (Q x S1)/R, with R is the equivalence relation corresponding to
the identification of pre-collisional and post-collisional vectors at a reflection
time:

(¢, NR({, V") & (q.9)=(¢,T) or ¥ =7—2(,,0)i,,

where 77, is the unit normal vector to 0Q at ¢ directed inward Q if ¢ € 0Q),
with convention 7, = 0 if ¢ ¢ 0Q. This flow preserves the normalized
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Lebesgue measure g on Q x S'.
We assume moreover that every billiard trajectory meets dQ (finite horizon
assumption).

Let us write Ilg : @ x St — @ and Iy : Q x S* — S! for the canonical
projections given respectively by Il (¢, ¥) = ¢ and Ily (¢, 7) = v.

Theorem A.1 (Visits of the billiard flow to a finite union of shrinking
balls for the position). Let q1,...,q;7 € Q be pairwise distinct positions in
the billiard domain and r1,...,7; be positive real numbers. We set d; = 2 if
q; €0Q and d; =1 if g; € 0Q and d =Y T_, djr;.

Then, the family of processes

J
j; Z 5( dret - (Ve (¥)—qj ,Hv(Yt(y)))

t: (Ya(y)s enters Bgjer;)xSt at time t \Ar(@7 e

converges in distribution (when y is distributed with respect to any proba-

bility measure absolutely continuous with respect to the Lebesque measure

on M) as € — 0 to a Poisson Point Process with intensity A X mqo where

o is the probability measure on V = {1,...,J} x S' x S' with density
. — T4 —

(]apau) = ﬁ((_p)’u>+1{<p,ﬁqj)20}'

Observe that if ¢; € 0Q, the set of p € S! satisfying (p,7ig;) > 0is a
semicircle, whereas it is the full circle S when gj is in the interior of Q.

This result has already been proved in [21, Theorem 4.4] for J = 1 and
Lebesgue-almost every position q;. The extension to a finite number of
points is relatively easy. The most difficult part is to treat all the possibles
positions in the billiard domain.

Along the paper we provided various applications of this theorem to dif-
ferent questions. We present here a result on the closest approaches to a
given point in the billiard table by the orbit of the billiard flow.

Example A.2. Consider the billiard flow associated to a Sinai billiard with
finite horizon in a domain Q C T2. Consider a fized position qo € Q. Set
d=2—-1gcaq- During each visit of the flow to B(qo,¢), the closest distance
to qo is given by Lo(q,7) := | sin é(gz_gjg,z_fﬂ where (q,v) is the entry point.
Then the family of closest approach point process

(C. .= N(Y,B(qo,¢) x Sl,de/Area(Q),sflLo)Do

on [0,4+00) x [0,1] converges in distribution (with respect to any probability
measure absolutely continuous with respect to the Lebesque measure on ) X
St) to a PPP with intensity 1.

Proof. Due to Theorem A.1, the family of spatio-temporal processes
(N, := N (Y, B(qo, ) x S, de/Area(Q), H.)->0

with H.(q,9) = (6_1q@,17) converges in distribution (with respect to any
probability measure absolutely continuous with respect to Lebesgue on @) x
S1) to a PPP of intensity A x 1o where 7yg is the probability measure on
51 x St with density (p, @) — 5= ((—p), ﬁ>+1{<p,ﬁq0>20} (where ig, is the unit
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normal vector to 9Q at qo directed inward Q if ¢o € 0Q), 7y, = 0 otherwise).
Observe that

C. = G(NL),

with G(t,p, @) = (t, G(p, @) where G(p, @) = (t,|sin Z(—p,@)|). Thus (C.)-
converges strongly in distribution to the PPP with intensity A x G (mg) and
it remains to identify m; = G.(mg). Due to the transfer formula, we obtain

o 1
1)) diig (p, i) = ~—— in £ (—2p, 0)|)(cos Z(—p, @)1 i
Ah(G(pau))dmO(p7u) 2d SIXS}i(‘Sln ( p,u)\)(cos ( b, u)) {(p,nqj>20} dpdu

us

1
= 5/2 h(] sin ¢|) cos @ dp

[SIE]

T 1
:/Qh(singp)cosgodgpz/ h(y) dy .
0 0
(]

Proof of Theorem A.1. Due to [28, Theorem 1], it is enough to prove the
result for the convergence in distribution with respect to u. Assume ¢ >
min & qJ . We use the representation of the billiard flow as a special flow
over the dlscrete time billiard system (M, v, F') corresponding to collision
times and with 7 the length of the free flight before next collision.

