
HAL Id: hal-02327185
https://hal.univ-brest.fr/hal-02327185v1

Submitted on 28 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS driven dynamic partial reconfiguration: Tracking
case study

Julien Mazuet, Ill-Ham Atchadam, Dominique Heller, Catherine Dezan,
Michel Narozny, Jean-Philippe Diguet

To cite this version:
Julien Mazuet, Ill-Ham Atchadam, Dominique Heller, Catherine Dezan, Michel Narozny, et al.. QoS
driven dynamic partial reconfiguration: Tracking case study. 14th International Symposium on Recon-
figurable Communication-centric Systems-on-Chip (ReCoSoC 2019), Jul 2019, York, United Kingdom.
�hal-02327185�

https://hal.univ-brest.fr/hal-02327185v1
https://hal.archives-ouvertes.fr


QoS Driven Dynamic Partial Reconfiguration:
Tracking Case Study

Julien Mazuet1,2, Ill-Ham Atchadam3, Dominique Heller2, Catherine Dezan3, Michel Narozny1, J-Ph. Diguet2
1Thales LAS-France, Élancourt, France

2Lab-STICC, CNRS, Université de Bretagne Sud, Lorient, France
3Lab-STICC, CNRS, Université de Bretagne Occidentale, Brest, France

julien.mazuet@univ-ubs.fr

Abstract—In hybrid systems on chip (SoC) the algorithms
must share limited resources classified as hardware (FPGA logic,
memory and DSP blocks) and software (CPU cycle budget). Em-
bedded applications are implemented with concurrent processes,
which have to coexist. Therefore, the algorithm performance or
precision is often downgraded to fit on a FPGA or to meet timing
constraints. One of the solutions to relax these constraints is
to reconfigure the SoC according to application requirements
observed at runtime. Hardware (HW) reconfiguration can be
performed by means of dynamic partial reconfiguration (DPR).
Beyond the intrinsic DPR complexity, the most critical aspect
is the implementation of the reconfiguration decision. Academic
adaptive architectures are usually based on power / performance
rules. Nevertheless such solutions are usually application agnostic
and so cannot fully exploit the possible adaptation to the
environment. So real-life systems require solutions to capture the
knowledge of algorithm experts that can be leveraged at runtime
to drive the reconfiguration decision according to application
scenarios. In this paper we propose a methodology to design
a reconfiguration controller based on quality of service (QoS)
indicators to be specified by experts. This controller monitors
the reconfigurable partitions (RP) and can make DPR decisions
to optimize the global QoS. We illustrate our methodology in
the Radar domain with a tracking system based on Kalman
filters implemented on a Zynq Ultrascale+. This study highlights
expected gains and obstacles, it presents the different strategies
to cope with the issues and draws perspectives.

Index Terms—QoS, FPGA, DPR, Kalman filter

I. INTRODUCTION

This work is motivated by the highly challenging require-
ments of future radar applications that are designed by signal
processing experts. In this domain, processing tasks provide
a high degree of data parallelism and can take full benefit
from FPGA implementation. For instance, an active electroni-
cally scan array (AESA) radar exhibits multiple channels that
can be processed independently and so provide tremendous
opportunities for HW accelerations [1]. Besides, it is truly
relevant to have different versions of the processing algorithm
in order to adapt to the operational context which is changing
with the number and types of detected objects as well as
their environment. For example, in a target detection setting,
in presence of clutter, one can imagine to get two different
implementations of a space-time adaptive processing (STAP)
algorithm. One implementation would perform very well at
the expense of a higher computational complexity, and hence
a greater usage of the available hardware resources. The other

implementation would not be as efficient as the first one,
but would require less computational resources, and therefore
could coexist within the available hardware resources with one
or many other algorithms like, for instance, a Kalman Filter
for tracking. In most of the current implementations, all the
possible configurations are specified together in the processing
logic (PL), and the system switches between them. This entails
limitations on the performances of each algorithm implemen-
tation since resources are reserved for nonactive alternative
algorithms. A naive solution could be to just use a bigger
FPGA, but this is a costly option where unused resources
will still exist, which means that the best performances will
not be reached. In this case, dynamic partial reconfiguration
(DPR) appears as a viable alternative solution. DPR actually
allows to dynamically allocate HW resources to the algorithms
so that a global performance metric is maximized. However,
this approach is possible only if a clear methodology allows
signal processing experts, working with Matlab, to efficiently
cooperate with reconfigurable SoC designers.

