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Abstract—The most common approach to monitor mysticete
acoustic presence is to detect and count their calls in audio
records. To implement this method on large datasets, polyvalent
and robust automated call detectors are required. Evaluating
their performance is essential, to design a detection strategy
adapted to study the available datasets. This assessment then
enables accurate post-analyses and comparisons of multiple
independent surveys. In this paper, we present the performance
of a detector based on dictionaries and sparse representation of
the signal to detect blue whale stereotyped and non-stereotyped
vocalizations (D-calls) in a larg acoustic database with multiple
sites and years of recordings in the southern Indian Ocean.
Results show that recall increases with the SNR (Sound to
Noise Ratio) and reaches 90% for positive SNR stereotyped calls
and between 80% and 90% for high SNR D-calls. A detailed
analysis of the influence of dictionary composition, SNR of
the calls, manual ground truth as well as interference types
and abundance, on the performance variability is presented.
Eventually, a detection strategy for long term acoustic monitoring
is defined.

Index Terms—blue whales, bioacoustics, detection, perfor-
mance evaluation, long term monitoring

I. INTRODUCTION

Blue whale (Balaenoptera musculus ssp.) acoustic repertoire
is composed of two sound types: stereotyped calls and variable
down-sweep calls, named D-calls hereinafter [1]. The former
are repeated periodically by males only, over long periods
of time, up to days, to form songs [2]. Each sub-species
and population produces its own song, composed of spe-
cific calls [3]. Although their time-frequency shape is highly
stereotyped, the pitch of tonal parts of many population calls
is globally decreasing [4]. While the causes for this long-
term frequency decrease are still unclear, a seasonal variation
seems to be linked to the ambient noise level [5]. D-calls are
low frequency down-sweeps, ranging from about 90 Hz to
30 Hz and lasting from 1 to 8 seconds, produced by males
and females [7]. Unlike stereotyped calls, their time-frequency
shape and duration are highly variable, and their occurrence
is sporadic. D-calls have been recorded in the presence of
blue whales in the Pacific [1], [8] and in the Atlantic [9],
of Antarctic blue whales [10], [11] and of three acoustic

populations of pygmy blue whales in the Indian Ocean [12]–
[14].

Easier to detect automatically, stereotyped calls are com-
monly used to monitor blue whale sub-species and population
presence and migrations. Yet, the presence of blue whales in
the Pacific has been attested by the occurrence of D-calls,
whilst no stereotyped calls were detected [8], [15]. Besides,
D-calls appear in the behavioral context of foraging [7],
whereas songs are thought to be a reproductive display. Thus,
monitoring both call types brings insights not only on blue
whale migratory routes, but possibly on their breeding and
feeding grounds.

In this paper, we use a detection method based on dictionary
learning and sparse representations of stereotyped and non-
stereotyped calls [16], [17]. The detector works with dictionar-
ies built from temporal call signals and then considers variabil-
ity in those calls by using sparse representations; hereinafter,
it will be referred as a sparse representation detector or SRD.
Preliminary tests on small datasets demonstrated the potential
of this detection algorithm on Madagascan pygmy blue whale
calls and Pacific blue whale D-calls [16]. However, before
applying this detector to a larger dataset, it is imperative to
thoroughly evaluate its performance and analyze its variability
to develop a detection strategy that will allow meaningful
interpretations and potential comparisons across different stud-
ies [6], [18]. Moreover, detection performance are needed to
estimate accurate cetacean densities from passive acoustic data
[19].