Set ge = J Zﬁj ), where Zﬁj ) is the set of the configuration entering in
A(J (QﬂB(qj, £)) xSt ie. AY i the set of (q,7) € (QNAIB(gj,¢]) x S*
t. {qgo,U) > 0. Set also A. := U 9,
H

Set h. := dne/Area(Q) and H.(q',v ) (7, qrqu ,0) if ¢ € 0B(qj,7;¢). Here
M is the set of reflected unit vectors based on 0Q), v is the probability mea-
sure with density proportional to (¢, %) — (7i(q), V), where 7i(g) is the unit
vector normal to dQ at ¢ directed towards Q and F' : M — M is the trans-
formation mapping a configuration at a collision time to the configuration
corresponding to the next collision time.

The normalizing function G is given by Ge(z) = He(Y ) (@) (x)) with

Ac

T%Y)(y) =inf{t >0 : Y(y) € A.}.
As in the setting of Theorem 2.2, we write II for the projection on M, that is
II(¢', ¥) = (g,7) is the post-collisional vector at the previous collision time.

We take here h, := v(II(A;)).
As for [21, Theorem 4.4], we will apply [21, Proposition 3.2] after checking
its assumptions. We define AY) = = {(¢,7) € dB(g;,¢) x S* : (qq},¥) > 0}.
(i) Measure of the set. We have to adapt slightly the first item of the
proof of [21, Theorem 4.4] which deals with the asymptotic be-
haviour of v(B,) with B, := II(A.). Observe that B, = U;’ 1 BY
with BY) .= H(g(])) i.e. BY is the set of configurations (q, v) € M

such that the billiard trajectory (Y;(q))i>0 will enter B(q;,er;) be-
fore touching 0Q. As seen in [19, Lemma 5.1],

o e @100, ) - QNI 2o
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With exactly the same proof, we obtain that

|Q NOB(qj,rje)] _TTjE

if ; € 9Q, v(BY) = 20| Tk

Moreover, for every distinct 7, 5/, B( )OB( 7 is contained in (B(x;, K; jre)U

—
3
B(xj j, K ji€)) where z; jy = <qj,qjqjqjqj> and K = max (1, v

So, due to [19, Lemma 5.1], V(Béj) N Bg(j/)) = O(e?) = o(e). Hence
we conclude that

J
~ Zy 5 s
et ! Ql’
as € — 0.
(ii) Observe that
J
N(Y, A, WL He) =Y N(Y, AD) L He) > N(Y, AL KL HL)
j=1

where AL = J7_, TT7(I(AP)) \ U, T (IL(AY")) and that, for
all T > 0,

By (N (Y, Ae, b, He) = N(Y, AL B, Ge)) (0,7] x V)

TmaxT ~ ~
- e E () U) =
~ 2h(minT)? T v <A€ NA: ) o(1),

where we used the representation of Y as a special flow over (M, v, F')
due to the fact, proved in the previous item, that for any distinct

labels 7,7/, v (A( 2 A(J )> = o(g). Thus it is enough to prove the
convergence in distribution of N'(Y, AL, hl, H.) with respect to u.

er e
(ili) The same argument ensures that, with respect to v, the conver-
gence in distribution of N (F, B, he, G¢) to P is equivalent to the
convergence in distribution of N'(F, B., h.,G.), with B. :=II(AL).
(iv) Note that v((0B.)E")) = o(v(B.)), for every § > 1.
(v) Due to Lemma A.3, for every o > 1, v(rp. < e 7|B:) = o(1), where
7p is here the first time k > 1 at which F*(-) € B.
(vi) Now let us prove that (v(GZ-1(+)|B:))e>0 converges to mg as & — 0.
Let us consider the measure ji on {1,...,J} x S! x S! with density
(J, p, @) = r5((=p), @)".
Observe first that mg = f(-]A) with A := szl AUY) and