Section II presents a state of the art of DPR controllers
which use diverse reconfiguration strategies. In section III we
present a methodology to create an adaptive reconfigurable
system to reconfigure regarding application QoS feedback.
The case study of Tracking method, based on Kalman filters
and implemented with the proposed QoS driven reconfigurable
architecture, is described in section IV. Section V concludes
the paper and draws directions for future work.

II. STATE OF THE ART

Self-adaptive systems based on HW architectures can be
modelled as a feedback control loop, as stated by the MAPE-K
model [2]. The MAPE-K model has been introduced by IBM
for autonomic computing and is described in Figure 1. With
this control model, the reconfiguration manager behaviour is
based on the application knowledge, which must be abstracted
from the low-level software (SW) or HW implementation.

DPR allows runtime adaptation while exploiting FPGA fea-
tures, such as speedup and energy efficiency [3]. If the target
domain is well suited for FPGA and can benefit from parallel
computation, bit-wise operations and fixed-point arithmetic,
reconfigurable FPGA give a more efficient solution than GPU
and multi-CPU while ensuring flexibility.



Sensors Actuators

Managed system

Autonomic Manager

Monitor

Analyze Plan

Execute
Knowledge

Fig. 1. MAPE-K loop

Several reconfiguration systems are described in the litera-
ture. In [4], authors propose to use DPR to switch between
radar modes. This is a good example of how to use DPR
to adapt to different situations. However, the reconfiguration
control is external and not based on any QoS indicator. Authors
in [4] also highlight the cost advantage of a reconfigurable
FPGA system against a multi-board equivalent solution. Some
examples manage reconfigurable modules (RM) like tasks.
In [5], the authors use DPR to implement the tasks on the
FPGA, in a sequential order given by the application. This
kind of application is meant to reduce the global power cost
and increase performance using FPGA, but the reconfiguration
decision only depends on the system current state. In [6],
authors describe a reconfigurable architecture that replaces
HW accelerators to provide required functions to the system.
This architecture uses a list of functions to be implemented
and FPGA available space to decide to reconfigure. Some
applications use DPR to enable self-repairing. To do so, they
use either scrubbing or duplication / triplication to observe
faults [7]. This can be considered a QoS indicator, but the
system only uses DPR to rewrite the faulty configuration to
recover. By contrast, our reconfigurable system aims to find
the most suitable configuration. An approach that considers
application QoS is described in [8]. Nevertheless, the recon-
figuration decision assumes that the system knows the value of
the QoS for a given configuration. In real-life applications this
assumption is not always true, besides in this work DPR was
not fully implemented. In [9], authors have designed a system
which can decide whether to reconfigure a system according
to diagnostic indicators that include application QoS values.
The decision method is based on Markov decision process
and Bayesian networks, and consider available QoS criteria.
However, once again, this work doesn’t fully demonstrate the
full DPR implementation.

Tools have been proposed to support the implementation
of DPR-based methodologies, for instance [10] shows how
to use DPR in SDSOC. However it is strongly dependent on
tools versions and vendors engineering choices. It also implies
a complete re-synthesis for each specification modification.
Therefore, it is intractable in practice. On the contrary, it
underlines the lack of consistent-in-time technical details from

FPGA vendors about DPR and CAD tools versions.
Our objective is to optimize performances (QoS, response

time, etc.) of a radar-based system according to the context
obtained by sensors data. It means that the proposed method
must results in configuration control based on a relation be-
tween a QoS observed online and the HW configuration. Such
an approach is complex since it involves signal processing
experts and HW/SW designers who have different concerns
and tools.

