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Abstract

Wireless sensor networks (WSNs) find extensive applications in various sen-

sitive domains such as tracking, monitoring, environmental data collection and

border surveillance. In these cases, the collected data are considered as a criti-

cal resource and used to detect any anomalies or abnormal behavior, providing

information about an occurring event or a node failure. An outlier detection pro-

cess must be set up to ensure the proper functioning of the monitoring system.

The existing approaches are limited by assumptions on a specific distribution

or a predefined data range of the collected data. Often these assumptions do

not hold in practice, the data distribution is not known or determining reli-

able upper and lower bounds for the set of data is not possible. To overcome

this, we propose a new copula-based probabilistic multivariate outlier detection

method for faulty node detection in wireless sensor networks (WSNs). The joint

probability density function of the copula is constructed considering dependency

among the captured n−sensed measures without making any assumptions on

the distribution of the collected data. The samples having probabilities violat-

ing a predetermined control limit are classified to be faulty. The performance

of the proposed technique is observed to be better than the existing statistical

methods.
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Introduction

In the last decade, technological advances in the field of wireless commu-

nication and micro-electro-mechanical systems (MEMS) have led to the emer-

gence and widespread use of wireless sensor networks (WSNs) [1] [2]. They

can be described as a group of small, low-cost wireless-enabled devices, with

limited power. Their deployment provides a monitoring service in an efficient

manner. Originally driven by military applications [3] [4] such as battlefield

surveillance, their development have witnessed in recent years the expansion to

other critical applications like biomedical health monitoring [5], environmental

monitoring [6], underground communication and monitoring systems [7], itin-

erant applications Deploy and forget [8], irrigation facilities management [9].

Generally, autonomous sensors are spatially distributed at different locations to

monitor physical or environmental condition, such as temperature, humidity,

pollution, gas, sound, vibration or pressure, etc. However, the usefulness of

WSNs for this type of application is primarily determined by the dependability

on the collected data. The quality of a dataset may be affected by noise/error

or duplicated data. On one hand, if a WSN fails to report an occurring event

it prevents from carrying out the right decision. On the other hand, it can also

report erroneous data considered as outliers, which can lead to unnecessary or

even harmful actions, with a direct impact on human life, health, and security.

Critical and sensitive applications require efficient outlier detection mecha-

nisms that allow to distinguish unusual natural events from incorrectly sensed

measures as early as possible. For this purpose and a good decision making, an

outlier detection process must be set up to ensure the correctness of the sensed

data. These data must reflect the real state of the environment in the most

faithful way and they should be treated quickly to enable correct decisions. Any

decision based on erroneous data may cause wrong, harmful or costly actions.
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To ensure the reliability of the sensed data, it is mandatory to detect erroneous

measurements quickly. Generally considered as a deviation from the normal

data model, these diverging measures can be generated by several factors, like

for example, hardware damage or ageing, malicious attacks, environment (hot

or cold), etc. An outlier can be generated from a malicious neighboring node

affecting the security of the network, a case which, however, is beyond the scope

of this paper. We only consider the outliers caused by natural events and errors,

which can be described as follows:

• Natural events: this kind of outliers has a small probability to occur.

In general, they indicate a significant change of the natural environment

(e.g., temperature, humidity, pollution, etc.) and they can be useful to

detect or even predict phenomena [10] such as an earthquake, forest fires,

tsunamis, flooding, etc.

• Errors: this kind of outliers is considered to be quite common and lo-

cal: it may be caused by the dysfunction, at the hardware or software

level, of a sensor node, producing values that diverge significantly from

the expectedly normal ones [11].

In this paper, we propose a new outlier detection approach based on mul-

tivariate statistical modeling using copulas. We first define a non-faulty distri-

bution model that fits the typical behavior of the sensed data. Then, we esti-

mate the deviation from the usual correlation structure in the multi-dimensional

space. After to fix a certain threshold, it will then be possible to determine

whether a new sensed value is an outlier or not.

Note that such a deviation is characterized by a low probability which is

extracted from the defined model. The proposed approach allows for each sensor

node to test the correctness of its sensed data independently from the rest of the

network. Hence, no communication overhead is required. It is also possible to

calculate the spatial-temporal correlation in order to determine efficiently the

type of the anomaly (i.e., a natural event or an error).
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The rest of the paper is organized as follows. In the next section, we give

a summary of the most important research work concerning outlier detection

in WSNs. A brief introduction to copula theory is presented in Section 3. In

Section 4, we describe the proposed approach. Section 5 presents experimental

results based on real-world datasets. Finally, Section 6 provides concluding

remarks and some future work.

Outlier detection in WSNs

The concept of an outlier was originally used in the field of statistics [12]

where it is referred to as a deviant or an anomaly. In [13], Johnson et al. define

it as an observation that is inconsistent or which deviates significantly from the

set of samples in which it occurs. In [14], Barnett et al. provide a similar defi-

nition:”An outlier is an observation, or a subset of observations, which appears

to be inconsistent with the remainder of that set”. Similarly, Hawkins et al. [15]

give a general definition to deal with various types of methods and data, where

the outlier is described as an observation, or a subset of observations, that di-

verges so much from other observations that it is considered as a set generated

by a mechanism other than the considered one.

Outlier detection has become an emerging branch of research in WSNs since

it guarantees the event reporting, improves the data analysis and ensures the

data quality. This task is very challenging due to the WSN characteristics:

resource constraints, high communication cost, etc. Numerous approaches have

been proposed most of which are based on statistical methods [16] [17] [18].

Their principal task is to approximate the sensor data distribution, which can be

used to flag outliers by calculating probabilities, or metrics like mean, variance,

quantile, correlations, etc.

In [19], two outlier cleaning techniques are presented. They exploit the

spatio-temporal correlations of the sensed measures obtained from many sensor

nodes. The first one uses wavelet analysis and the second one a dynamic time

warping (DTW) method. Both of them require to fix a certain threshold to
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detect the outliers.

Authors in [20] have proposed an algorithm to detect an outlying sensed

measure, where each sensor node computes the median of its k nearest neigh-

bors. The sensed measure is considered as an outlier if the deviation from the

determined median is greater than a defined threshold. This method generates

an important communication cost, and the detection process is biased if half of

the neighboring sensed measures are erroneous.