A = {(p, ) € §* x S* : ((—p), @) >0, (p,iy,) >0}
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and second that v(GZ1(+)|B:) = fi(-|G<(B:)). But

J
f(A\Ge(Bo) <Y i | Ho |V L () }U‘(Bé” A BY)
Jj=1 Ag J'#]
J . .
< Z 2max 7|0Q|rjev U (Bf_g]) N Bf_g] N | =o(v(B.))
i=1 i3
and G¢(B.)\ A corresponds to points (p, @) € S* x S with ¢; € 0Q
with 0 < (p, @) < O(e), thus

ﬂ( E(BE) \A) = 0(5) :

This ends the proof of the convergence in distribution of the family
of measures (v(GZ1()|B:))eso to Mg as € — 0.
(vii) For the construction of W we use [21, Proposition 3.4].
Thus, due to [21, Proposition 3.2], we conclude the convergence of dis-
tribution with respect to v of (N(F, Be,he,G:))->0 and so, due to (ii),
of (N(F,BL,he,G:))es0 to a PPP P with intensity A x mg. Applying
now Theorem 2.2, we deduce the strong convergence in distribution of
(N(F, AL, he/E,[7], He))eso0 to P and so, due to (iii), the convergence in
distribution with respect to u of (N'(F, A., h./E,[7], H:))es0 to P. Now we
conclude by [28, Theorem 1] and by noticing that

he dme _ dme
E,[r]  |0QIE,[r]  Area(Q)

s
O

Lemma A.3.
Vo € (0,1), v(tp. <& 7|B:)=0(1) (14)

Proof. This point corresponds to the the second item of the proof of [21,
Theorem 4.4], which for Lebesgue-almost every point came from [19, Lemma
6.4]. To prove (14), we write

le=7]
v(rp. <€ °|B:) < Y v(F"(B.)|B.). (15)
k=1
Thus our goal to bound v(F~"(B;)|B:).

Step 1: Useful notations.

We parametrize M by UZI {i} x (R/100;|Z) x [-5;5]. A reflected vector
(¢,7) € M is represented by (i,r, ) if ¢ € OI'; as curvilinear absciss r 00;
and if ¢ is the angular measure in [—7 /2, 7/2] of (7i(q), ') where 7i(q) is the
normal vector to 9Q at q.

For any C'-curve v in M, we write £() for the euclidean length in the (r, )
coordinates of 7 If moreover 7 is given in coordinates by ¢ = ¢(r), then
we also write p(vy f cos(¢(r)) dr. We define the time until the next

reflection in the future by

7(q,V) :=min{s >0 : ¢+ sU € 0Q}.



APPLICATIONS OF SPATIO-TEMPORAL RARE EVENTS PROCESSES 19

It will be useful to define Sy := {¢ = £m/2}. Recall that, for every k& >
1, F* defines a C'-diffeomorphism from M \ S_; to M \ S; with S_j, :=
Unzo F~™(S0) and Sy, := Up,—o F™(S0)-

Step 2: Geometric study of B, and of F(B;).

Moreover the boundary of each connected component of B (resp. F(Bc))
is made with a bounded number of C! curves of the following forms:

e curves of Sp, corresponding, in (r, ¢)-coordinates, to {p = £7}.

e C! curves of F71(Sy) (resp. F(Sp)), which have the form ¢ =
#(r) with ¢ a C! decreasing (resp. increasing) function satisfying
minx < |¢/(r)| < maxk + ——, where x(q) is the curvature of 0Q
at ¢ € 9@ and where 7T is the free flight length before the next
collision time.

o if gy € 0Q: C' curves, corresponding to the set of points z =
(¢,V) € M (resp. F(x)) such that [Ilg(x),Ig(F(x))] is tangent
to 0B(qo,€). These curves have the form ¢ = ¢.(r) with ¢. a de-
creasing (resp. increasing) function satisfying mink < |¢L(r)| <
max K + W < maxk + 7_20)’ with 79 := d(qo, Q) as soon as
e< 3.

o if g € 0Q: C' curves, corresponding to the set of points x =
(g,7) € M (resp. F(z)) such that [Ilg(z),Ilo(F(x))] is tangent
to 0B(qo,¢) or such that IIg(F(z)) is an extremity of B(go,e) N Q
and [IIg(x), g (F(x))] contains no other point of B(qo,e). These
curves have the form ¢ = ¢.(r) with ¢. a decreasing (resp. increas-
ing) function satisfying minx < |¢L(r)|.