III. METHODOLOGY

A. Separation of concerns

To take advantage of a QoS driven reconfiguration, the
signal processing experts must be DPR aware so that they
can have in mind the possibility to switch between different
algorithm modes or configurations. However, these experts
should not have to care about the implementation details.
Thus, the design of a QoS driven DPR needs to be based
on the separation of concerns scheme depicted in Figure 2.
Once the signal processing experts know they can use several
HW configurations in one mission, they can explore more
ambitious strategies. First, they need to specify the algorithms
to implement and the different versions they need, in terms of
performances and resources cost. Secondly, they have to define
the QoS indicators they need to implement such decisions. The
SoC designers then can provide the required feedback in the
same way as in a classic development process.

Run rm()
Get qos()
Load rm()
...

Request for functionalities

Feedback on performances
and resources

Config. decision
of reconfiguration

Signal Processing
Expert

RM1

RM2
...

RMi

RP1 RP2

RP3 RP4

CPU

Reconfigurable SoC
Expert

Fig. 2. Schematic representation of the separation of concerns in the QoS
driven DPR methodology

After a few cycles, the reconfigurable SoC experts have to
bring to the signal processing experts a library of the different



configurations (RMi in Figure 2). They must also provide
simple API for the experts to implement the reconfiguration
decision system.

B. Reconfigurable architecture model

The architectures considered in this paper target SoC FPGA
devices. They are composed of a FPGA (PL) and a processing
system (PS). Several partitions are defined to be reconfig-
urable. The reconfigurable partitions (RP) communicate with
one another and with the PS through buses. The more generic
the buses are, the more heterogeneous the RM can be. The
reconfiguration can be triggered either by the PS or by the
PL part. The reconfiguration controller must also access the
partial configuration bitstreams that can be stored in the main
shared DDR memory or in dedicated one. However, a QoS
driven methodology must be accessible to algorithm experts
who are not familiar with FPGA. So, if the configuration
delay is compliant with the application time constraints, a
SW implementation is the best solution. As a SW program,
the configuration decision and the configuration control can
simply be tested and modified by algorithm experts. Figure
3 illustrates an example of such an architecture with six RPs
implemented on a SoC FPGA.

SoC

PS

RP2

RP1

RP4 RP6

RP3 RP5

Multibus

PL

Fig. 3. Example of a SoC reconfigurable architecture.

C. Reconfiguration control system

Besides the execution flow, the QoS-based controller can
be decomposed into four parts: 1) Monitor, 2) Analyze, 3)
Plan and 4) Execute. The monitor function is in charge of
collecting data and computing at least one QoS indicator
per RM. These indicators can be computed directly by the
algorithm, for example the error in an automation process. If
it requires additional computation (e.g. estimation of the next
state), the designer can choose to implement it in either the PL
or the PS part. The analyze function must determine if a re-
configuration is needed, with regard to the QoS indicators. The
plan function decides when to trigger a reconfiguration, and
which configurations must be replaced. Finally, the execute
function is in charge of loading the right bitstream at the right
time according to application execution flows and architecture
constraints. In all cases the decision-making based on the
indicator is co-designed with application experts and so is
preferably implemented in SW. This allows experts to evaluate
different strategies. Figure 4 illustrates the DPR control flow,
step-by-step.

Start

Write Data
to HW input

Run HW

Read outputs and
QoS from HW

Analyze the
QoS metrics

DPR?

Choose next
config(s)

DPR(s) and
reset interfaces

Loop?

