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ABSTRACT

Back-in-time debugging is an appealing solution to inves-
tigate bugs for which there is no obvious relation between
their symptoms and their origin. In this paper we implement
a tool named the Back-in-time inspector for Pharo, which
provides an execution history of evaluated expressions se-
lected from the source code. We evaluate the back-in-time
inspector by investigating an unresolved bug which we are
able to solve using our tool.
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1 INTRODUCTION

One of the hardest difficulties in debugging is the distance
between the cause of a bug and its symptoms [7]. For
example, the state of a problematic object can be resulting
from a distant origin, that does not appear clearly when the
bug occurs. Sometimes a very small change in a program
can lead to problems that seem completely unrelated. These
bugs can be hard to understand and to fix. Omniscient
debuggers [8] are interesting solutions to investigate such
bugs, because they allow to explore and navigate forwards
and backwards in time through the post-mortem execution
of a program. These solutions usually provide dedicated
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debuggers and produce a large amount of recorded data
issued from code instrumentations.

Collectors [4] is an ongoing work of the authors that allows
the developer to define collection points in the control
flow of a program. Collection points are non-intrusive
instrumentations of specific expressions selected by the user.
When these expressions are executed, the objects resulting
from their computation are collected. The developer can
define transformations for debugging purposes (e.g. logging)
which are applied to the objects as they are collected during
runtime. In this first model of Collectors, objects are not
recorded, and are released as soon as they are claimed by
the garbage collector.

We propose an extension of Collectors that records collected
objects resulting from an instrumented expression and all
its sub-expressions. We use this extension to implement a
back-in-time inspector. The back-in-time inspector shows
the recorded objects resulting from an expression execution.
For each passage in the control flow of an instrumented
expression, a record of the expression evaluation is created
and stored in the program’s memory. This record contains
the object resulting from the expression evaluation and its
associated meta-information (such as the execution stack).
This allows to dynamically scope back-in-time records
to very specific expressions in the program. This helps
the developer to investigate suspicious segments of the
code that could be part of a problem, and access contex-
tual (meta) information of a particular expression evaluation.

The contribution of this paper is an extension of Collectors
to support back-in-time capabilities and a back-in-time in-
spector to visualize object collection histories. We present an
implementation of Collectors and the back-in-time inspector
in Pharo [3]. We illustrate Collectors through a debugging
session of a hard bug that we solved with the help of the
Collectors back-in-time inspector. The source of this bug was
unknown prior to our investigation.
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The paper is structured as follows: section 2 describes the
Pillar bug, an unsolved bug typical of the distant origin/symp-
tom problem that can make debugging very hard. In section
3, we describe how we extended Collectors to support back-
in-time histories of evaluated expressions and the associated
tool, namely the back-in-time inspector. In section 4, we use
the back-in-time inspector to investigate the Pillar bug, we
find its source and we successfully devise a bug-fix. After a
discussion of the debugging session in section 5, we discuss
related work in section 6 and conclude in section 7.

2 MOTIVATING EXAMPLE: THE PILLAR
BUG CASE

The Pillar bug problem is an error encountered by the
Pillar[2] tool, a document generator from a mark-up type
syntax implemented in the Pharo language. Pillar is a
sophisticated tool that is tested through more than 3000
unit tests. The introduction of accessors for a new instance
variable in a class leads to the failure of a particular but
unrelated test. This problem is considered difficult to solve
[6], as there is no obvious link between the context in which
it appears and its symptoms.

The precise description and reproduction steps of the prob-
lem are publicly available!. A new instance variable named
disabledPhases is added to a configuration class. Two acces-
sors are introduced: disabledPhases for the instance variable
reading, and disabledPhases: for the variable modification. By
default, if the variable disabledPhases has not been initialized,
its accessors initialize it as an empty array. Before the intro-
duction of the accessors, the execution of all unit tests was
successful. After the definition of these accessors, one of the
unit tests fails. The error seems to be completely unrelated to
the changes, which only consisted of a new instance variable
and the definition of its accessors (without using them).