The points z = (¢q,7) € M, with d(q,q0) < 1 quasi-immediately
entering (resp. exiting) B(qo,e) x S! are contained in a union R
of two rectangles of width O(g'/2) for the position (around gg) and
of width O(e) for the velocity direction (around the tangent vectors
to 0Q at qq).

In B:\ R. (resp. F(BE)\(REUHZ?I(B(QO, £)))) we also have |¢L(r)| <

max K + 7_20 with 79 := min 7 as soon as € < 7.

We say that a curve v of M satisfies assumption (C) if it is given
by ¢ = ¢(r) with ¢ Cl-smooth, increasing and such that mink < ¢’ <
max K + f—o We recall the following facts.

e There exist Cy,C; > 0 and A\ > 1 such that, for every v satisfying
Assumption (C) and every integer m such that yNS_,, =0, F™~y
is a O''-smooth curve satisfying assumption (C) and Cyp(F™y) >

1'p(y) and £(v) < Co/p(F).

e There exist Cy > 0 and A > )\}/2 such that, for every integer m,
the number of connected components of M\ S_,, is less than Ca A5
Moreover S_,, is made of curves ¢ = ¢(r) with ¢ Cl-smooth and
strictly decreasing.

o If v C M\ S is given by ¢ = ¢(r) or r = t(p) with ¢ or ¢
increasing and C!' smooth, then Fry is C1, is given by ¢ = ¢y (r)
with mink < ¢} < maxk + L Moreover fF’Y dp > fﬁ{ de.

minT°
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We observe that there exist K > 0 and 9 > 0 such that, for every ¢ €
(0,e0), F(Be) \ Re is made of a bounded number of connected components

VE(Z) each of which is a strip of width at most K(e of the following form in
(r, p)-coordinates:

o {(ryp) : 7 € J, ¢§i)(r) << (bgi)(r)} (with J an interval) and
is delimited by two continuous piecewise C' curves v, given by
¢ = ¢;(r) satisfying assumption (C) and Hqﬁgz) - gbg)Hoo < Kle.

e or possibly, if g9 € 9Q, {(r,¢) : 7"@ <r< rgi} with \7"@ — 7"52] <
Kle.

In particular, with the previous notations, any connected component V(')
of F(B:)\ R: has the form (o, 1] %(L), where %(L) corresponds to the graph

{0 (u,r) = (r, ug () + (1—w)ey) () = v € J;} (or possibly {v)(u, ) =
(ur%i +(1- u)ré?_:, ©), @ € J;i}if qo € 0Q). Thus

Leb(EN F(B. \ R.))

VE € B(M), v(ENF(B.\R.))<

2(Q|
W O (u,s)| dsd
- 2|3Q| Jix[0,1] Loaen [,V S| dodu
K
6 En~n 16
Step 3: Scarcity of very quick returns.
Let us prove the existence of K7 > 0 such that,
1
Vs > 1, Ve < % V(F~*"Y(B.)|B.) < K1(Ao/A2)%€?. (17)

Let u € (0,e). We define v be a connected component of 7, N F(B:) N
F~3(B;). The curve ~ satisfies Assumption (C) or is vertical. In any case,
any connected component of F(y) satisfies Assumption (C) and £(y) <
Co+/p(F(7)) (indeed, if 7 is vertical, then £(y) < —t—p(F(v)). It follows

- mlHTp

0() < Cov/P(F(7)) < Con/CLA *p(Fsy) < Chr/C1M " K)e

using first the fact that F ( ) is an increasing curve contained in M \ S_g
and second the fact that F®v is is an increasing curve satisfying Condition
(C) and contained in B.. Since F'(7,) \ Ss contains at most CaA\§ connected
components, using (16), we obtain

v(F75 Y B)NB:A\R:) = v(F~%(B.)NF(B\R.)) < sup CoA5CHy/ C1A?
2|<9Q| [0,1]
We conclude by using the fact that v(B.) = % and that v(R.) = O(eg).