Stop

Yes
No

Yes

No

Legend

Monitor

Analyze

Plan

Execute

Fig. 4. Diagram of the DPR control system

IV. CASE STUDY : KALMAN-BASED TRACKING

We are interested in optimizing the tracking of a target by
selecting the best Kalman Filter (KF) chosen in a library of
KFs which differ from each other by their process models,
i.e., the way they model the trajectory of the target. Ideally
we could execute all the models in parallel and select the
best one after each iteration according to QoS indicators.
However, our major constraint is that all the KFs available
in the library cannot be executed simultaneously because of
real-time constraints and hardware resource availability. So,
only a subset of the library must be implemented. In our
study we consider that two KFs can run simultaneously. KFs
can be implemented either in the PS or the PL part. The
advantage of the HW version is twofold. First, it improves
the execution time and so the response time of the system.
Secondly, it allows the execution of multiple KFs in parallel
while having the PS available for running other application and
system tasks. We choose a model with different KFs running
in parallel in separate RPs.

In real tracking systems, such Kalman filters can be very
large (more than 10 states in the aircraft dynamic navigation
filter in [11]). Hardware optimization based on constant matrix
elements is then required. Reconfiguration based only on
parameter changes is, therefore, inefficient. Moreover, DPR
allows to implement Kalman filters with completely different
behaviours (e.g., EKF, UKF and IEKF). In this study, we use
simpler Kalman filters to illustrate the method without loss of
generality.



A. Reconfigurable architecture model
The architecture used for the study is based on the one

defined in III-B. In this example, two RP are defined. These
RP can host a KF implementation. Each RP can be configured
with seven different state models, each model corresponding
to a different trajectory assumption. This means that they do
different computations and use different matrix sizes. The
KF gets the measurements from the PS through a direct
memory access (DMA) interface. This DMA is included into
the RP. The buses use a generic AXI4 interface for PL to PS
communications. In this example, there is no communication
between both RP.

B. QoS estimation and DPR decision
The QoS estimator at time k is chosen as the log likelihood

of the measurements collected at time k. This criterion can be
used as an efficient estimator of the KF model correctness [12].
It can be computed using the innovation and the innovation
covariance computed by each KF under test:

fQoS(k) = (iTkΣ−1i ik) (1)

where:
fQoS = QoS function

i = innovation vector
Σi = innovation covariance

We observe that this function requires matrix multiplication,
so it can benefit from a parallel HW implementation. This is a
typical point of useful discussion that authorize the proposed
methodology. The QoS indicator is specified by the application
designers and the reconfigurable SoC designers can work on
the best implementation. In this case, they can reuse the
inverse of the innovation covariance matrix which needs to
be computed to get the optimal Kalman gain (equation 2).
Therefore, we chose to implement fQoS in hardware, using
Newton division to increase performance while reducing PL
footprint.

Kk = (Pk|k−1H
T
k Σ−1i ) (2)

where:
K = optimal Kalman gain

Pk|k−1 = predicted error covariance
H = observation model
Σi = innovation covariance

Once this indicator is computed, the IP sends it back to the
PS. The application then has access to a QoS value for each
of the KF modules. This allows the program to identify which
filter is the most adapted to the current situation. In this way,
the PS can replace the worst one and implement another IP to
test another trajectory hypothesis.

Figure 5 shows an illustrative example of the control prin-
ciple while considering 2 DPR partitions that can implement
different Kalman models. The first and second lines draw the
evolution of the configurations implemented on the RP1 and
RP2 over time.

The method we chose to control the reconfiguration from
the QoS values relies on 4 phases:

1 3 4 4 1 2 3

2 2 2 3 3 3 4 4
time

Start

Observation
window

Reconf.
decision 1

Reconf.
decision 2

Reconf.
decision 3

Reconf.
decision 4

Reconf.
decision 5

Reconf.
decision 6

Triggered-based
reconf. decision

RP2

RP1

n Active config. n DPR

Fig. 5. Example of QoS driven DPR control

1) Initialization: Two configurations are chosen at the
beginning of the tracking. This choice can rely on mission
indicators. For example, in radar systems, the target trajectory
can be classified with the help of a priori knowledge.