The work in [21] is an improved version of a previous work [20], in which

a temporal correlation is added to the previous detection algorithm. Any new

sensed measure is compared to the median of its k nearest neighbors, and to the

history of existing sensed measures saved locally in the corresponding sensor.

While the accuracy of this method is improved, the algorithm requires an extra

computational cost.

A histogram-based method to detect global outliers in WSN data collection

applications has been proposed in [22]. Instead of sending all sensed data to the

sink, each sensor node will maintain a summary of pertinent measures over a

sliding window. Using these summaries, the sink extracts the data distribution

and filters out the normal data. Outliers are pointed out if the measures exceed

a fixed threshold value. The main drawback of this method is the accidental

availability (e.g., shut-down, failure, etc.) at the sink which will stop the whole

diagnosis system. Furthermore, this method is only applied in one-dimensional

data outlier detection where spatial proximity among sensors is important.

The authors in [23] propose a density-based method ordering points to iden-

tify a clustering structure, called OPTICS. This nonparametric method com-

putes for each point a metric of reachability distance and depending on the

resulting value the point is labeled as a normal instance or an outlying mea-

sure. This divides the dataset into clusters with a minimum number of points in

the neighbourhood of selected points with regard to a threshold-distance. The

dataset is processed point by point which requires a high computation cost.

A fuzzy-based anomaly detection is proposed in [24]. This work uses a

subtractive clustering method to point out outliers. The dataset is partitioned
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into groups where the similarities inside the groups are bigger among its peers;

then the anomaly detection is performed with the help of a Takagi–Sugeno fuzzy

model for parameter selection and membership functions. This method relies

on a distributed clustering wireless sensor network to spot anomalies and thus

cannot be applied to other network architectures. Moreover, this only tackles the

anomalies in 2d datasets and thus cannot detect outliers in higher dimensions.

In [17], an anomaly detection for healthcare applications is proposed, which

is based on dynamic sequential minimal optimization regression (SMO) and cor-

relation. In a first step, a correlation factor is calculated to sort the attributes

(only the strongly correlated attributes are selected). Then in a second step,

anomalous sensors are detected using dynamic SMO regression. Mainly designed

for big data, the authors have implemented this technique on a Hadoop MapRe-

duce framework to fasten the processing. A prediction model is constructed over

a sliding window, the model must be kept updated and the detection is based

on the difference between the predicted value and the received one. This mech-

anism generates a high computation cost which is not suitable for WSNs.

A cluster-based technique is used in [25], where the sensed measures are

merged into clusters with a predefined width before being compared to those of

other sensor nodes. This technique does not require any knowledge of the data

distribution but generates a high communication overhead.

Detecting outliers can also be done by measuring the density of the sensed

measures in a given area. This density calculation can be performed in a dis-

tributed way. In [16], a method, called Local Outlier Factor (LOF) and based

on this principle, has been presented. It first draws a circle around at least

k measures and based on the obtained level of density it assigns a parameter

called ”outlier metric” to each measure which will be used to decide if this

measure is an outlier or not. To ensure a good level of accuracy, it might be

necessary to execute the LOF method with many values of k, which increases

the computational cost.

Many existing papers use the Principle Component Analysis in WSN out-

lier detection [26]. This method is useful when combined with a distributed
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spatiotemporal model. To detect an outlier, this method compares the sensed

measures with those of the neighbors, which is computationally expensive.

A Kernel density estimator based technique has been proposed in [27] for

on-line deviation detection in real-time streaming of sensor data in wireless sen-

sor networks, using a hierarchical network composed of low and high-capacity

sensors according to processing power and communication range. A model of

the most recent captured data in a sliding window is built using a Kernel density

estimator. Thus, every new sensed measure will be marked as an outlier if it

deviates significantly from the estimated data distribution. The low-capacity

sensors are used to detect local outliers while high-capacity sensors are used for

more spatially dispersed outliers by using an aggregation of the low-capacity sen-

sors. The data distribution is estimated using the Kernel density. This method

relies mainly on the definition of a threshold, which represents an important

drawback since setting up a threshold for a d-dimensional dataset can be very

tricky. Furthermore, the data model requires a constant update to be accu-

rate, generating a computational cost as a consequence. A similar approach,

based on the estimation of the distribution of the sensed data using the Kernel

density function, has been presented in [28]. However, it does not deal with

multidimensional data.

In [29], an outlier detection approach based on the temporal correlation has

been presented, in which the network is represented by a specific tree topology.

Any node can be either a leaf or a parent. The detection process is composed

of two stages. In the first stage, each leaf marks its data as outlier or inlier

candidates using the estimation of the probability distribution of the data and

sends the outlier candidates to the parent node. In the second stage, each

parent node decides to accept or reject the incoming candidates based on the

data received from the leaves. This approach works only if a tree communication

topology is maintained. Its communication overhead is important.

In [30], an outlier detection based on a naive distance similarity metric is

proposed, where each sensor node uses this metric to identify local outliers in

order to broadcast them to the neighboring nodes for verification. The neigh-
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boring nodes repeat the same operation until the network validates the existence

or not of global outliers. This method is energy consuming and not applicable

to large sensor networks.

In [18], a one class support vector machine SVM outlier detection method

is proposed. In this kind of classifier all training instances are considered to

belong to the normal class, based on that a boundary is learned, and any test

instance beyond this boundary is labeled as an outlier. Furthermore, a Kernel

function is used to estimate the dot products among the mapped vectors in the

feature space to find the hyperplane. This classifier can only be applied to 2-d

datasets.

In the majority of the proposed outlier detection approaches there is a sig-

nificant loss of generality when the data are assumed to have a Gaussian distri-

bution. Most of these methods only consider the univariate case, and therefore,

neglect more complicated arrangement involving three or more variables. More-

over, the data used for an outlying measure are often required in the detection

step. In this paper, we present a new method for faulty node detection based on

Copula theory. This method aims at addressing the common drawbacks of the

existing outlier detection methods cited above. Our method offers important

advantages, as it does not require any knowledge of the distribution of the cap-

tured variables and it enables us to model joint probability distributions over

multiple (more than two) random variables with a parametric family of copula.

