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Abstract
Nitrogen (N) is a limiting nutrient in vast regions of the world’s oceans, yet the sources of N available to various
phytoplankton groups remain poorly understood. In this study, we investigated inorganic carbon (C) fixation rates and nitrate
(NO3

−), ammonium (NH4
+) and urea uptake rates at the single cell level in photosynthetic pico-eukaryotes (PPE) and the

cyanobacteria Prochlorococcus and Synechococcus. To that end, we used dual 15N and 13C-labeled incubation assays
coupled to flow cytometry cell sorting and nanoSIMS analysis on samples collected in the North Pacific Subtropical Gyre
(NPSG) and in the California Current System (CCS). Based on these analyses, we found that photosynthetic growth rates
(based on C fixation) of PPE were higher in the CCS than in the NSPG, while the opposite was observed for
Prochlorococcus. Reduced forms of N (NH4

+ and urea) accounted for the majority of N acquisition for all the groups
studied. NO3

− represented a reduced fraction of total N uptake in all groups but was higher in PPE (17.4 ± 11.2% on
average) than in Prochlorococcus and Synechococcus (4.5 ± 6.5 and 2.9 ± 2.1% on average, respectively). This may in part
explain the contrasting biogeography of these picoplankton groups. Moreover, single cell analyses reveal that cell-to-cell
heterogeneity within picoplankton groups was significantly greater for NO3

− uptake than for C fixation and NH4
+ uptake.

We hypothesize that cellular heterogeneity in NO3
− uptake within groups facilitates adaptation to the fluctuating availability

of NO3
− in the environment.

Introduction

In many regions of the world’s oceans, particularly in the
oligotrophic subtropical gyres, nitrogen (N) limits primary
production and controls planktonic community composition
[1, 2]. In these vast regions, planktonic biomass is domi-
nated by picoplankton (size < 3 µm) whose high surface-
area-to-volume ratio is believed to represent a competitive
advantage under N scarcity [3]. While genetically diverse
[4–7], photosynthetic picoplankton are generally grouped
into the pico-eukaryotes (PPE) and the cyanobacterial pro-
karyotes Prochlorococcus and Synechococcus. As opposed
to Synechococcus, which is widely distributed in the ocean
between 50°S and 50°N, Prochlorococcus thrives mostly in
nitrate-depleted subtropical and tropical waters [8], where it
can contribute significantly to primary production [9–11]. In
contrast, PPE are most abundant in productive waters such
as upwelling or temperate regions [12, 13]. Despite their
low abundance relative to pico-cyanobacteria in the open
ocean, PPE can occasionally contribute as much as
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Prochlorococcus to primary production due to their larger
biovolume [9, 10].

Differences in the geographical distributions of PPE,
Prochlorococcus, and Synechococcus have been hypo-
thesized to be driven by environmental factors such as
light [8, 14–16], temperature [14, 17, 18], and the
availability of different sources of N [19–21]. A recent
study found, based on isotopic 15N signatures of
cytometrically-sorted groups of picoplankton, that PPE
obtain roughly half of their N from upwelled NO3

−, while
Synechococcus and Prochlorococcus rely on recycled N
in the Deep Chlorophyll Maximum (DCM) of the North
Atlantic Gyre [22]. However, the discovery of gene
pathways for NO3

− assimilation in the metagenome of
Prochlorococcus [23] and the cultivation of isolates able
to grow on NO3

− as an exclusive source of N [24] have
raised the possibility that NO3

− may be a significant
source of N in wild populations of Prochlorococcus
under certain growth conditions. Measurements from the
DCM in the Atlantic show measurable, albeit small,
NO3

− uptake by Prochlorococcus, accounting for ~5–
10% of the group total N uptake [25]. Based on these
observations, it can be argued that a subset of the
genetically diverse Prochlorococcus genus may be cap-
able of assimilating NO3

− [24, 26–28].
Technological challenges have hindered progress in

our understanding of group and cell specific N uptake. In
the last two decades, isotope incubations combined with
cell sorting by flow cytometry have been used to measure
plankton activity at the group level [29]. However, stable
15N isotope analyses by conventional isotope ratio mass
spectrometers require substantial amounts of material. As
a result, a prohibitively large number of cells must be
sorted to measure group-specific N utilization, which is
especially problematic in oligotrophic systems. New
generations of isotope ratio mass spectrometers, most
particularly nano-scale secondary ion mass spectrometers
(nanoSIMS), have opened new research directions by
allowing analyses of isotopic composition at the single
cell level [30, 31].