2) Observation and decision: QoS-driven adaptation is
strongly specific to the application and must therefore be
flexible, as a software it can be easily modified according to
test results. In our case study different strategies are possible.
We have implemented a solution that combines long-term
observations and reactivity. The QoS estimator gives a new
value at each Kalman call. However, we cannot reconfigure
each time we get a new QoS value. Nevertheless, a very bad
QoS value means that we need to change the configuration
as soon as possible. Therefore, we need to have two kinds
of reconfiguration: The first one computes the average QoS
over an observation window (shown in Figure 5), the KF with
the worst QoS score is replaced by a new one according to a
round-robin mechanism (Reconf. decision n in Figure 5). The
second one is based on thresholds, when both KF QoS exceed
the maximum values then KF are interrupted before the end
of the window and replaced by two new ones (triggered-based
reconfiguration decision in Figure 5).

3) Reconfiguration: The reconfiguration takes time to per-
form. In some radar applications, there can be no down time. In
our system, the reconfiguration time can be hidden since there
are two RP running concurrently and only one will be stopped
on reconfiguration. The only situation where a timeout occurs
is when the threshold-based reconfiguration is triggered for
both RP. In such case, none of the Kalman filters can achieve
a good tracking so a HW reconfiguration is required.

4) Convergence: When using a Kalman filter, there is a
convergence time. This happens because the starting point
of the algorithm is not perfect. This time causes the filter
to output inaccurate points and can cause the QoS estimator
to output bad scores during the convergence interval. In this
experiment, we consider this training phase as an additional
reconfiguration time. We don’t observe the QoS during this
phase to avoid penalizing new implemented filters.

C. Experience setup

1) HW/SW platform: The reconfiguration strategy as well
as the KFs are implemented in a Zynq Ultrascale+, a SoC
made up of a multi-core ARM and a FPGA that supports
DPR. Figure 6 presents the layout of the FPGA, with the two
reconfigurable partitions delimited by the purple areas. With



this layout, the reconfiguration of a RP takes 8.7ms using
PCAP. This time depends on the size of the partial bitstream
as well as the bandwidth of the configuration method. The
configuration remains static outside these two boxes. In this
experiment, we use only one processor core as well as the
PL part. In real-life tracking systems, the other cores would
likely be running other tasks such as detection.

RP1

RP2

Fig. 6. Layout of the FPGA with the two reconfigurable partitions (RP1 and
RP2).

The different Kalman filters are generated using Vivado
HLS, a high-level synthesis tool. This allows to generate
different configuration quickly, while ensuring that the dif-
ferent configurations are compatible. Indeed, the RM needs
to have the same inputs, outputs and operating frequency. In
our tracking example, the target lies on a plane whose axis
are x and y, x ⊥ y (Figure 7). The observation vector is
z = [x, y, sx, sy], with sx and sy the speeds respectively along
the x and y axis.

2) KF / EKF models: The generated Kalman filters are
listed below. They correspond to different trajectories assump-
tions. Note that a state is considered constant when it is not
to be seen in the list.
Linear Kalman filters:

KF-1 : State vector Xn = [xn, yn, sxn, syn]
State transition equations :{
xn = xn−1 + sxn−1 ∗ dt
yn = yn−1 + syn−1 ∗ dt

(3)

KF-2 : State vector Xn = [xn, yn, sxn, syn, axn]
State transition equations :{
xn=xn−1+sxn−1 ∗dt ;sxn=sxn−1+axn−1 ∗dt
yn=yn−1+syn−1 ∗dt

(4)

KF-3 : State vector Xn = [xn, yn, sxn, syn, ayn]
State transition equations :{
xn=xn−1+sxn−1 ∗dt
yn=yn−1+syn−1 ∗dt ;syn=syn−1+ayn−1 ∗dt