The resulting probability densities can be used to quantify the probability of

data occurrence, and if this probability exceeds a certain threshold the data is

marked as an outlying measure. Finally, depending on the number of involved

nodes, we can distinguish between an occurring event or a separated faulty node.

Definition and properties of copulas

Originating from Sklar's theorem [31], copulas are a way of describing com-

plex dependency structures and to relate them to marginal distributions within

a single function. The definition of a copula for a bivariate distribution is as
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follows:

A d-dimensional copula C : [0, 1]
d → [0, 1] is a distribution function with

uniform marginals. A copula can be considered as a probability function given

by the Equation (1) [31]:

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud) (1)

where U1, . . . , Ud are uniform distributions on the interval [0, 1].

A copula function C has the following properties [31]:

1. C(u1, . . . , ud) is increasing in each component ui

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui for every i ∈ {1, . . . , d}, ui ∈ [0, 1]

3. C(u1, . . . , ud) = 0 if ui = 0 for every i ≤ d

From Equation (1), we can deduce that for every multivariate distribution

function, a copula can separate the marginal distributions from their dependence

structure, as is expressed by Sklar's theorem [31]. Let F be a d-dimensional

joint distribution function with marginals F1, ..., Fd. Then there exists a copula

C : [0, 1]d → [0, 1] such that,

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)), ∀x1, ..., xd (2)

Fréchet-Hoeffding bounds

Any copula function C(u1, . . . , ud) must lie within certain bounds, which are

known as the Fréchet-Hoeffding bounds [31]:

max (

d∑
i=1

ui + 1− d, 0) ≤ C(u1, . . . , ud) ≤ min (u1, . . . , ud) (3)
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Figure 1: Surface and contour plots of the Gaussian copula with parameter ρ=0.3 (from right

to left).
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The upper bound is also called the co-monotonicity copula, and the lower

one is a generalized form of the counter-monotonicity copula.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

U
2

Figure 2: Surface and contour plots of the Student copula with parameter ρ=0.3 ν=3 (from

right to left).

Usual Copula families

In this section, we present different classes of copulas, in particular funda-

mental, elliptical and Archimedean copulas. Some properties and visualizations

will be provided for each family. We will use the term copula family to designate

the copula function with one or more real parameters, and the term copula class

to designate a collection of copula families that have the same properties.

The independence copula

One of the simplest form of a copula is the independence copula used when-

ever the random variables are independent. It is also called the product copula

because of its form [32]:

C(u1, . . . , ud) =

d∏
i=1

ui (4)

Elliptical Copulas

Elliptical copulas are based on existing multivariate elliptical distributions.

In the following, we present two particular cases: the Gaussian and the Student

copula.
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Gaussian copula

This copula is obtained from the multivariate normal distribution, and it is

expressed as follows [32]:

CGaσ (u1, . . . , ud) = ΦΣ(Φ−1 (u1) , . . . ,Φ−1 (ud)), (u1, . . . , ud) ε[0, 1]d (5)

where ΦΣ represents the Cumulative Distribution Function (CDF) of the mul-

tivariate normal distribution with a correlation matrix Σ, where Φ−1 is the

quantile function of the normal distribution. Figure 1 illustrates the surface

and contour plots of a Gaussian copula with a dependence parameter ρ = 0.3.

Note that the Gaussian copula is not only obtained from the multivariate

normal distribution. It can also be obtained from any multivariate distribution.

Student copula

This copula is also called the desert island copula [33], because it exhibits the

best fit among different families. It is based on the multivariate Student t-

distribution.

Ctυ,σ(u1, . . . , ud) = tυ,σ(t−1
υ (u1), ..., t−1

υ (ud)) (6)

where tυ is the CDF of the univariate Student t-distribution with υ degrees of

freedom and tυ,σ is the CDF of the multivariate Student t-distribution with a

correlation matrix Σ and υ degrees of freedom. Figure 2 illustrates the surface

and contour plots of a Student copula with a dependence parameter ρ = 0.3

and a degree of freedom v=3.

Archimedean Copula

Archimedean copulas have a more regular form compared to the Gaussian

and Student ones. They rely on a non-increasing function ϕ[0,∞)→ [0, 1], the

so-called generator of the copula, which satisfies the following conditions [34]:

ϕ(1) = 0, ϕ(0) =∞ (7)
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and which is strictly decreasing on [0,∞). A d-dimensional copula C is called

Archimedean, if it permits the representation [34]

C(u1, ..., ud) = ϕ(ϕ−1(u1) + ...+ ϕ−1(ud)), ui ∈ [0, 1] i = 1 . . . d (8)
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Figure 3: Surface and con-

tour plots of the Clayton

copula with θ = 0.7.
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Figure 4: Surface and con-

tour plots of the Frank cop-

ula with θ = 2.
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Figure 5: Surface and con-

tour plots of the Gumbel

copula with θ = 1.3.

Depending on the used generator, we can find different types of Archimedean

copulas. This generator can have one or more parameters. Using different val-

ues of the parameters, different copulas can be obtained. Nelsen [34] describes a

total number of 22 different Archimedean copula families generated by a single

generator. In the following, we will introduce the three copulas most frequently

used in real applications. The Clayton copula is often used in the field of finance

to study correlated risks. It exposes the dependence in the lower tail but cannot

express a negative dependence. The Gumbel copula is able to model asymmetric

dependencies of data, e.g., weaker lower and stronger upper dependence like in

the Clayton copula, but it cannot represent a negative dependency. As opposed

to the Clayton and Gumbel copulas, the Frank copula can be used to repre-

sent both positive and negative dependencies and it can describe symmetrical

dependencies . These dependencies are visually described in Figures 3, 4 and 5

with different dependence parameters θ. The generators of these copulas are

given in Table 1 [34].
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Table 1: Archimedean copulas and their generators.

Copula ϕ(u) ϕ−1(u) θ

Clayton (1 + u)
−1
θ u−θ − 1 (0,∞)

Gumbel e−u
1
θ (− lnu)θ [1,∞)

Frank − 1
θ log(1− (1− e−θ)e−u) − ln e−θu−1

e−θ−1
(0,∞)

The proposed approach

To detect abnormal events in an unknown environment, we first have to

start from an initial model of the environment on-line. Copulas represent a

straightforward concept for modelling different dependence structures. In recent

years, Copula theory has received a high interest from the research community.