Performances are often determined by comparing the de-
tector outputs with a ground-truth dataset, generally obtained
by a manual annotation of a subset of the global dataset.
Detection and false-alarm rates are two common metrics to
measure these performances. Ideally, these metrics should be
constant and independent from the selected data subset, so
that the measured performances are representative for the
entire dataset. In practice, as shown for instance for detections
based on spectrogram correlations [18] , the following factors
can impact the detection performances: variability in the call
characteristics, seasonal call abundance, ambient noise and



human analyst variability. The latter factor has been inves-
tigated in detail for Antarctic blue whale call detection, where
independent manual annotations of identical datasets exhibited
strong variability between analysts, which in turn reflected
on the detection performances [6]. This variability illustrates
the difficulty to reliably and reproducibly identify single calls
in a whale chorus made of overlapping distant calls. Before
performing automated detection on large datasets, it is also
necessary to define if, how and which interfering acoustic
signals may affect the performance of the detector. Once all
these precautions are taken, an accurate detection strategy can
be set up.

This paper investigates the performances of SRD before
its application to detect diverse blue whale calls on a long-
term dataset collected in the Southern Indian Ocean. Section
II presents the methodology used to detect blue whale calls and
to evaluate the detector performance in the available dataset.
Section III focuses on the performance assessment. Finally,
section IV discusses the results and how the detection strategy
must be adjusted to investigate multiyear databases.

II. MATERIAL AND METHODS

A. Data collection

This study is based on acoustic data recorded by the
OHASISBIO (Observatoire Hydro-Acoustique de la SISmicité
et de la BIOdiversité) hydrophone network, deployed in the
Southern Indian ocean since 2010 [20]. This array is composed
of 5 to 9 moorings, depending on the year, and covers a region
spanning from 24° to 56° South and from 52° to 83° East
(see Figure 1). Each mooring is composed of an anchor, an
acoustic release and a hydrophone, moored at the depth of the
sound fixing and ranging (SOFAR) channel. The recordings
are continuous and sampled at 240 Hz.
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Fig. 1. The OHASISIBIO hydrophone network in the Southern Indian ocean.
Colored dots represent mooring sites.

Two blue whale sub-species dwell in this area: the Antarctic
blue whale (B. m. intermedia), referred hereinafter as Ant BW,
and the pygmy blue whale (B. m. brevicauda), among which

two acoustic populations are clearly identified in our acoustic
records: the Madagascan (Mad PBW) and the Australian
(Aus PBW) pygmy blue whales [21]. Each of these sub-species
emits a distinctive and stereotyped call and possibly common
or unrelated D-calls, as pictured on Figure 2.

B. Selected data subsets

Performances of the detector are evaluated on small subsets
of this passive acoustic data. For the purpose of this study,
three subsets have been created.

1) Data subset 1: To compute the performance metrics on
interference-free data, four subsets (one for each call type)
were built. Audio files were chosen to cover a large range of
acoustic scenarios: from calls with high SNR to calls barely
visible among the chorus, a din noise made of overlaid distant
calls. For stereotyped calls, only data from 2015 were selected,
to be invariant to the long-term call pitch shift [5]. For the data
subset with D-calls, records were chosen among the whole
OHASISBIO dataset, to account for potential geographical and
temporal variability in the call type. A total of 240.5 hours
of recordings were selected for the D-call data subset, 110.5
hours for Aus PBW, 78 hours for Mad PBW and 58.5 hours
for Ant BW.

2) Data subset 2: This dataset will serve to evaluate the
effects of the analyst ground-truth on the detection perfor-
mances. Data selection process was similar to that of dataset
1, but with no overlap between the two datasets. However, the
size of the three subsets for Mad PBW, Aus PBW and D-calls,
are much smaller (6-hour long), so that multiple analysts could
annotate them. Moreover, no Ant BW subset was built for this
analysis.

3) Data subset 3: Once the performances were assessed
on interference-free datasets, the detector was applied on one
year of recording at site WKER. This site was chosen based
on a manual inspection and previous analyses of the data that
established the presence of the different call types [22]. The
objective is to characterize the interferences that could lure the
automated detection and to re-evaluate the false alarm rate in
case of call absence.

C. Manual annotation

Manual annotation is solely considered for data subsets 1
and 2, as this is a long and tedious task that can only be
achieved on small datasets.