(5)

KF-4 : State vector Xn = [xn, yn, sxn, syn, axn, ayn]
State transition equations :{
xn=xn−1+sxn−1 ∗dt ;sxn=sxn−1+axn−1 ∗dt
yn=yn−1+syn−1 ∗dt ; syn=syn−1+ayn−1 ∗dt

(6)

Extended Kalman filters:
EKF-1 : State vector Xn = [xn, yn, sxn, syn]

State transition equations :{
xn = yn−1 ∗ yn−1
yn = yn−1 + syn−1 ∗ dt

(7)

EKF-2 : State vector Xn = [xn, yn, sxn, syn]
State transition equations :{
xn = xn−1 + sxn−1 ∗ dt
yn = xn−1 ∗ xn−1

(8)

EKF-3 : State vector Xn = [xn, yn, sxn, syn]
State transition equations :xn = −9.81/2 ∗ (yn − cst)2 ∗ 1/(30∗cst)

+sy0 ∗ sin(π/2) ∗ (yn − cst) + cst
yn = yn−1 + syn−1 ∗ dt

(9)

3) Benchmark trajectory: The trajectory used for the tests is
based on a combination of sub-trajectories that follow different
Kalman models. In this paper, we use a trajectory where the
first part corresponds to the equation yn = x2

n. In the second
sub-trajectory, both x and y have constant speed. In the third
part, x and y have constant accelerations. The fourth and
last part follows the equation of EKF-3. The green curve in
Figure 7 shows the complete composed trajectory. Finally, the
observed values, which are the blue crosses in Figure 7, result
from the addition of the target trajectory and a proportional
Gaussian noise. These data are processed by the implemented
Kalman filters used for the experiments.

4) Experience procedure: When the designs are synthe-
sized and implemented, the partial bitstreams are loaded in
a flash memory. At power-up, the PS loads all the bitstreams
in DDR RAM. When a reconfiguration is triggered, the PS
feeds the processor configuration access port (PCAP) with the
corresponding bitstream.
On power-up, the PS starts a benchmark to test our design.
First, the input data is extracted from the SD card and stored
in DDR4. Then, the application reconfigures the two RP to
set the system into a known state. Depending on the scenario,
the two initial configurations may differ. Finally, the processor
transmits the data samples and gets the results along with QoS



0 2,000 4,000 6,000 8,000
0

2,000

4,000

6,000

8,000

DPR

x position (m)

y
po

si
tio

n
(m

)
trajin
trajreal
trajout

Fig. 7. Tracking positions with DPR (scenario 3)

values. The output of the best KF is first stored into DDR4,
and then saved to the SD card to be plotted and analyzed.

In our test bed we consider three different scenarios. In the
first one, the two initial configurations are the KF-1 and the
EKF-3. Since these systems have strongly different behaviours,
the system should easily find the best KF. The second scenario
starts with EKF-1 and EKF-3. None of these configurations is
a good model at the beginning of the tracking. This scenario
can show if the system is able to react fast to a situation where
none of the configurations is good and there is a risk to lose
the target. The third and last scenario begins with KF-3 and
KF-4. As these configurations are close to each other, it will
make the configuration choice more challenging.

D. Results and analysis

These tests involve a reconfigurable architecture with active
QoS-driven DPR and the best Kalman without reconfiguration
(model described in equations of KF-4). The results obtained
with the benchmarks are given in Table I. To compare the
different approaches, we measure the likelihood and com-
pute its median. We also collect the maximum and more
importantly the minimum measurement of the likelihood, as a
small value could cause the system to lose the target. We can
observe that for the third scenario, the likelihood median is
only slightly better when using DPR. However, for the second
scenario where the system starts with bad configurations, the
QoS value is much better with the reconfiguration system.
Hence, the DPR system is better at tracking a target with an
a priori unknown trajectory. We also notice that the minimum
likelihood measurement is higher with reconfiguration. This
implies that the DPR system has less risk of losing the target
than the one without DPR. All three scenarios show the same
minimum and median values of the likelihood. This shows that
our system is robust against its initial condition.