This method has been increasingly used in statistical modelling offering a great

flexibility as it can separate marginal distributions from the distribution of the

dependency of a dataset. It represents an important and accurate tool that

deals with uncertainty issues and multidimensionality in practical situations.

The purpose of this work is to define a Copula-based approach for outlier

detection, which could be used for the detection of faulty nodes in wireless

sensor networks. We consider a set of n time-synchronized sensor nodes S =

{s1, s2, ..., sn} organized into a cluster topology as illustrated by Figure 6. Each

cluster is composed of a cluster head CH and a group of nodes si ⊆ S for

i = 1, . . . , n. In this work we assume that the clusters of the network are

already predefined.

Our approach can be described by three main stages, as illustrated by the

basic functional blocks of Figure 7:

• Estimator stage: the base station uses the sensor data captured by the

nodes of the network, where we assume that there is no outlier in the

obtained samples, in order to produce a unique classifier. Such a classi-

fier, represented by an anomaly detection function, is determined for each

sensor node and sent to it.
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Figure 6: WSN cluster topology.

• Detection stage: each sensor node uses the received anomaly detection

function to classify its new samples as normal or as outliers. This step

is performed in a totally distributed manner and without any inter-node

communication.

• Outlier classification stage: according to the contiguity and frequency of

detected outliers, the cluster head can classify them into events or into

local outliers.

These main steps will be described in more detail in the following subsections.

Expressing dependence through copula

The estimation of the copula model between every pair of sensor measure-

ments is computationally expensive if it is done by the sensor nodes. The most

reliable and low-cost option is to estimate the copula at the base station. This

choice allows the use of more powerful devices, to analyze the dataset and to

build the model.

However, these estimated models are valid only when the relationships re-

main stable through time. This may not always be true since sensor nodes are

receiving new measurements continually, and some additional information can
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Figure 7: Details of the algorithm used in the approach.

be extracted from newly collected measurements. The design of an updating

criterion is not considered in this paper.

Our objective is to propose the use of a copula function for a more general

and accurate modelling of data dependencies. As opposed to the Gaussian-based

model, the correlation modelling will be used without making any assumption

on the data distribution. Consequently, the statistical properties of the reading

dependencies of each sensor are represented more accurately. In the following,

we consider the case of one sensor node within the sensor network. During

each time interval ∆k, the sensor node produces a vector of d measurements

Xk = (xk1 , . . . , x
k
d), where each Xk represents the vector of physical measure-

ments of the node at time instance k. The variable j represents one of the d

physical values monitored by the sensor node, for instance, vibration, tempera-

ture, pressure, etc.

We assume that the first m measurements of the sensor node are out-

lier free, and therefore, they will be used by the base station as a training
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dataset to define the copula function. These m independent samples X1 =

(x1
1, . . . , x

1
d), . . . , X

m = (xm1 , ..., x
m
d ) are contained in the d-dimensional vector

X.

Unlike SVM, which assumes a defined distribution for the data, we do not

have to introduce any distributional assumptions for the marginals. Instead,

the copula fitting is carried out using a rank transformation of the vector X.

Figure 8 shows an example of this transformation, where the inference is based

on the so-called pseudo-samples u1 = (u1
1, . . . , u

1
d), . . . , u

m = (um1 , . . . , u
m
d ) from

the pseudo-vector U , where [35]

uk = (uk1 , . . . , u
k
d) = (

rk1
(m+ 1)

, . . . ,
rkd

(m+ 1))
) (9)

Figure 8: Normal scaled and ranked scale data for the first 600 humidity-temperature

measurement-mote 1 (from right to left).

rkj representing the rank of xkj amongst (x1
j , ..., x

m
j ). The rank is defined after

sorting each group of observations in ascending order where the smallest value

has rank 1 and the largest one rank m (the highest rank). This transforma-

tion highlights the dependence structure, where all different random variables

are transformed to a common domain. Therefore, they are considered as sam-

ples from the underlying copula C. This rank transformation also introduces

dependence and (u1, . . . , un) are no longer independent samples.

Let U1, U2, ..., Um be their marginal distribution functions such that Uj =

Fj(uj). According to Sklar's theorem a unique d dimensional copula C exists,
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such that [31]:

F (u1, u2..., ud) = C (U1, ..., Ud) (10)

In the literature, there exists a large family of copula functions. For our

approach, we have tested some copulas among a dozen of suitable ones. An

incorrect choice of the representative copula can lead to biased results; the

selection of the copula is therefore a crucial step. Different methods have been

proposed to deal with the uncertainty in real dependence structures underlying

the studied phenomena. One way is to use the Akaike Criteria (AIC), where

a set of copula types are fitted using the maximum likelihood estimation, and

the AIC criteria are computed for each resulting copula. The copula with the

minimum AIC value is selected as follows [36]. For ukj , with k ∈ {1, ...,m} and

j ∈ {1, 2, ..., d}, the AIC of a bivariate copula family C with parameter θ is

defined as:

AIC = −2

n∑
i=1

ln(C(u1, u2, ..., ud|θ)) (11)

The process of fitting a copula can then be given as follows:

1. Start with the vector Di
tr =

{
Xi

1, X
i
2, . . . , X

i
m

}
of the first m measure-

ments of a sensor node i, where i ∈ {1, ..., n}.

2. Convert Di
tr into pseudo-variables ukj such that ukj ∈ [0, 1], ∀i ∈ {1, ..., n},

∀j ∈ {1, ..., d}, ∀k ∈ {1, ...,m}.

3. Estimate the parameters associated with the type of copulas: Gaussian,

Student, Gumbel or Frank.

4. Calculate the AIC of the resulting copula using Equation (11).

5. Define the optimal copula function according to AIC.

Defining the one-class Copula classifier

As mentioned above, the aim of this work is to introduce the use of copula

functions into a semi-supervised outlier detection process. According to Sklar's

theorem [31], we can employ a copula function within a probabilistic classifier,

such as a Bayesian classifier. In this section, we will describe a probabilistic
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model based on a d-empirical distribution function and a d-variate dimensional

copula function. Bayes'theorem gives the following [37]:

P (Ω = k | x1, . . . , xd) =
P (x1, . . . , xd | Ω = k)P (Ω = k)

P (x1, . . . , xd)
(12)

where Ω is the set of classes, P (Ω = k | x1, ..., xd) is the posterior probability

of the class k , P (x1, ..., xd | Ω = k) is the likelihood function of the class k,

P (Ω = k) is the prior probability and P (x1, ..., xd) is the data probability.