PREPubMenujustHeaderTransformer>>actionOn: anlnput
A(self class writers includes:
anlnput configuration outputType writerName)
if True: [maxHeader :=
self maxHeaderOf: anlnput input.
super actionOn: anlnput ]
ifFalse: [ anlnput ]

Figure 1: "The symptom of the bug is that outputType
is nil. However, this piece of failing code plus the fact
that 3166 tests are still working, give us no clue about
the relation between the change and the bug." [6]

Uhttps://github.com/guillep/pillar-bug
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The problem is also described by Dupriez et al. [6]
(Figure 1). The error appears in the method actionOn:
of the PREPubMenujustHeaderTransformer class. The
accessor outputType of a configuration returns a nil value,
which causes the test failure. Only a very reduced set of
tests fail, and the problem symptom described by Figure 1
has no obvious relation to the direct modification made,
namely the adding of the two accessors to the new variable
disabledPhases.

This problem description seems rather abstract. However,
this is where we are left after introducing only two accessors:
a failing test, an error that is unrelated to the (trivial) modifi-
cation, and not enough knowledge of the Pillar tool to know
where to start. During a first investigation, traditional debug-
ging tools did not help much. Exploring the stack from the
exception showed absolutely no clue about what the problem
was or how it was related to the modification. Breakpoints
in the disabledPhases method were tedious to use, because
the method was called many times and seemed to return a
value which, as far as we could guess, was correct — or at
least not suspicious. By inserting logging code, we saw that
the getter method was called 42 times in a loop, and each call
except the last one returned the same value (an array with 2
elements). We did put a conditional breakpoint to halt the
execution on this particular value change, but again there
was no indication of why this value was different from the
other. Exploring the stack was not helpful either, because
the more we got back-in-time in the stack, the more difficult
it was to know the impact of the inspected code on the final
observed result. As for the setter method, the same method-
ology only showed that it was called once and initialized the
above mentionned array which seemed to be a correct value.

3 COLLECTORS: THE BACK-IN-TIME
EXTENSION

In this section we describe the base Collectors concept [4]
and its extension to record collected objects. When we talk
about recording objects, we consider that the development
environment and the program share the same memory space.
Therefore, the developer can access saved objects after an
execution. The impact of objects recording on the memory
and on performance is not addressed, and this limitation is
discussed in sections 3.5 and 5.

3.1 Object collection: recording objects
from expression evaluations

The original Collectors model collects a single result of an
evaluation of an expression. A collector targets an abstract
syntax tree node, which is the abstract representation of a
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source code expression. At runtime, each time this expres-
sion is evaluated, the resulting object will be collected and
stored in memory. This is illustrated in Figure 2, in which
the dotted line represents the target expression. In the origi-
nal model [4], collected objects are released when they are
claimed by the garbage collector. In this extension, objects
are recorded and kept in the program memory. At the mo-
ment, there is no model describing how objects are saved
and the program memory refers to the memory space that
it shares with the development environment, as in live en-
vironments such as Pharo. Therefore, an object is "saved"
because we keep a reference to this object during and after
the program execution.

self print: Random
new next

collects

Figure 2: A collector: the dotted line represents the tar-
get AST node (on the left), while the resulting object
is stored each time it is evaluated at runtime (on the
right).

3.2 Deep collection: collecting results from
sub-expression evaluations

To provide a local, scoped back-in-time feature to the object
collection, we expand the concept of object collection through
the deep object collection. When installing a collector on a
node, the collector will try to install itself as deep as possible
in the AST. Each child of the original target node will be tar-
geted by the collector. As depicted by Figure 3, at runtime the
resulting object of each child’s evaluation will be collected.
As the AST evaluation order is stable and deterministic, the
intermediate results from the nodes evaluation are simply
stored in an ordered collection. The last object stored in the
collection is the result of the evaluation of the main instru-
mented expression. Each result in this collection annotates
the node from which it was issued (Figure 3), and the whole
collection is released (and the node annotations removed)
when the collector itself is uninstalled. Each evaluation of the
main target expression will produce such ordered collection,
with a timestamp as a unique identifier.

3.3 The model

The Collector’s extended model is illustrated in Figure 4.
To instrument expressions with object collection behavior,
a collector specifies one or more collection points. A Col-
lectPoint is a position in the control flow of a program. It
refers to an expression of the program, namely a node of an
abstract syntax tree. When a collector targets a high level
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Collected objects from

Eval Xpression . )
aluated expressio sub-expressions evaluation
e

e

self a Printer
Random ‘ Random
class
a
4 Random new Random
i Random new next 4
self print: Random g
5 new next

Figure 3: A deep collector: the collector is installed on
all children of the target node (on the left), and ob-
jects resulting from each evaluation are collected at
runtime (on the right). The collection order depends
on the evaluation order of the AST.

entity or concept, e.g. an instance variable, it instantiates a
collection point for every expression referencing this entity
in source code, e.g. all assignments and all reads concerning
an instance variable.