Figure 7 shows the third scenario case of a tracking using
DPR. The green curve represents the real trajectory, while

TABLE I
RESULTS OF TRACKING

Tracking Sub-trajectory2 Likelihood DPR No DPRScenario1

Scenario 1

Part 1
Min 0.4156 0.4232
Max 0.9970 0.9984

Median 0.8074 0.8077

Part 2
Min 0.3898 0.3889
Max 0.9936 0.9938

Median 0.6915 0.6910

Part 3
Min 0.2580 0.2529
Max 0.9835 0.9777

Median 0.6103 0.6100

Part 4
Min 0.2144 0.2128
Max 0.9939 0.9812

Median 0.5848 0.5790

Scenario 2

Part 1
Min 0.4301 0.1640
Max 0.9939 0.9796

Median 0.8025 0.4567

Part 2
Min 0.3915 0.1198
Max 0.9853 0.8620

Median 0.6968 0.3708

Part 3
Min 0.2582 0.1177
Max 0.9934 0.9445

Median 0.6119 0.2874

Part 4
Min 0.2144 0.0868
Max 0.9894 0.9872

Median 0.5845 0.2954

Scenario 3

Part 1
Min 0.4156 0.4227
Max 0.9976 0.9982

Median 0.8063 0.8077

Part 2
Min 0.3898 0.3897
Max 0.9936 0.9966

Median 0.6915 0.6922

Part 3
Min 0.2580 0.2529
Max 0.9835 0.9955

Median 0.6103 0.6098

Part 4
Min 0.2144 0.2114
Max 0.9939 0.9748

Median 0.5848 0.5803
1Scenarios are described in subsection IV-C4
2Sub-trajectories are defined in IV-C3

0 2,000 4,000 6,000 8,000
0

2,000

4,000

6,000

8,000

x position (m)

y
po

si
tio

n
(m

)

trajin
trajreal
trajout1
trajout2
trajout3

Fig. 8. Tracking positions without DPR (scenarios 1 to 3)



the red one shows the outputs of the reconfigurable Kalman
system. In this example the Triggered-based reconfiguration
(namely when the distance to the model exceed the threshold
value) occurs once at x = 6314 when the trajectory radically
changes. All other reconfigurations occur periodically at the
end of each time-window and can provide the best KF that will
be eventually selected according to the QoS comparisons, this
is for instance what happens at x = 3715. Figure 8 shows
the output trajectories for the three scenarios and without
DPR. The differences between Figures 7 and 8 highlight the
influence of reconfiguration on the Kalman filtering.

These improvements are allowed by the knowledge of the
QoS value throughout the process. Thanks to this value, the
system can choose the best model at a given time. Moreover,
the likelihood also allows to know when the models are not
adapted and the system can adapt early. This method requires
good knowledge about the application, and extracting a QoS
indicator may not always be straightforward.

V. CONCLUSION

The paper first demonstrates the opportunity of using DPR
to virtually extend available HW resource of an embedded
system in the domain of Radar. The embedded system can
dynamically implement HW accelerators according to ap-
plication requirements in order to speed-up the application
execution while saving CPU time.

The study also shows the importance of considering the QoS
to drive the configuration. This point is rarely considered in the
DPR literature since it requires transdisciplinarity. However, it
is crucial to fully benefit from the expert knowledge (radar,
signal processing in our case study). This knowledge can be
captured and efficiently used only with a methodology that
clearly separates concerns. Based on this methodology, the
next steps will address the design of an architecture pattern for
the domain of Radar including complex task such as Detection
based on Range-Doppler maps and realistic Kalman filters
with large state space. This new application context will also
require to explore different adaptation strategies.