For continuous attributes, a density function can be used to model the de-

pendence structure in the likelihood function. In this case, Equation (12) can

be written as follows [37]:

P (Ω = k|x1, . . . , xd) =
f(x1, . . . , xd|Ω = k)P (Ω = k)

f(x1, . . . , xd)
(13)

where f(x1, . . . , xd|Ω = k) expresses the likelihood of the vector (x1, . . . , xd)

given the class k. According to Equation (2), any joint distribution function

F with continuous marginals F1, F2, . . . , Fd can be expressed through a copula

function C, which is a function of the marginal distributions F1, F2, . . . , Fd.

Using Sklar’s theorem enables us to highlight the existing relationship between

the d-dimensional joint Probability Density Function (PDF) c and the marginal

PDFs f1, f2, . . . , fd as shown by Equation (14). Then the likelihood function

in (13) can be expressed with a copula. In [38], a Gaussian copula has been

used to construct the Bayesian classifier, but in order to deal with the different

existing dependencies in environmental data, we will not restrict our work to

the Gaussian copula.

f(x1, ..., xd|Ω = k) = c(F1(x1), . . . , Fd(xd)|Ω = k)

d∏
i=1

fi(xi|Ω = k) (14)

By replacing Equation (14) in Equation (13), we obtain:

P (Ω = k|x1, . . . , xd) =
c(F1(x1), . . . , Fd(xd)|Ω = k)

∏d
i=1 fi(xi|Ω = k)P (Ω = k)

f(x1, . . . , xd)
(15)

From Equation (15) we can see that a copula allows to model flexibility by

separating the marginal distributions from their dependence structure. Bayes’
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rule enables us to model posterior as a product of likelihood and prior by ig-

noring the normalizing constant in Equation (15) [39], and we can construct a

Maximum A posteriori Probability density classifier based on copulas as follows:

arg max
k∈Ω

c(F1(x1), . . . , Fd(xd)|Ω = k)

d∏
i=1

fi(xi|Ω = k)P (Ω = k) (16)

where c(F1(x1), . . . , Fd(xd)|Ω = k)
∏d
i=1 fi(xi|Ω = k) is the likelihood function

for each class k modeled by the copula density function. We can use the re-

sulting classifier in the one class classifier, where Equation (16) becomes the

discriminant function of the initial class N represented by the following equa-

tion:

g(x1, . . . , xn | N) = c(F1(x1), . . . , Fd(xd)|N)

d∏
i=1

fi(xi|N)P (N) (17)

We can assume that an outlier can be characterized as an observation that

lies in a low-density region compared to other values in the dataset [40]. Before

highlighting an outlier, it is necessary to describe what is considered as a normal

observation. Every new sample is evaluated with the discriminant function given

by Equation (17) to test its correctness on the basis of the calculated value

g(u). The sample is labelled as normal or as an outlier using a threshold, which

must be defined in advance by the user. The detection process is described by

Algorithm 1.

Algorithm 1 Copula based outlier detection.

1: Input: x1, . . . , xn, the nth vector of measurements of the sensor node.

2: if (g(x1, . . . , xn | N) < threshold) then

3: return outlying measurement

4: else

5: return normal measurement

6: end if

In any anomaly detection algorithm, one of the main difficulties lies in the

selection of a correct threshold which maximizes the detection rate and at the
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same time minimizes the false positives (or false alarms). In our case, a proba-

bilistic control limit is determined to define the normal region by using F1-score

on cross-validation ground truth dataset. This metric is calculated using Equa-

tion( 18), where r is recall and p is precision. We use a rule of thumb in order to

optimize the F1-score. This latter finds the right balance between the number

of anomalies detected by the algorithm and the misclassified normal instances.

In this case the defined threshold is called “discrimination threshold”.

F1 = 2
1

1
r + 1

p

(18)

In our proposed approach, the detection method is done by each sensor node

independently from the rest of the network. A cluster head (CH) is alerted

as soon as an outlying measurement is detected. The copula represents the

multivariate cumulative distribution function of the data. Its density illustrates

the strength of dependence between the margins. Abnormal measures can be

identified by combining the resulting copula with Bayes’ theory which links the

probability density function of the given class of data to the posterior probability

of the class given the data.

The most straightforward method to obtain a one-class classifier is to esti-

mate the density of the training data [41] and to set a threshold on this density,

assuming that a good probability model is used (one for which the bias is small)

and that the threshold is optimized. The big advantage of a copula is that it

can characterize a multivariate dataset without making any assumption on the

distribution of its margins and thus the bias is kept to the minimum.

Outlier classification

Outliers can be engendered in different ways. According to the number and

contiguity of the involved nodes, we can classify them into local and global

outliers. Local outliers are abnormal measurements involving an isolated sensor

node due to a dysfunction that can have various origins. The global outlier

or event is an anomaly which can reveal an occurring phenomenon such as an
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earthquake or a fire. An event is detected by a certain number of network nodes

that are spatially and temporally correlated. We consider that each cluster head

CH maintains a Sensor State Table ST which initially contains the id of the

sensors in the cluster with outlier-free data. Figure 9 provides an illustrative

example of the copula cluster based outlier detection in a sensor network with

a two-level hierarchical topology.

Figure 9: Local outlier and Global outlier.

It is possible to differentiate between global and local anomalies at the cluster

head level. When the first alert is detected by the sensor node si, it will be sent

to its cluster head, which will trigger its timer, and set to faulty the state of that

sensor. At the end of the timer, if the number of faulty sensor nodes is greater

than half of the size of the cluster, which means that an event has occurred,

then the base station will be informed. Otherwise, the list of faulty sensor nodes

will be sent to the base station. The steps of detecting outliers based on copulas

and clusters are summarized in Algorithm 2.