An OmniscientRecord holds collected objects for a par-
ticular ColleciontPoint execution. When a CollectPoint is
executed, an OmniscientRecord is generated and stored in
memory. Conceptually, an OmniscientRecord is a data anno-
tation of a collection point. An OmniscientRecord contains
a reference to the collected object, a deep copy of the object
to capture its state at collection time, and meta data from the
context of the current execution (MetaData). Throughout
the program execution, a CollectPoint accumulates Omni-
scientRecords to form what we call an expression evaluation
history.

A collector can request meta data from the execution of its
collection points. A MetaData is either a direct reification of
the collection point execution context, or a transformation of
objects from this context (e.g. the name of the active method
or the execution stack). Requests for meta data are specified
by the user or by a tool, as instances of MetaDataRequest. At
collection time, these requests are performed by the collector
and stored in the generated OmniscientRecord. A MetaData
object containing transformations of context objects also
contains copies of the source objects used in these transfor-
mations.

Finally, the CollectBehavior defines how a collector per-
forms object collection when a particular CollectPoint is
reached. When a target expression is evaluated at runtime,
the collection behavior handles the deep object and meta
data collection through sub-expression evaluation (Figure 3).
The Collect Behavior manages how OmniscientRecords are
timestamped, which defines how they relate to each other.
The timestamp is only used as a mean to label collected data



IWST ’18, September 10-14, 2018, Cagliari, Italy

objectCopy

Object MetaData

sourceObject metaDatas

k ’

OmniscientRecord |~

annotates 1

CollectPoint

* 1.n

omniscientRecords

l

Collector

collectPoints

metaDataRequests|
MetaDataRequest

*

CollectBehavior

behavior

Figure 4: The Collectors back-in-time extension
model.

with a unique identifier. Omniscient records sharing the same
timestamp are all resulting from the same passage in the con-
trol flow of the evaluated expression. The Collect Behavior
also restricts the scope of the available meta data requests.
For example, for collection points based on abstract syntax
trees, not all nodes provides the same reifications at runtime.

3.4 Tools for debugging

Collectors provide an API and a tool-set. Targeting AST
nodes with Collectors is integrated into the development
environment as dynamic source code interactions. A config-
uration tool helps defining Collectors and meta data requests,
and the Back-in-time inspector (Figure 5) displays the col-
lected objects with their local history, in regards to the node
from which they originated. To define a collector, the user
has to select expressions from the source code and specify
the entity to collect (Figure 6). Further description of the
tools and the API are available online?.

3.5 Implementation

Our implementation® is based on Reflectivity [5] in Pharo
[3]. Reflectivity provides metalinks, which are annotations of
AST nodes. When an annotated node is evaluated, it triggers
the execution of its annotations (i.e., metalinks). Basically, a
metalink references an object and a message selector. When

2https://github.com/ClotildeToullec/Collectors/wiki
3https://github.com/ClotildeToullec/Collectors
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the metalink is executed, it sends the corresponding mes-
sage to the referenced object, thus executing meta-behavior.
In this context, this object is called a meta-object. A met-
alink can also be configured with a list of requested meta-
informations to be reified (RFReification). In that case when
the node is executed, the metalink passes these reifications
as parameters to the message sent to the meta-object. Which
reifications are available depends on the kind of node on
which the metalink is being installed.

For each collection point, the associated collector de-
fines a single metalink to annotate the AST. An instance of
CollectBehavior from Figure 4 plays the role of meta-object
for all metalinks defined by a collector, and uses dedicated
metalink installation strategies to target the collection points.
In addition, the user can provide transformations from the
reifications or from the collected object. These transforma-
tions produce user or tool specified meta-data, that can be
used either for tool-based features or for the user’s debug-
ging needs. For example, the Back-in-time inspector uses
transformations from the Reflectivity context reification to
produce an execution scoped stack that displays the senders
and the contextual values that lead to a particular object
collection.