1) Data subset 1: Manual annotation was made with Raven
Pro 1.5 (Cornell Lab of Ornithology). Spectrograms with
fixed parameters (Hanning windows with 50% overlap and
512-point FFT) were visually inspected by an expert human
operator. Each call type was annotated one at a time. Only
unit 2 of Aus PBW call and unit 1 of Mad PBW call were
logged while for D-calls and Ant BW calls, the whole call
was selected. Each manual detection was saved into a text file
(beginning and end-time), to be compared with the automated
detector outputs. A total of 3467 D-calls, 1697 Aus PBW calls,
2000 Mad PBW calls and 1499 Z-calls from Ant BW were
logged by the analyst.



(a) Australian pygmy blue whale call (b) Madagascan pygmy blue whale call

(c) Antarctic blue whale call (d) Serie of five D-calls

Fig. 2. Spectrogram of blue whale calls used to assess performance of the detector. (a) Australian pygmy blue whale stereotyped call (b) Madagascan pygmy
blue whale stereotyped call (c) Antarctic blue whale stereotyped call (Z-call) (d) Serie of 5 D-calls

2) Data subset 2: Multi-analyst manual annotation was
completed using the Aplose online annotation platform devel-
oped by the Ocean Data Explorer project [23]. This platform
can be remotely accessed by multiple analysts and displays
spectrograms with fixed parameters (Hanning windows with
80% overlap and 512-point FFT). Four expert analysts anno-
tated D-calls and three of them annotated stereotyped calls, all
with the same annotation protocol as for data subset 1.

D. Pre-processing of the data

Before detection, the audio files are whitened using a FIR
filter whose time-varying impulse response is derived from
the noise power-spectral-density estimated every 300 seconds
as described in [24, Appendix A]. This process makes the
detection insensitive to the different types of background
noise encountered in the dataset. Data are then bandpass
filtered in the call frequency bandwidth reported in Table I.
For stereotyped calls, data are also converted into baseband
signals, with the frequency bounds reported in Table I, to
reduce processing time.

TABLE I
FREQUENCY BANDWIDTH OF CALL TYPES USED FOR DETECTION

Call type Frequency bandwidth (Hz)
D-calls 30 - 90

Mad PBW calls 35 - 45
Aus PBW calls 62 - 72
Ant BW calls 16 - 28

E. Detection method

The detector is based on dictionary learning and sparse
representation of blue whales vocalizations. The principal asset
of this method lays in the alliance of big dictionaries, that take

call variability into account, and linear combination of several
elements of those dictionaries, to reflect call complexity. The
detection principle is thoroughly described in [16].

Practically, detection is conducted in 2 steps :

1) Dictionary creation: dictionaries are directly designed
from the data. Given a set of L time-based signals s, K-SVD
algorithm [25] seeks the dictionary D, of size M 6 L, that leads
to the best possible representation for each signal in this set.
Here, signals s of calls can well be represented by a linear
combination of a small number K of non-zero coefficients
in the basis D. K is called sparsity constraint and is directly
related to the complexity of each single call type to detect. If
K is over-evaluated, the number of false detection will tend to
increase. On the contrary, if K is under-estimated, the detector
may miss true detections. The dictionary size M has to be large
enough to depict the variability of the calls, but must also stay
small to limit computing time. In this study, the size of the
dictionary M and the sparsity constraint K have been taken
from reference [17]: for the highly variable D-calls M = 45
and K = 3, and for the stereotyped calls M = 20 and K = 2.

2) Detection: The algorithm scans the acoustic data by bins
of N samples, equals to the duration t of the calls composing
the dictionary. For D-calls, t = 8 s, for Aus PBW calls t = 25 s,
for Mad PBW calls t = 20 s and for Ant BW calls, t = 18 s.
The Orthogonal Machine Pursuit (OMP) algorithm then seeks
the linear combination of K elements among the M dictionary
elements that best matches the observed signal. In other words,
for an observation vector y and a known dictionary D, the
algorithm estimates θ as the approximate solution of

min
θ∈RM

||y −Dθ||22 subject to ||θ||0 6 K. (1)



Then the following threshold test,

τη(y) =


1 if ||Dθ||22

||y−Dθ||22
> η

0 otherwise,
(2)

with τη(y) the decision metric and η the detection threshold,
is performed. τη(y) can be interpreted as a measure of the
Signal to Interference-plus-Noise Ratio (SINR) with ||Dθ||22
an estimate of the signal of interest and ||y−Dθ||22 an estimate
of the interference-plus-noise [16]. A detection is considered
to be true only if the SINR is above the threshold η (see
Section III-A for an explanation threshold choice).