Experiments and results

To validate the efficiency of our approach, we have tested it on two real-life

WSN datasets: we have used the public Intel Berkeley Research Lab dataset

IBRL [42]. This dataset contains the original readings of 54 Crossbow Mica2Dot
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Algorithm 2 Copula cluster based outlier detection classification.

1: Input:

2: size(S) : the size of the node’s cluster set S.

3: t: timer.

4: msgi: alert message from the sensor node si.

5: begin for each message msgi

6: Receive (msgi);

7: Mark the sensor node as faulty;

8: Start (t);

9: while not null(t) do

10: if Receive(msgk) then

11: mark the sensor node sk as faulty ;

12: end if

13: end while

14: if number(faulty)≥(size(S)/3) then

15: report the event to the base station ;

16: else report the faulty nodes to the base station ;

17: end if
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sensors, with weatherboard implemented and deployed in the Intel Berkeley Re-

search Lab between February 28th and April 5th, 2004. The collected data in-

clude the measurements of temperature, humidity, light and voltage along with

the timestamps and the topology information. The second one is the publicly

available real-world SensorScope Grand Saint Bernard [43]. It contains the read-

ings of a multi-hop network of 19 weather stations, deployed from September

13th, 2007, to October 26th, 2007, on a 900-meter long line located between

Switzerland and Italy at 2400 meter height. The collected weather data in-

clude the measurements of temperature, solar radiation, humidity, moisture,

etc. Along with the timestamps and the topology information. This WSN had

been deployed to prevent avalanches.

For each of the above datasets, we apply our approach and compare its re-

sult to other outlier detection approaches. The training and testing subsets are

sampled by Monte Carlo cross-validation (five runs), with 70% of the dataset

used for training and the other 30% used for testing. We report here the plots of

ROC curves and averages of AUC and prediction time over the runs. Our exper-

iments contain more than 80 runs and 240 plots, that we are going to describe

in the following figures. In a first step we will give the hole figures produced

during two typical runs in each of the datasets cited above (Intel Berkeley and

Saint Bernard), and this for two cases: the outlier free training dataset and the

contaminated training dataset. In a second step, we will summarize the pro-

duced results in our experiments through charts and tables. The experiments

are performed on a Windows 7 platform and powered by an Intel(R)Core(TM)

i5 CPU (2.27GHz) and 4GB RAM. We used the RStudio software of the R

version 3.2.2 and Matlab R2016b.

The performance evaluation of our approach is based on the calculation of

TPr/FPr as summarized in Table 2.

The verification outcomes are samples labeled as positive P or negative N.

The verification can have four possible outcomes: if the predicted label is P and

the actual value is also P, then it is defined as a True Positive (TP). However,

if the actual value is N, then it is defined as a False Positive (FP). In the same
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Table 2: Confusion matrix.

Object from target class Object from outlier class

Classified as True positive False positive

target object (TP) (FP)

Classified as False negative True negative

outlier object (FN) (TN)

manner, if a normal sample is correctly identified as negative, it is called a True

Negative (TN), and if it is wrongly identified as positive then it will be called

a False Negative (FN). These outcomes are used to calculate different metrics

to compare the performance of our approach to those present in the literature.

To point out the accuracy of our proposed method, we have used the receiver

operating characteristic (ROC) curve, true positive rate versus false positive

rate and the two metrics being computed using Equation (19) and (20) [44].

The comparison is then based on the area under the curve (AUC) which is

estimated using the trapezoidal rule, and the average perdition time of each of

the implemented methods.

TPr =

∑
TP∑

(TP + FP )
(19)

FPr =

∑
FP∑

(FP + FN)
(20)
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Figure 10: ROC Performance curve for the Intel Berkeley dataset with 30% of outliers in

testing dataset.
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Figure 11: AUC for the Intel Berkeley dataset with 30% of outliers in testing dataset.
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Figure 12: Prediction time for the Intel Berkeley dataset with 30% of outliers in testing

dataset.
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In order to assess the quality of our proposed method, we have investigated

its performance against the 5 known outlier detection methods KDE, SVM with

a linear Kernel, LOF, LOCI and the Gaussian Kernel based outlier detection.

None of the cited methods can detect outliers in higher than 2 dimensions. Each

experiment was performed using the Monte Carlo cross-validation with 70% of

the dataset used for training and 30% of the dataset used for testing. Figure 10

plots the ROC Curve for the first 1000 measures captured by the mote 1 of

the Intel Berkeley dataset. The training dataset is kept clean while we have

added 30% of outliers into the testing dataset. Our method shows a 92.98%,

96.69%, 99.58% of average AUC for, respectively, dimensions 2, 3 and 4, and,

as pointed out in Figure 11, outperforming each of KDE, SVM, LOF, LOCI

and the Gaussian Kernel method. The SVM linear one class classifier is scoring

the least performance with only 59.43%. LOCI's performance is a little less

than our method's performance with 93.10%, but the prediction time is 447.43

seconds which represents more than 40 times the prediction time of our method

in the 4-d copula. This last one is the worst time recorded for the copula outlier

detection with 10.77 seconds of prediction time.
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Figure 13: ROC plot for the Saint Bernard dataset with 30% of outliers in testing dataset.
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Figure 14: AUC for the Saint Bernard dataset with 30% of outliers in testing dataset.
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Figure 15: Prediction time for the Saint Bernard dataset with 30% of outliers in testing

dataset.

To enlarge the number of dimensions that could be handled by our copula-

based outlier classifier, we have tested it on the Saint Bernard dataset with

the data captured by the weather station 17. We have tested our classifier for

up to 6 dimensions, and the performance results are plotted in Figure 13. As

shown in Figure 14, our method gives relatively good results with 92.02% of

AUC for the 2 d-Cop OD and 98.89%, 98.60%, 99.0% and 99.30% for the 3 to 6

d-Cop OD, respectively. The other methods perform well with 90.35% for KDE,

93.51% for SVM; LOF and LOCI show similar results with 95.19% and 95.13%,

respectively. LOF shows a 98.38% of AUC which is 0.92% less than the scored

performance of our method but its prediction time is 20 seconds more than the

27



6d-Cop OD which is the highest prediction time recorded for our d-Cop OD.
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Figure 16: ROC plot for the Berkeley Intel Lab dataset with 30% of outliers in both the

training and testing datasets.