Reflectivity is the sole mandatory requirement to imple-
ment Collectors. We extended Reflectivity with an API* to
ease the targeting of the nodes that we want to annotate,
for example all assignments of an instance variable. Cur-
rently in Reflectivity all metalinks are lost when recompiling
a method (e.g. when debugging the program). Our exten-
sion automatically reinstall links for high level targets (e.g.
instance variables) after a method recompilation.

This prototype is limited in the back-in-time navigation
of the recorded objects. We make deep copies of collected
objects so the end user can observe how their state evolve
throughout the program execution. We make shallow copies
of contexts, because the deep copy behavior for contexts
is not implemented in Pharo (although it could be done).
Terefore we cannot see the changes to objects referenced
by copied contexts from reified execution stacks. This is a
limitation to the back-in-time power of this implementation.

Performance overhead and additional memory consump-
tion were not evaluated for this prototype, although they
constitute a known drawback for back-in-time approaches.

4 USING COLLECTORS TO INVESTIGATE
THE PILLAR BUG

This section describes a debugging session with Collectors.
We try to track the Pillar bug and to formulate a hypothesis
about the reasons of the problem.

4https://github.com/StevenCostiou/Reflectivity-dev
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Collection time Collected sub-expressions

9:20:42.108183 am |:| | Expression Stack
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PRPillarConfiguration >>

initialize
[o:20:42.120972am valuechange] 1 super #Euper initializq
9:20:42.1261489m paldechange’ |7 superinitialize | 3
9:20:42.130491 gm  valie change
9:20:42.1313 value dhange .
an Source code
Sub-expressions
evaluation results
Collected
object
Execution Stack:
Where does this record comds from ?
a PRPillarConfiguratic... Meta data Stack Source
Variable Value PRP{IlarConﬁguratfon>>mit\a|\ze parseFile: aFile
2 self a PRPillarConfiguration[Del, PRPillarConfiguration class(Behyior)=>new

» (£ configurationName nil PRParsingPhase»parseFile:

| result subConfiguration |

I ..CO -emoved for r

dability...

PRParsingPhase=>parseinput:
PRParsingPhase>>actionOn:

» {} disabledPhases
» (£} magritteDescription

an Array [0 items] ()
a MAPriorityContainer label |
» () parent a PRPillarConfiguration[Del |

» {} properties a Dictionary [0 items] ()

LPPhase=>>executeOn:

[ :each | nextValue := binaryBlock value: nextValue value: each in €

OrderedCollection=>do:

PRParsingPhase class(PRPhase class)>>executed
[:input | self executeOn: input ] in PRParsingPhase class(PRPhase ¢

[ :subResult :next | next executeOn: subResult | in LPPipeline>>exec

subConfiguration :=

Stack : :
source code self configurationclass new.
. subConfiguration

parent: self configuration.
CCMagritteDictionaryReader
writeDictionary: result properties copy
toConfiguration: subConfiguration.
self configuration: subConfiguration.

Figure 5: The Back-in-time inspector. The first row shows the different records from the instrumented expression
evaluation (Collection time), the records from the subexpressions evaluations (Collected sub-expressions) and the
source code visualization. The second row shows, in order: the recorded object for the selected sub-expression,
the execution stack that lead to the evaluation of the whole instrumented expression and the source code of
the selected method in the execution stack. The context of each method in the execution stack can be inspected
through the contextual menu to see the available contextual information (e.g. the values of temporary variables).

4.1 Limitations of traditional debugging

The Pillar bug is difficult to understand. It happens in a spe-
cific unit test when an instance variable and its two accessor
methods are added to a configuration class of Pillar. When
the error occurs, there is no indication about how it may
relate to these accessors.

Investigating this bug with traditional techniques, like
breakpoints or simple logging, is unpractical and requires a
lot of effort. Breakpoints are not efficient. We first need to
guess where to put them, and only halt when the conditions
under which we can observe the bug are met. The problem
is we have no clue about what could these conditions be.
Logging implies inserting statements in the source code.
As we do not know where to put these statements, such
investigation requires polluting the source code until we find
a lead. Then we would have to remove all useless logging
statements to focus on this lead, and compare a healthy
execution with a faulty one.