F. Performances evaluation

Performances are tested in three steps, each one operated
on a data subset presented in section II-B. The first step
aims at appraising the detector performance on a controlled,
interference-free dataset. The second step assesses the perfor-
mance variability due to the annotator ground-truth data. The
last step will test the performances against data variability,
such as the presence of interferences, or various call abundance
scenarios.

1) Step 1: The main goal is to determine the average
detection and false-alarm rates for stereotyped calls and D-
calls. In order to do that, two datasets are extracted from the
manually annotated calls of data subset 1: a training set, used
to build the dictionary, and a test set, used to evaluate the
performances. Usually, the learning set is made of a greater
percentage of calls (at least 60 %) of the dataset than the
test set. However here the purpose of the method is to detect
calls from a large database with a limited amount of calls
that define the dictionary. Therefore, the training set is made
of less calls (50 for stereotyped calls and 200 for D-calls)
than the test set. Evaluation of performance is assessed by
comparing the detector outputs from the test set, with the
ground truth detections established by an experienced human
operator. Automated detections can be either true positive,
when the detected call matches with a manually annotated call,
i.e. when the midpoint of the time of the automated detection
falls within the time bounds of the manual detection and vice
versa; or false positive, when the detector detects something
that has not been logged by the expert analyst. Detection rate,
also named recall, is defined as the proportion of true calls
found by the automated detector against the total number of
calls in the manually annotated data set:

Recall =
Number of true positive

Total number of call in the ground truth
. (3)

The number of false alarm per hour, or false-alarm rate, is
the ratio between the number of false positive and the duration
of the dataset in hours.

False alarm rate =
Number of false positive

Dataset duration (in hours)
. (4)

The second goal is then to evaluate the robustness of the
detector by doing some cross validation, i.e. to test whether

the detector performance is dictionary dependent or not. Per-
formances are computed multiple times on the same dataset
by using the k-fold cross validation method to constitute the
training and test sets. Mean and standard deviations are then
computed for analysis.

2) Step 2: The second step is to assess the performance
variability due to the analysts’ manual annotation of the data.
The dictionaries used by the detector are built from one of
the step 1 training set. Detector outputs are compared to the
ground truth built by the multiple analysts. Detection and
false-alarm rates are then averaged and standard deviations
computed for the three call types.

3) Step 3: To examine the effect of interferences and call
abundances on the automated detection, the detector is tested
on a larger dataset made of the acoustic data recorded at site
WKER in 2015. The dictionaries used by the detector are the
same as in step 2. Here, a detection rate cannot be reported,
since a manual ground-truth of a whole year dataset would
be time consuming and tedious to establish. Yet, a false-alarm
rate can be quantified by checking and classifying the detector
outputs: a detection is declared as true when the detection
is indeed a call, or false when the output is an interference.
The interferences are then manually sorted into categories,
according to the types occurring the most regularly.

III. RESULTS - PERFORMANCE EVALUATION

In this section, performance and their variability are evalu-
ated for stereotyped and non-stereotyped blue whale calls on
three data subsets of the OHASISBIO hydroacoustic data.