2d-Cop OD 3d-Cop OD 4d-Cop OD KDE OD SVM OC LOCI LOF Gaussian kernel
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
re

a 
U

nd
er

 th
e 

C
ur

ve
 (

A
U

C
)

Figure 17: AUC for the Berkeley Intel Lab dataset with 30% of outliers in both the training

and the testing datasets.
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Figure 18: Prediction time for the Berkeley Intel Lab dataset with 30% of outliers in both the

training and the testing datasets.

The captured data used for training are not always outlier free, which could

seriously corrupt the performances of the learned data model, and lead to a low

detection rate. To investigate this aspect statistically, we have increased the

rate of outliers present in the training datasets to 30%. This experience aims at

testing the robustness of our proposed method against other existing methods.

The Figures 16 to 21 present the performances of our proposed method along

with existing ones when the training dataset is contaminated by outliers.

Figure 16 plots the performances of our proposed method in the case where

30% of the training dataset is contaminated by outliers. The used dataset is the

Intel Berkeley dataset, and the calculated AUC of the resulting ROC curve is

plotted in Figure 17. Our method's performances range from 87.83% to 93.07%

where 3d-Cop OD scores the highest rate of AUC. The closest performance is

the Gaussian Kernel OD with 82.69% followed by KDE OD with 82.92%. The

proposed nd-Cop OD prediction times vary by 64 milliseconds for the 2d-Cop

OD, 5.6973 and 12.6077 seconds for the 3d and 4d Cop OD, which represents

a good performance since the prediction time of the most efficient competitive

outlier detection method KDE OD is 2133 milliseconds with an 82.92% AUC,

which is 4.91% less than the 2d-Cop OD and 33 times its prediction time.

For the second dataset (Saint Bernard) the d-Cop OD scores a better AUC

than for the first dataset with a maximum of 97.13% AUC and 24.91 seconds pre-
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diction time for the 6d-Cop OD, outperforming the rest of the existing methods.

The maximum AUC rate is obtained by LOCI with 89.90%, but its correspond-

ing prediction time is really high with 573.29 seconds, which represents 23 times

the prediction time of the 6d-Cop OD.
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Figure 19: ROC plot for the Saint Bernard dataset with 30% of outliers in both the training

and the testing datasets.
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Figure 20: AUC plot for the Saint Bernard dataset with 30% of outliers in both the training

and the testing datasets.

30



2d-Cop OD3d-Cop OD4d-Cop OD5d-Cop OD6d-Cop OD KDE OD SVM OC LOCI LOF Gaussian kernel
10-2

10-1

100

101

102

103

Figure 21: Prediction time for the Saint Bernard dataset with 30% of outliers in both the

training and the testing datasets.

In the following tables and figures, we will summarize the rest of our re-

sults in form of charts and tables. To appreciate the impact of outliers on the

performance of outlier detection methods, we introduce the following metrics,

where PAvg, tAvg represent, respectively, the average of the recorded perfor-

mances AUC and the prediction time with different rates of outliers in the train-

ing/testing datasets; PDiff , TDiff represent the difference between the recorded

AUC and prediction time, respectively, in lowest and highest outlier rates. This

metric is positive when the performance/prediction time is increasing and neg-

ative when the performance/prediction time is decreasing .

PAvg =

∑
AUCs

N
(21)

PDiff = Max(AUCs)−Min(AUCs) (22)

tAvg =

∑
tpred
N

(23)

tDiff = Max(tpred)−Min(tpred) (24)

where N is the number of test cases.
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For clarity of presentation and to have a better vision of our obtained results,

we have plotted the results of Tables 3 to 6 in Figures 22 to 25, respectively.

Table 3 shows the average of five run cross-validation with different rates of

outliers in the testing dataset and 0% of outliers in the training dataset. As

plotted in Figure 22, we can notice that the 4d-Cop OD exposes the highest

AUC performance with 97.83% in the case where 40% of the testing dataset

contains outliers; and a PDiff=-2.05% which is the lowest rate recorded in the

d-Cop OD. Other methods than the KDE show an increase in the performance

with PDiff= +9.84%; We assume that this is due to the fact that this kind of

outlier detection method performs better in the case where the rate of healthy

and outlying instances are equally balanced in the testing dataset. For the

prediction time, we can observe that the increasing rate of outliers influences

the prediction time in all of the tested outlier detection methods.

As reported in Table 3, the most influenced methods are LOCI and LOF

with +270.82 and +15.15, respectively. The reported prediction time for the

4d-Cop OD is +7.27 seconds, and the highest prediction time is recorded by

LOCI, the lowest by 2d-Cop OD.

Table 3: Performance measure averages for the Intel Berkeley Lab dataset with different rates

of outliers in testing dataset, five run Monte Carlo cross validation.

AUC Prediction time

PAvg PDiff tAvg tDiff

2d-Cop OD 92.65 -3.45 0.0072 +0.0047

3d-Cop OD 96.24 -2.69 5.44 +3.79

4d-Cop OD 97.83 -2.05 9.67 +7.27

KDE OD 80.74 +9.84 0.22 +0.18

SVM OC 68.06 -4.08 8.41 +6.12

LOCI 95.89 +1.27 368.16 +270.82

LOF 91.23 -0.73 29.89 +15.15

Gaussian Kernel 91.34 +2.1 0.09 +0.05
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Figure 22: Average calculated AUC and prediction time for the Intel Berkeley dataset with

different rates of outliers in testing dataset, five runs of Monte Carlo cross validation.

In order to investigate the influence of a contaminated training dataset with

outliers, we have performed four tests on the Intel Berkeley dataset with dif-

ferent rates of outliers in the training dataset (10%, 20%, 30% and 40%) and a

stable rate of outliers in the testing dataset (30%). The averages of five Monte

Carlo cross-validations are reported in Table 4 and their corresponding plots

are illustrated in Figure 23. The best PAvg is performed by the 4d-Cop OD

with 91.12% followed by 3d-Cop OD with 90.38%, 2d-Cop OD with 87.38%,

LOCI with 86.09% and Gaussian Kernel with 85.23%. The presence of outliers

in the training dataset has dropped their corresponding performances with -

12.25% down to -13.67% for the nd-Cop OD. The highest drop of performance

is recorded by LOCI with -15.2% and the lowest one by Gaussian Kernel with
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-6.84%.