4.2 Program observation with Collectors
before the problematic modification

We briefly inspect the program before the introduction of
the problematic accessors to study a correct execution of the
failed test. We note that the accessors, though not existing,
are referenced and called in the project source code. This call
to the disabledPhases accessor is shown in Figure 7. We define
a collector (Figure 6) to record the history of the values result-
ing from the execution of this call (the source code highlight
in Figure 7). During a healthy execution, several object col-
lections are performed, meaning that the program executes
the instrumented code several times. At each passage in this
control flow, the result of the code evaluation is stored. This
expression always returns the same value, which is an array
containing two strings : ‘sections’ and ’'justKeepHeaders’.
During a healthy execution, the evaluation result of this
expression is therefore an invariant.

A quick observation of the code shows that, when the
accessor disabledPhases is not implemented, the reception
of this message triggers a doesNotUnderstand exception. In
the impacted configuration class, the doesNotUnderstand
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isEnabled: aConfiguration
. - . ae o N

A (aConfiguration disabledPhases, Coll Gl Instance Variable

Suggestions... Ctrl +T» Receiver
» Doiit Ctrl + D Temporary
» Print it Ctrl + P Resulting value |

Figure 6: Definition of a CollectPoint. The tool inte-
grates in the environment to ease the instrumenta-
tions.

isEnabled: aConfiguration

E A (aConfiguration disabledPhases includes: self key) not

Figure 7: Collection point on the call to the disabled-
Phases accessor : each time the program will execute
this control flow, the evaluation result of the expres-
sion will be collected. The button on the left size opens
the execution history for the highlighted expression.

behavior is instrumented to capture some messages (for ex-
ample disabledPhases) and redirect them to a dictionary con-
taining the configuration properties. A configuration can
also have a parent configuration. If a property is not found
in the current configuration, for example disabledPhases, the
property is looked up in its parent configuration until the
property is found or until the topmost parent is reached. If the
property is still not found in the topmost parent, the nil value
is returned by the doesNotUnderstand instrumentation. In-
serting exception handling code or putting a breakpoint to in-
vestigate the behavior of the disabledPhases property lookup
in the doesNotUnderstand: method is tedious, because this
mechanism is used widely by Pillar for all properties of its
configurations.

4.3 Program observation after the error
was introduced

After the introduction of the accessors in the source code, the
test execution fails. The history of the instrumented expres-
sion in Figure 7 shows that throughout the test execution,
the collected objects do not always have the same state (Fig-
ure 8). The invariant was broken, and replaced by an empty
array. This is an evident difference between the healthy exe-
cution of the program and its problematic execution, and it
establishes a first investigation lead.

The history presented in Figure 8 contains the results of
the instrumented expression evaluations, but also of the eval-
uations of its subexpressions. Thereby, when the collector
collects the result of sending the disabledPhases message
to the aConfiguration object (Figure 7), it also collects the
evaluation result of the subexpression aCon figuration. We
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6:14:28.942834 pm

6:14:28.942862 pm #('sections' 'justkeepHeaders’)
6:14:28.950501 pm Maluechange #()
6:14:28.95053 pm

Figure 8: State of the collected objects does vary: the
history of the collector indicates with a label that the
collected value changed (the collected values from the
inspector have been pasted to the right of the list for
better lisibility). The object collected by the instru-
mented expression seems not change during a healthy
execution for this particular test.

can therefore compare not only the problematic result of
the global expression, but also the values and the states of
the objects and evaluations used in that expression. The
comparison of the configurations before and after the invari-
ant alteration shows that the configuration state was not
modified but that the two objects are different. The origi-
nal configuration is replaced during the test execution by
another one which state is not what we expect.

4.4 Tracking and correction of the problem

This new lead consists of looking for the moment when
the configuration with a correct state is replaced by a new
configuration with an incorrect state. We decide to collect
all the objects of this particular configuration class at their
creation. We introduce for this purpose an initialize method
in our configuration class to be able to easily collect its result,
that is for every new instance of our configuration. We make
sure that the addition of this method has no impact on the
test result by executing the whole test sequence in a healthy
version of the application, without the problematic accessors.

After a new execution of the failing test, the configura-
tion objects creation history shows several instantiations
of the class (Figure 5). The inspection of the first collected
configuration shows a correct state of the disabledPhases
corresponding to the invariant. The other collections har-
vested configurations with an incorrect state: an empty array
that does not correspond to the expected invariant. For each
collection, it is possible to consult the execution stack that
lead to the instrumented expression execution.