A. Performance evaluation on data subset 1

Figure 3 represents the Receiver Operating Characteristic
curves for all call types detection done on data subset 1. These
curves represent the average detection rate as a function of
the average false alarm rate, both estimated for the k test sets.
The number of false alarms per hour is determined by the
detection threshold η. Best performances are achieved when

Fig. 3. Receiver Operating Characteristic (ROC) curves for the three blue
whale stereotyped calls and D-calls



the detection rate is maximized for the smallest false alarm rate
possible. The detector seems to perform better on stereotyped
calls, with a detection rate at least 10% higher than on D-calls,
regardless of the false-alarm rate. Even among stereotyped
calls, detection rates are variable with a higher detection rate
for Aus PBW at constant false alarm rate. To evaluate the
effect of the Sound to Noise Ratio of the calls on detection
performance, Figure 4 displays the detection rate of all call
types for a fixed threshold η set to -8.2 for Aus PBW, -8 for
Mad PBW, -9.1 for Ant BW, and -11.6 for D-calls, which
correspond to an average false-alarm rate of 1.15/h, 1.06/h,
1.06/h, and 0.96/h, respectively. For each noisy observation y
of a call, the SNR is estimated in the call bandwidth reported
in Table I as

SNR =
yT y

Nσ2
− 1, (5)

where y is the call signal and σ2 is given by the robust
estimator detailed in [24, Appendix A].

Fig. 4. Detection rate as a function of the Signal to Noise Ratio of the calls.
The false alarm rate is set at 1 per hour for all the calls.

Detection rates increase with the SNR of the calls and be-
come greater than 95% for stereotyped calls with a SNR above
5 dB. A variation in recall is observed within stereotyped calls
and the detector performs globally better on Aus PBW and
Ant BW calls than on Mad PBW calls. Overall, for D-calls,
recall is lower and reaches a plateau between 80% and 90%,
even for high SNR calls.

B. Performance evaluation on data subset 2

Detection was performed using dictionaries build in step
1 and detection threshold are defined as above. Means and
standard deviations of the detection and false-alarm rates are
illustrated in Figure 5. Average detection rate of Aus PBW
and Mad PBW calls both reach 0.58 but with a wider standard
deviation for Mad PBW calls (±0.01 and ±0.03 respectively).
Mean recall values for D-calls is lower than for stereotyped
calls (0.47±0.01). All false alarm rate values are below one

per hour with lower value for Aus PBW calls (0.46±0.32)
than for Mad PBW and D-calls (0.67±0.15 and 0.67±0.15
respectively).

Fig. 5. Recall and false alarm rate (mean and standard deviations) for
three call types, determined by comparing the detector outputs with tdifferent
ground truth built by three analysts.

C. Performance evaluation on data subset 3

Long-term detections on WKER 2015 site are summarized
in monthly histograms for each of the four calls (Figure 6).
Detection patterns are highly seasonal with detection peaks
in austral autumn for both pygmy blue whale acoustic pop-
ulations and in winter and spring for Antarctic blue whale
calls and D-calls. For stereotyped calls, the number of false
alarm is far below the theoretical one false alarm per hour. This
number is consistent over the year and therefore over different
call abundance scenarios. Most interferences are due to chorus,
especially for Mad PBW calls. Other interference types include
ship noise and undetermined continuous banded noise in the
call frequency bandwidth. For D-calls, the false alarm rates and
types are very variable depending on the months. Two main
categories of interferences have been identified: air gun shots
and fin whale 40 Hz calls. The former are impulsive broadband
sounds that are emitted periodically every 10 seconds during
seismic surveys. The latter are thought to be social sounds
produced by fin whales. They fall in the same frequency band
as D-calls but they are more impulsive with a duration below
one second; their spectrograms are compared in Figure 7.
Other types of interference are mostly broadband short sounds
and their occurrence seem constant over the month.