Finally, we intend to define API to collect QoS and API
to select configuration. This interface must be generic for
application experts. Nevertheless, the implementation will be
specific to the target architecture and, therefore, handled by
HW designers.

REFERENCES

[1] D. Govind Rao, Aalhad P. Deshpande, N. S. Murthy, and A. Vengadara-
jan. Digital beam former architecture for sixteen elements planar phased
array radar. In 2013 The International Conference on Technological Ad-
vances in Electrical, Electronics and Computer Engineering (TAEECE),
pages 532–537, Konya, Turkey, May 2013. IEEE.

[2] An architectural blueprint for autonomic computing. White Paper 3rd
Edition, IBM Corporation, June 2005.

[3] Russell Tessier, Kenneth Pocek, and Andre DeHon. Reconfigurable
Computing Architectures. Proceedings of the IEEE, 103(3):332–354,
March 2015.

[4] Emmanuel Seguin, Russell Tessier, Eric Knapp, and Robert W. Jackson.
A Dynamically-Reconfigurable Phased Array Radar Processing System.
In 2011 21st International Conference on Field Programmable Logic
and Applications, pages 258–263, Chania, Greece, September 2011.
IEEE.

[5] Francisco Fons, Mariano Fons, Enrique Cantó, and Mariano López.
Real-time embedded systems powered by FPGA dynamic partial self-
reconfiguration: A case study oriented to biometric recognition applica-
tions. Journal of Real-Time Image Processing, 8(3):229–251, September
2013.

[6] Xuzhi Zhang, Xiaozhe Shao, George Provelengios, Naveen Kumar
Dumpala, Lixin Gao, and Russell Tessier. Scalable Network Function
Virtualization for Heterogeneous Middleboxes. In 2017 IEEE 25th
Annual International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), pages 219–226, Napa, CA, USA, April 2017.
IEEE.

[7] Norma Montealegre, David Merodio, Agustin Fernandez, and Philippe
Armbruster. In-flight reconfigurable FPGA-based space systems. In 2015
NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pages
1–8, Montreal, QC, June 2015. IEEE.

[8] Jean-Philippe Diguet, Yvan Eustache, and Guy Gogniat. Closed-
loop-based self-adaptive Hardware/Software-Embedded systems: Design
methodology and smart cam case study. ACM Transactions on Embed-
ded Computing Systems, 10(3):1–28, April 2011.

[9] Chabha Hireche, Catherine Dezan, Stéphane Mocanu, Dominique Heller,
and Jean-Philippe Diguet. Context/Resource-Aware Mission Planning
Based on BNs and Concurrent MDPs for Autonomous UAVs. Sensors,
18(12):4266, December 2018.

[10] Tobias Kalb and Diana Gohringer. Enabling dynamic and partial
reconfiguration in Xilinx SDSoC. In 2016 International Conference
on ReConFigurable Computing and FPGAs (ReConFig), pages 1–7,
Cancun, Mexico, November 2016. IEEE.

[11] Lennon Cork. Aircraft Dynamic Navigation for Unmanned Aerial
Vehicles. PhD thesis, Queensland University of Technology, May 2014.

[12] Pierre Tandeo, Pierre Ailliot, Marc Bocquet, Alberto Carrassi, Takemasa
Miyoshi, Manuel Pulido, and Yicun Zhen. Joint Estimation of Model and
Observation Error Covariance Matrices in Data Assimilation: A Review.
arXiv:1807.11221 [stat], July 2018.


	Introduction
	State of the art
	Methodology
	Separation of concerns
	Reconfigurable architecture model
	Reconfiguration control system

	Case study : Kalman-based tracking
	Reconfigurable architecture model
	QoS estimation and DPR decision
	Initialization
	Observation and decision
	Reconfiguration
	Convergence

	Experience setup
	HW/SW platform
	KF / EKF models
	Benchmark trajectory
	Experience procedure

	Results and analysis

	Conclusion
	References