The execution stack of the first collected configuration
shows that it is the one created at the test initialization. It
is notably configured via the configuration method that
we find in the stack and that initializes the disabledPhases
invariant (Figure 9). The execution stack of the second
configuration shows that the latter is created by a completely
different path (Figure 5). In particular, the configuration
instantiation is called from a parseFile: method. This method
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configuration
" super configuration
"we disable these phases as they pollute the tests"
disabledPhases: #('sections' 'justKeepHeaders');
yourself

Figure 9: Method originally called by the unit test
to initialize the configuration, found in the execu-
tion stack of the first collected configuration : the
disabledPhases invariant is correctly initialized.

instantiates a new configuration and gives it the previous
configuration — in that case the original configuration, as
parent. This new configuration is not initialized and notably
no property or instance variable of this configuration is
modified.

We are therefore able to state a hypothesis. In the non-
problematic case before the introduction of the accessors
in the configuration class (Figure 10), every send of the
messages disabledPhases and disabledPhases: triggers a
doesNotUnderstand exception. The behavior of the latter is
instrumented to look in the configuration properties for the
disabledPhases property. In the case that we observe in the
stack shown in Figure 5, the newly created configuration is
not initialized. Every attempt to look for the disabledPhases
property will end up in the doesNotUnderstand, that will
look for the property in the parent configuration. This behav-
ior explains why the property is always correctly initialized
and why its value is invariant.

disabledPhases -> nil
properties ->
disabledPhases:
#('sections' 'justKeepHeaders')

Original
Configuration

t t
parent return property

property not
found: lookup in
parent

Sub disabledPhases -> nil

Configuration [Properties ->nil s

X
doesNotUnderstand:

start property lookup
messageSend

disabledPhases

Figure 10: Pillar configurations lookup: the disabled-
Phases is found through a parallel lookup in the prop-
erties of the configuration and its parent.

In the problematic case after the introduction of the ac-
cessors in the configuration class (Figure 11), the sending of
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disabledPhases ->
Original #('sections' justKeepHeaders')
Configuration |properties -> nil

parent

Sub disabledPhases -> #( ) "€turn #()

Configuration properties -> nil

message
understood

messageSend

disabledPhases

Figure 11: After the introduction of the disabledPhases
accessor, the message is always understood by the con-
figurations and the standard lookup always returns
the value of the disabledPhases instance variable.

the messages disabledPhases and disabledPhases: does not
trigger a doesNotUnderstand anymore, because the mes-
sage is now understood by the configuration object. When
it receives this message, the new configuration immediately
executes the accessor that returns its instance variable initial-
ized as an empty array by default. There is no more lookup
for the property in the parent configurations, since the in-
strumented behavior of the doesNotUnderstand: method is
not executed anymore. The configuration does not respond
to this message in a coherent way, and the returned value is
not invariant anymore.

subConfiguration disabledPhases:
self configuration disabledPhases

Figure 12: Experimented correction after the creation
of a new sub-configuration : copy of the disabled-
Phases from the parent configuration.

Furthermore, the comment in the code of Figure 9 indi-
cates that the test requires by design this specific setting
of the disabledPhases property. The error occurs from the
particular semantics placed on the doesNotUnderstand be-
havior of configurations, that is broken by the introduction
of the accessors in the configuration class. We experiment a
simple correction (Figure 12), that consists of updating the
disabledPhases variable state of every new configuration
from its parent configuration. The unit test does not trigger
any more errors and the complete sequence (more than 3000
tests) also ends successfully.
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5 DISCUSSION

The Pillar bug is a hard problem, because the semantics
established by Pillar are not obvious for someone external to
the project. An apparently harmless modification provokes
an error, the difficulty which lies in the fact that the
relationship between the modification made to the system
and the apparent symptom of the error are very distant from
one another [7].