IV. DISCUSSION/CONCLUSION

Evaluating detector performances is essential to allow the
correct use and interpretation of passive acoustic data [18].
Multiple sources of performances variability of SRD are
investigated in this study, including call type, composition
of the dictionary, SNR, ground-truth manual annotation as
wall as interference type and abundance. Then, taking these



(a) Australian pygmy blue whale call detections for
WKER 2015

(b) Madagascan pygmy blue whale call detections for
WKER 2015

(c) Antarctic blue whale call detections for WKER 2015 (d) D-calls detections for WKER 2015

Fig. 6. Detection patterns as found by the detector at site WKER in 2015. (a) Australian pygmy blue whale call detections (b) Madagascan pygmy blue
whale call detections (c) Antarctic blue whale call detections (d) D-call detections

(a) Air gun shots

(b) Fin whale 40 Hz calls

Fig. 7. Spectrogram of the two main types of interferences mistaken for
D-calls by the SRD

observations into consideration, a detection strategy for long-
term monitoring is presented.

A. Call type, SNR and dictionary composition effects on the
detection performances

An efficient detector must combine high recall with low and
consistent false alarm rates. Here, for a predetermined false
alarm rate, the detector appears to generally perform better on
stereotyped calls. Indeed, while detection rate reaches almost
95% for high SNR stereotyped calls, it doesn’t exceed 85%
even for very high SNR D-calls. This trend is also observed
in reference [26], where the detection performance are better
for Ant BW stereotyped calls than for D-calls and in reference
[27] where false alarm rate is particularly high for an average
recall. D-calls, are highly variable but simple down-sweep
signals, that can easily be mistaken for any kind of transient
noise, often very abundant in underwater acoustic soundscapes
(e.g. seismic shots). This may explain why most algorithm fail
at identifying them, even when they have a high SNR.

Detection performances are also variable among stereotyped
calls. If on the ROC curves in Figure 3 the detector seems
to perform better on Aus PBW, Figure 4 actually shows that
performances are equivalent for Aus PBW and Ant BW calls.
But because the proportion of calls with a SNR below -5 dB
is more than twice higher in the Ant BW dataset than in the



Aus PBW dataset, the overall performances are lower for Ant
BW calls. For similar SNR bins, recall of Mad PBW is lower
than for the two other stereotyped calls. The OHASISBIO
dataset is characterized by the presence of an important chorus,
especially in the Ant BW and Mad PBW frequency range.
Reference [6] identified the presence of an Ant BW chorus
as one of the main factors complicating reliable Ant BW
call automated detection. They used two detectors that were
designed to detect incomplete Ant BW calls, where the down-
sweep and 18 Hz tonal unit are dissipated and where the tonal
28 Hz unit is the only unit left. Here, the detector is trained
on a dataset with complete and incomplete calls and seems
to perform well, even in the presence of an Ant BW chorus
(e.g. Figure 6). However, the detector has more difficulty to
deal with a Mad PBW chorus, probably due to the loudness
of this chorus associated with the call simple time-frequency
shape. As high SNR calls are more likely to have been emitted
in the hydrophone vicinity, high detection rates of such calls
imply that post-analysis on whale presence will be reliable in
a small detection range. However, this range has not yet been
properly estimated for blue whales. In view of the variable
SNR proportions in the tested datasets, representing recall as a
function of call SNR might be a good practice when reporting
detector performances.

K-fold cross validation was used to make sure that per-
formances were not dictionary dependent. Indeed, similarly
to when a new kernel template is designed spectrogram
correlation, performances should not be impacted when a new
dictionary is built from data. Here, the recall standard deviation
for a fixed false alarm rate of one false alarm per hour is in
the order of ±0.01, allowing to state that the detection is not
dictionary dependent.

B. Manual annotation effects on detection performances

Human annotators do not always select the same calls when
building the ground truth, which impacts the recall and false
alarm rate values. Many external factors can influence the
analysts annotation behavior, such as their level of expertise,
personality or the time of day [6]. Besides, variability in
annotation is likely to be higher for low SNR, short duration
or altered calls [18]. The error bars in Figure 5 show that
even for a small data subset, variations in data annotations
induces variations in the detector performance. A wider study
including bigger datasets and more analysts could help build-
ing a standardized collaborative annotation methodology for
reference datasets. We also observe that false alarm rate highly
depends on the annotation procedure. Indeed, for datasets
1 and 2, human analyst(s) first annotated the datasets to
create a ground-truth reference against which and the detector
performances are assessed. For dataset 3, the detector was first
applied on the data and then a human operator double checked
the detections. The false alarm rate is much lower in this
second approach. When an analyst annotates a dataset after
the detector, she/he will tend to trust the detector and classify
as calls what she/he may not have annotated otherwise. As
a result, false alarm rates based on manual annotations with

no a priori will be overestimated, whereas false alarm rates
based on a manual check of computer annotated data will be
underestimated.