Step 4: Scarcity of intermediate quick returns.
We prove now that for any a > 0, there exists s, > 0 such that

g~ %a

> w(B-NF"B:) = o(v(B.)). (18)

n=—aloge

1

g2,
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Since v(B;) ~ ¢ and v(R;) = 0(6%), up to adding the condition s, < 1/2,
it remains to prove (18) with for v(B. N F~"B;) replaced by v((B: \ R:) N
F(B.)).
If g9 € 0Q and if 7, is vertical, we replace it in the argument below by the
connected components of F'(7,) and will conclude by noticing that; for any
measurable set A, £(F, N F~1(A)) < CY(F (7, N A)).
We denote the kth homogeneity strip® by Hj, for k& # 0 and set Hy =
Ukl <koHy for some fixed ko. Set s := min(—alog®,1)/3. Let k. = ¢~* and
H® = Uj<p Hg. For any u € [0,1], we set Vi, = Yy N Hy. Each J, is a
weakly homogeneous unstable curve.

We cut each curve 7, into small pieces 7y, such that each Fj§k7u,i,
7 =0,...,nis contained in a homogeneity strip and a connected component
of M\ S;. For x € 7, ,; we denote by r,(x) the distance (in F"7,) of F"(z)
to the boundary of F"7y ;.

Recall that the growth lemma [6, Theorem 5.52] ensures the existence of
6 € (0,1), ¢ > 0 such that, for any weakly homogeneous unstable curve ~y
one has

Ly N {ry, < d}) <5+ col(y) . (19)
Therefore,

(N F™(B:) \ He)

< S0 U = 0 F (B + g 0 {rn < 1)),
|k|<ke

The first term inside the above sum is bounded by the sum ), ¢(3y 1 N
F~"(B.)) over those i’s such that F™ (%, ;) is of size larger than £'~%. In
particular £(J, % ;) > €'7%. On the other hand, by transversality

UF" (Yuki) N Be) < ce.
By distortion (See Lemma 5.27 in [6]) we obtain
C(Vugei N F(Be)) < ce®(Vu,k,i)-

Summing up over these i gives the first term inside the sum is bounded by

UFuge N {ra > €3N F(Be)) < c™(Fupi)-
Thus

Ly N {rn < 6178}) < el 4 061756(%,;@).
A final summation over k gives

((Fu N F(Bo) \ He) < c(e® + &' *)0(Fu) + ck0"e' .

This combined with (16) leads to
V(F(B.\ R.) N F~"(B.)) < v(F(B. \ Ro) NH.) + O(+) = O(*w(B.)).

where we use the fact that B, \ H. is contained in a uniformly bounded
union of rectangles of horizontal width O(¢) and contained in the k2 = £25-
neighbourhood of Sy. We take s, < min(s, 3).

3see [6] for notations and definitions.
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Step 5: End of the proof of (14).
Choose a = 1/(4 log()\g/)\}/z). Observe that, due to (17), we have

—aloge

Z M(F75A8|A€) < L;()\2/)\1%)*a10g561/2 < Lllel/él‘
s=1 )\2/)\12—1 )\2/)\12—1
This combined with (18) leads to
g%
Z V(F_nBa‘Be) = 0(1) : (20)

n=1

Let 0 > 1. In view of (15), it remains to control v(F~"B|B.) for the
intermediate integers n such that e™** <n < e7?. We approximate the set
B by the union B. of connected components of M \ (S_j ) U Sg(c)) that

intersects B., with k(e) = ||loge|?|. There exists C > 0 and 6 € (0,1) such
that, for all positive integer k, the diameter of each connected component

of M\ (S_, USy) is less than CHF.
Thus B. C B. and y(é8 \B:) <v <(3B€)[C‘9k(g)]> = (’)(65’“(5)). But, due to

[20, Lemma 4.1}, we also have
Vm > 1, Vn > 2k(e), v (Eg N F*née) = u(B.)? + O(n"™u(B.)).

Since k(g) = o(e~**) and thus

Vm>1, > v(F"BB)<O (el_" + gtalm=D=o | §k<€>> — (1),

n=e~%a

as € — 0, since o < 1, 6 € (0,1), k() — 400 and by taking m > 1 + =
This combined with (20) and (15) ends the proof of (14). O
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