The use of Collectors and their tools allowed us to find the
error origin and to understand it in a few minutes. The tools
just use the language model to implement the advantages
of the back-in-time or omniscients debuggers [8]. The visu-
alization of the program execution recordings allows one
to follow object evolution and interactions. But the contri-
bution of Collectors lies in the used approach, in which the
developer uses his or her knowledge of the program and the
resulting intuition to manually select the expressions to be
instrumented. The evaluation result of such expressions will
be collected every time they are executed, as well as all the
objects resulting from the evaluation of its subexpressions.
For each collection, elements contextual to the execution
are recorded to help the developer analyze the results. For
example, the following elements have been crucial during
this investigation :

o The observation of a broken invariant state between a
healthy execution and a problematic execution helped
us understand that the configuration objects changed,
and that we had to track down where the configuration
with the erratic state was instantiated.

e The access to the execution stack (with its contexts)
leading to the collection of a problematic configuration
allowed us to find the cause of the incoherent state
almost immediately.

These steps stand however on a preliminary analysis of the
studied program code, in order to gain sufficient knowledge
and comprehension to make hypotheses. The tool does not
give a solution to the problem, but supplements this knowl-
edge of the program by giving the possibility to instrument
suspicious expressions promptly and intuitively. The easy
setup of Collectors and its integration in the development
environment are very important for this purpose.

The definition of the debugging scope, i.e. which code
should be instrumented and which objects should be ana-
lyzed, is facilitated by the possibility to specify collectors
from the source code following the developer’s intuition.

This approach does not invalidate the use of a complemen-
tary standard debugger. For example, the use of breakpoints
at keys locations in the code allows to stop and inspect the
program. There is however no guarantee that the halt oc-
curs before the problematic change of state, or that it occurs
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within a reasonable time during a manual step by step execu-
tion in the debugger. If the breakpoint — or the step by step ex-
ecution — misses the critical point in the program execution
where a state is altered, for example here the disabledPhases
property, the developer has to start the debugging session
again. The breakpoint does not allow to easily visualize the
state changes of an object between different executions and
to compare some of their specific aspects to their context —
for example the execution stacks. Furthermore, the instru-
mentation to observe a particular object can be complex and
need code insertion on different locations in the program.
The non-intrusive aspect of the Collectors, inherited from its
Reflectivity [5] implementation layer, avoids such insertions
and any code pollution by debugging instructions.

We did not evaluate performance overhead nor additional
memory consumption resulting from the use of the back-
in-time inspector. In the context of a single unit test, there
was no visible slowdown from the developer’s point of view.
To put these concerns aside was important during the de-
sign and the implementation of the Collectors extension. It
allowed us to freely explore the back-in-time features we
were interested in for debugging. However, we fear that it is
a weakness of the current implementation, and that aspect
remains to be investigated. Research has been done to ad-
dress the efficiency and the memory usage of back-in-time
debuggers [11, 12, 14]. That would be our starting point to
improve our model and our prototype.

6 RELATED WORK

Back-in-time or Omniscient debugging is not a new idea [8].
It consists on remembering the result of every execution of
the running program, including state, objects, contexts and
stacks, etc. The main disadvantages of this technique are its
memory consumption and its performance overhead, a great
deal of additional resources being necessary to record every
step of an execution. It still remains a powerful technique
to solve hard bugs, and to understand their root cause. It
gives the developer the ability to go backwards in time and
to explore how the state of a program evolved to reach a
critical situation - like a bug.

A lot of research has been contributing to the technique
and its evolution; for example, object and flow-centric back-
in-time debugging [9-11] to track the origin and the flow
of objects in a program execution. Work on flow-centric de-
bugging focuses on providing answers about how an object
arrived in a particular place and the history of its state. An
effort has also been made to provide practical tools, both
in the post-mortem visualization of the flow of objects and
the overall performance of the provided tools. Other work
focused on scalability and scoping of the generated traces
[13, 14], and also shares a concern for practicability of the
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debugging technique. The provided debugger allows to step
forward and backwards in time after the program has run
and all execution has been saved in a database. The devel-
oper can define the scope of the traces, either by specifying
which class should be subject to traces, or by activating the
traces through a manual switch. A few commercial debug-
gers are also available as professional tools for back-in-time
debugging, like Chronon [1]. Orthogonal to back-in-time de-
bugging, the particular problem of saving objects efficiently
has been studied and prototyped in Pharo [12]. Limitations
of Collectors like performance overhead, memory consump-
tion or object state recording, are orthogonal problems to
the back-in-time debugging features that could be tackled
by reusing existing solutions from the state of the art.