C. Interference and call abundance effects on detection per-
formances

Performance variability is often defined according to three
call abundance scenarios [6], [18]. But these scenarios often
reflect different data qualities, with higher call abundances
related to an increasing presence of high SNR calls, and lower
call abundances often related to an increasing presence of low
SNR calls and chorus [6]. Therefore, evaluating the effect of
SNR on the performances, as shown in Figure 4, is equivalent.
Influence of call abundance on false alarm rate can also be
observed on dataset 3. Overall, this metric is stable over time
periods covering different abundance scenarios, when only
taking into account the false detections due to non specific
interference types (e.g. air guns, fin whale 40 Hz calls).

Presence of interferences in large datasets is inevitable.
Characterizing them is fundamental to avoid any bias during
long term detection. By applying the SRD on a whole year,
we were able to count and identify the interference types
that could mislead the detector. For stereotyped calls, the
main interference type was the chorus, especially for Mad
PBW. It will not affect the presence patterns, but should
probably be taken into account for an analysis on density
estimation [19]. The two main interferences that affect the
D-call detections — seismic airgun shots and fin whale 40 Hz
pulses — are either very numerous or highly seasonal, and
would completely bias an analysis of blue whale presence
if not removed. Because those two sound types are well
identified, the following detection strategy was designed to
reject them automatically.

D. Strategy for long term detection

To be efficient, the detection strategy has to take into
account the dataset and the call characteristics and the aim of
the analysis that are going to be undertaken on the detection
outputs. In this paper, the strategy aims at limiting the number
of interference detections while keeping a correct recall, at
least for high SNR calls.

1) Limitation of false alarm detections: Detection thresh-
olds were determined empirically, after plotting detection and
false alarm rates on ROC curves represented in Figure 3.
A threshold corresponding to one false alarm per hour was
chosen to limit the number of false detections in the long-
term study. This is particularly important to discern periods
of call absence. Moreover, if double-checking manually the
detector outputs is an option for small datasets, in the case of
OHASISBIO 50-year-records (all sites combined), this process
would be far to tedious and time consuming.

2) Automated interferences removal: Testing the detector
on one year of recording allowed to identify the sounds that
were mistaken for calls by the detector. For stereotyped calls,
most of the false alarms are due to chorus, and only a small,
consistent number was due to ’true’ interferences. However for



D-calls, detection of airgun shots and fin whales 40 Hz pulses
is a major concern. Getting rid of those detections would
greatly improve the long-term detection and avoid double
checking too many data. Two methods were tested to discard
those interferences.

• Fin whale 40 Hz pulses are shorter (less than a second
long), and tend to concentrate more energy than D-calls
[28]. Thus, a high amplitude peak is often detectable
in their waveform. The calculation of the call to noise
ratio (CNR) is used here to discriminate them from D-
calls. CNR is computed within the time frame of every
detection output. The signal part assigned to the call is
defined between the two peaks surrounding the maximum
amplitude peak so that they are the first two peaks (from
the maximum amplitude peak) to be under the total
peak mean. CNR is then computed as the peak power
minus noise power, over the overall noise power. Figure 8
represents the distribution of this ratio for D-calls in blue,
and fin whale 40 Hz calls in pink. D-calls mainly have
a lower call to noise ratio than fin whales 40 Hz calls.
Assuming that D-call CNRs follow a gamma distribution
with α = 3.77 and β = 2.03 and fin whale 40 Hz pulse
CNR follow a normal distribution with µ = 17.8 and
σ = 4.84, setting a threshold of CNR = 13, allows to
automatically discard about 68% of the fin whale calls
while keeping 90% of D-calls.