Table 4: Performance measure averages for the Intel Berkeley Lab dataset with different rates

of outliers in training dataset, five runs of Monte Carlo cross validation.

AUC Prediction time

PAvg PDiff tAvg tDiff

2d-Cop OD 87.38 -12.25 0.0072 -0.0006

3d-Cop OD 90.38 -13.32 6.64 +1.54

4d-Cop OD 91.12 -13.67 11.14 +1.04

KDE OD 84.47 -2.28 0.27 +0.03

SVM OC 52.82 -6.15 13.03 +2.51

LOCI 86.09 -15.2 467.2 +53.55

LOF 54.56 -14.14 34.55 +6.64

Gaussian Kernel 85.23 -6.84 0.1 -0.03

Despite a relatively limited drop of performance, this drawback is recovered

by the low prediction time. As reported in Table 4, the nd-Cop OD scored a

72.41 milliseconds 6.64 and 11.14 seconds average prediction time for the 2d, 3d,

and 4d Cop OD, respectively. The presence of outliers in the training dataset

is of little influence on the recorded prediction, which has an increase of +1.54

seconds in the worst case for the 4d-Cop OD.
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Figure 23: Average calculated AUC and prediction time for the Intel Berkeley dataset with

different rates of outliers in training dataset (30% of outliers are used in the testing dataset),

five runs of Monte Carlo cross validation.

In order to test our copula-based outlier detection in higher dimensions,

we have used the Saint Bernard dataset. Table 5 reports the results of five

run Monte Carlo cross-validation with different rates of outliers in the testing

dataset. The 6d-Cop scores the highest AUC as plotted in Figure 24 with an

average AUC of 97.75% and 28.13 seconds of average prediction time, outper-

forming the rest of the proposed methods. The closest performance is obtained

by LOF with a PAvg = 96.1% and tAvg = 53.11 seconds, which represents almost

2 times the prediction time recorded for the 6d-Cop OD. This result reveals that

increasing the rate of outliers in the testing dataset improves the performance

of our proposed method, with a top of 2.05% for the 4d-Cop OD. In the rest of

the cases the performance methods are decreasing with a top of 3.05% for KDE
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OD.

Table 5: Performance measure averages for the Saint Bernard dataset with different rates of

outliers in the testing dataset, five run Monte Carlo cross validation.

AUC Prediction time

PAvg PDiff tAvg tDiff

2d-Cop OD 92.36 +0.93 0.0009 0

3d-Cop OD 97.61 +0.33 7.26 +0.05

4d-Cop OD 96.76 +1.38 12.89 +0.2

5d-Cop OD 97.26 +2.4 19.78 -0.68

6d-Cop OD 97.75 +0.74 28.13 +1.79

KDE OD 89.5 -3.05 0.31 +0.07

SVM OC 91.62 -2.3 9.8 -0.12

LOCI 93.23 -2.66 531.8 -9.62

LOF 96.1 -0.42 53.11 -1.42

Gaussian Kernel 93.27 -0.77 0.12 -0.01
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Figure 24: Average calculated AUC and Prediction time for the Saint Bernard dataset with

different rates of outliers in the testing dataset, five run Monte Carlo cross validation.

Table 6 shows the results of the experiments performed on the Saint Bernard

dataset when the training dataset is composed with a certain rate of outliers. In-

creasing this later gives us an overview of the impact of a contaminated training

dataset on our method. As pointed out in Figure 25, the best performing meth-

ods are the 5d and 6d-Cop OD with 94.38% and 94.43% PAvg for each of them,

respectively, which represents a slight difference of 0.05%. The highest drop

in performance is held by the d2-Cop OD with PDiff = −13.62%, followed by

4d-Cop OD with 12.41%. In contrast to the Intel Berkeley dataset, the presence

of outliers in the training dataset has more influence on the performance of our

proposed method. In summary, in all of the results, the least time-consuming

approach is the 2d-Cop OD. The prediction time is rapidly increasing in higher
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dimensions, compared to the 2d one, but it still manages to keep a much lower

prediction time than LOCI. In all of the reported results, our method scores the

highest performance in terms of AUC, and keeps a relatively good one compared

to the rest of existing methods when the training dataset is contaminated.

Table 6: Performance measure averages for the Saint Bernard dataset with different rates of

outliers in the training dataset, five run Monte Carlo cross validation

AUC Prediction time

PAvg PDiff tAvg tDiff

2d-Cop OD 87.05 -13.62 0.0059 -0.0057

3d-Cop OD 93.25 -7.08 6.9525 +0.67

4d-Cop OD 90.73 -12.41 13.42 +3.74

5d-Cop OD 94.38 -6.87 18.5725 +2.21

6d-Cop OD 94.43 -7.77 27.5375 +2.41

KDE OD 90.16 -0.01 0.33 0

SVM OC 63.8 -10.43 13.045 -0.01

LOCI 87.29 -9.05 563.04 -87.82

LOF 58.8 -4.41 52.995 +4.03

Gaussian Kernel 86.27 -8.31 0.0925 0
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Figure 25: Average calculated AUC and prediction time for the Saint Bernard dataset with

different rates of outliers in the training dataset (30% of outliers are used in the testing

dataset), five run Monte Carlo cross validation.

Conclusion

Sensor data faults are very common in data collection using wireless sensor

networks. Detecting such faults is sometimes a challenging task. This paper

proposes a probabilistic outlier detection method based on copula theory. We

have tested our approach with two real-life datasets, exposing promising results

in terms of AUC performance and prediction time in comparison with some

existing ones. The proposed method also shows a valuable resistance to outlier

polluted training datasets. Copulas also enable us to detect these deviations in

higher dimensions (3d or more), by modeling the unknown dependence struc-

tures with a known copula. No communication is needed throughout the whole
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process of detection. Hence, it is energy efficient. Moreover, this approach can

be very satisfactory for monitoring applications where the base station has to

be alerted only when an abnormal event occurs. Most of the existing detection

models consider that the marginal distributions of the sensors are also Gaussian.

This assumption, however, does not hold in practice.
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[8] D. Todoĺı-Ferrandis, J. Silvestre-Blanes, S. Santonja-Climent, V. Sempere-
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