Our back-in-time implementation with Collectors is a lim-
ited subset of the features provided by the aforementioned
solutions. However what is recorded are surgically scoped
expressions evaluations, and a selection of their contextual
(possibly meta) informations. This scoping and configuration
operations are designed to be simple and intuitive from the
developer’s point of view, in the hope to lower the learning
cost of the tools. Although we also provide a dedicated visu-
alization tool, it relies on a mechanism that is integrated in
the language and as such, debugger extensions could be built
and seamlessly integrated in the development environment.
Similar work [17] captures the execution of a program for
post-mortem analysis. Domain model objects are specified by
the user and snapshotted at runtime. The evolution of these
objects throughout the program execution can be visualized
afterwards. It rather focuses on program execution analysis
rather than specifically on debugging, but understanding a
program is part of the debugging process. We believe that
the Pillar bug could be easily solved with such technique.
The main difference with Collectors is the semantics and
the grain of the recorded elements. While [17] focuses on
recording how domain objects are connected and evolve
during the execution, Collectors record objects and meta-
information resulting from the evaluation of an expression
(and its sub-expressions). When going back-in-time, we see
less information because only manually selected expressions
are recorded. We cannot know which other objects were ref-
erencing a collected object, nor when theses references were
created. But we also see more information, because transient
objects computed within the body of a complex expression
are recorded and can be accessed during the post-mortem
analysis.

The original work describing the Pillar bug also advocates
for more advanced breakpoints [6]. Specifically, it is argued
that breakpoints could improve the debugging activity with
more contextual and accurate information. In its current
form, the Collectors back-in-time feature could be integrated
as a new kind of breakpoint, or an extended watchpoint,
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but providing a more accurate history execution than just
a single recorded value. This idea of a local history is also
emerging in other approaches and tools [15, 16], which inte-
grate a record of the last local evaluations in the debugger.
This history is however only accessible if the program halts,
for example through a breakpoint or following an exception.
The Collectors back-in-time inspector shows a full history
of the instrumented expression, allowing a local comparison
of healthy and problematic executions.

7 CONCLUSION AND FUTURE WORK

We described Collectors for back-in-time debugging through
in-memory logging: the developer can instrument an ex-
pression from the source code, and at runtime the object
resulting from the evaluation of the expression is collected
and recorded. Meta-information is also recorded, such as the
execution stack that leads to a particular evaluation. This
provides an evaluation history of the instrumented expres-
sion, and the ability to navigate back-in-time in the evalu-
ation(s) of this expression. We presented the back-in-time
inspector, which provides views on the expression evalua-
tion history to ease the analysis of the recorded objects and
meta-information.

Using Collectors and the back-in-time inspector, we have
been able to quickly understand and solve a complex bug,
namely the Pillar bug, for which there was no solution prior
to our investigation. The Pillar bug illustrates a kind of bug
in which a trivial modification leads to an error which seems
completely unrelated to the modification. It makes such bug
difficult to understand and to fix.

Because of the integration of the tool in the language
and the fine grained scoping of the back-in-time features,
we could select which expression(s) to instrument in only
a few non-intrusive actions performed on the source code.
After the test execution, the recorded meta-data, such as the
execution stack and the collected objects from the evaluation
of the sub-expressions of instrumented expressions, provided
crucial information to understand the source of the bug.

In future work, we want to study the probable performance
and memory bottlenecks. Such problems are already studied
in the literature, which will be the starting point for our
future investigation.

We plan to evaluate further the tool and its applicability to
debugging following two directions. First, we want to bench-
mark the tool on a bug database. We would like to study
the tool performance compared to traditional debugging, or
their complementarity, on different kind of bugs. The Pharo
bug list, from the official Pharo language bug tracker, could
serve as a reference database for such benchmarking. Second,
we would like to perform a control experiment with devel-
opers — some debugging with our tool and some without —
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to assess the concrete impact of our tool on the debugging
activity.

We also plan to experiment more variations of the tool for
debugging, based on the Collectors model. First, we would
like a fully integrated into the debugging environment as a
new kind of breakpoint or as an extended watchpoint. Sec-
ond, the model could be used to provide access to recorded
objects from any breakpoint at runtime. These objects could
serve in conditional expressions of other traditional break-
points. Finally, recorded objects could be used as replay val-
ues, to replace the result of specific expressions evaluations
at runtime. That could bring an interesting feature in a run-
time program in which we need to systematically reproduce
the same result of a non-deterministic computation that pro-
vokes a program failure.
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