Fig. 8. CNR repartition of D-calls and fin whale 40 Hz calls detected by the
SRD detector

• Air gun pulses are associated with both commercial and
research seismic surveys and are generally fired every 8
to 15 seconds over time periods spanning from days to
weeks [29], [30]. Periodicity of airgun shots thus will
be used to discriminate them from D-calls. Therefore,
discarding those sounds cannot be done directly on the
detector outputs that contains only few airgun shots, for
which the periodicity does not appear clearly. Instead, a
new detection technic combining an energy sum detector
[30], [31] and a periodicity measure is employed. In

practice, a spectrogram of each whitened (see paragraph
II-D) sound file is computed with the following param-
eters: Hanning window with 90% overlap and 1200-
point FFT). Values in the spectrogram are summed across
frequencies within the 30-70 Hz band, resulting in a
new time series with a sampling frequency of 2.99 Hz.
Then, the power spectral density (PSD) estimate, found
using Welch’s overlapped segment averaging estimator,
of 1.1-hour long signals is computed with 250-sample
windows, 20% overlap and 1024-point FFT. Fin whale
20 Hz pulses are also produced periodically, but they are
mainly emitted in the 15 Hz - 30 Hz bandwidth and have
a 13-second inter pulse interval [32]. If a peak occurs
in the FFT at a frequency from 0.083 Hz to 0.125 Hz,
corresponding to air gun firing periodicity of 8 to 12
seconds, to exclude possible confusion with fin whale 20
Hz pulses, we consider that the whole file might contain
airgun sounds and should therefore be excluded from the
study.

Once those two automated processes are applied on D-calls
detection outputs of WKER 2015, the D-Call detections can
be sorted out (Figure 9). Almost 95% of the fin whale 40 Hz
and air gun pulses have been eliminated while 78% of D-calls
remains.

Fig. 9. Histogram of D-calls detections at WKER in 2015, after automated
removal of fin whale 40 Hz and airgun pulses

3) Adaption to blue whale call pitch shift: Blue whale call-
pitch displays inter-annual and intra-annual variations [5]. The
latter are very limited in our dataset, due to the highly seasonal
call presence [22]. The dictionaries used for stereotyped calls
in this study were built from calls originating from different
periods in 2015 only and thus should reflect these variations so
that performances are not affected. The inter-annual decrease,
at steady and specific rates for each whale population [5], has
a higher magnitude and for a 8-year-long data set, a detection
strategy must be designed to account for it. As shown in
Figure 3, performances are dictionary independent. Therefore,
the chosen approach is to build a new dictionary for every
year, directly from the detector outputs based on a dictionary



from a contiguous year. Since for a given year, all sites display
the same frequency decrease, the detector is only applied on
one site from the new detection year. For each call type,
the best site is selected to benefit from the most appropriate
presence pattern : WKER for Ant BW calls, MAD for Mad
PBW calls and NEAMS/SWAMS for Aus PBW calls. Each
dictionary will be defined by 50 randomly-selected detector
outputs among the ones with the higher SINR, to avoid any
false-detections due to interferences. Dictionary parameters K
and M will stay the same.

V. CONCLUSION

The performances of a detector based on dictionary learning
and sparse representations (SRD) have been thoroughly evalu-
ated for stereotyped and non-stereotyped calls of blue whales.
They have been shown to vary with the call types, SNR, dic-
tionary composition, annotator ground-truth and the presence
of interferences. To palliate some detector weaknesses and to
reduce the amount of double checking by an analyst, strategies
have been designed to effectively and reproducibly apply this
detector to a long-term dataset. In the future, this analysis will
help us to implement this detection approach on the whole
OHASIS-BIO database and to infer in confidence the blue
whale presence, behavior and migratory routes in the Southern
Indian Ocean from the detected calls.
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