In this study, we use nanoSIMS coupled with flow
cytometry cell sorting to measure the metabolic activity of
cells after incubating the natural plankton community with
stable isotopes of C and N (13C and 15N). To the best of our
knowledge, this is the first study reporting cell-specific
contribution of NO3

−, NH4
+, and N-urea to the photo-

synthetic growth requirements of the Prochlorococcus,
Synechococcus, and PPE groups. The large number of cells
analyzed (~16 000) from distinct biomes of the North
Pacific highlights clear functional differences between
picoplankton groups in terms of N uptake and cell-to-cell
metabolic heterogeneity.

Materials and methods

Sampling location and hydrological context

Our study was carried out during Schmidt Ocean Institute
and NASA’s Sea-to-Space cruise aboard the R/V Falkor in
January/February 2017. Two stations in the North Pacific
Subtropical Gyre (NPSG, stations 1, 2) and one station in
the California Current System (CCS, station 3) were
investigated (Fig. 1). Seawater samples were collected using
Niskin bottles mounted on a rosette equipped with a CTD
probe. Samples were collected at the surface (5 m) and at
the 1% surface light level, which corresponded roughly to
the DCM at stations 1 and 2. Chlorophyll a (Chl a), NO3

−,
NH4

+ and urea were measured in triplicate according to
standard procedures (supplementary information). Pico-
plankton abundances were determined in triplicate by flow
cytometry (supplementary information).

Experimental setup and sampling

At each station and depth, C fixation, NO3
−, NH4

+ and urea
uptake were measured during daylight. In addition, the
same experiments were performed at night from surface
samples at stations 1 and 3. Dual 13C-15N isotope incuba-
tions were performed with the addition of either dissolved
inorganic 13C (DI13C, NaHCO3, 98% Sigma-Aldrich) in
combination with 15NO3

− (KNO3, 99%, Euriso-top) or 15

NH4
+ (NH4Cl, 99%, Euriso-top) or with the addition of

dual labelled 15N-13C-urea (98% 15N, 99% 13C, Euriso-top).
Seawater was collected directly from the Niskin bottles in a
set of five HCl-cleaned polycarbonate 1.3 or 2.3 L bottles
for each isotopic treatment. Isotopes were added within ~2 h
of sample collection, with additions targeted at ≤ 10% of
ambient concentrations estimated from the literature for
DIC, NO3

− and urea and from onboard measurements of

Fig. 1 Locations of the three stations sampled in the Northeast Pacific
Ocean superimposed on surface chlorophyll a concentration (AQUA
MODIS composite image of January and February 2017)
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NH4
+. To define the initial 13C and 15N enrichments in the

particulate matter, one bottle from each set was immediately
filtered after isotope inoculation on a combusted (4 h,
450 °C) GF/F filter using a vacuum pump ( < 150 mbar).
The filters were rinsed using non-labeled 0.2 µm filtered
seawater and stored at −20 °C. The other four bottles of
each set were placed in an on-deck incubator reproducing
the light intensity at the sampling depth using blue light
screens (Lee Filter) and cooled with circulating sea surface
water. The incubations, centered around local noon for
daylight incubations, were short (~5 h on average) in order
to minimize bottle artifacts, including isotope dilution
effects and recycling of 15NO3

− that could make 15N
available as reduced N [25, 32]. After incubation, triplicate
bottles from each set were filtered onto GF/F filters as
described above. The remaining bottle from each set was
used to concentrate, recover and store the cells as described
in Fawcett et al. [22]. An additional bottle was added to the
set of bottles collected from sea surface water at station 2,
then incubated without isotope addition to measure the
natural 13C and 15N abundances of recovered cells. Back
onshore, cells were sorted using an Influx flow cytometer
(BD Biosciences, San Jose, CA, USA) according to
Duhamel et al. [33] (supplementary information). Sorted
cells were directly collected on a 0.2 µm polycarbonate
membrane connected to a low-vacuum pump at the exit of
the cell sorter, in order to limit dispersion of cells on the
filter. The filters were then stored at −20 °C until further
analyses.

Single cell analysis using nanoSIMS

Filters with sorted cells were mounted on a 5 mm spherical
aluminum plot using double-sided adhesive copper tape.
The regions of interests (ROIs) containing the cells were
located using an epifluorescence microscope. To facilitate
further identification of the ROIs under the nanoSIMS, the
fractions of the filters surrounding the ROIs were removed,
retaining ~1–2 mm2 of filter with a high density of cells.
The preparation was subsequently metalized by sputter
deposition of a gold film (20 nm thickness) before intro-
duction into a nanoSIMS 50 (Cameca, Gennevillier,
France).

ROIs containing sorted cells were recovered using the
optical camera of the nanoSIMS, and analyses were con-
ducted on field size of 40 × 40, 20 × 20 or 10 × 10 µm with
an image size of 245 × 256 pixels. The areas were pre-
sputtered with a primary Cs+ ion beam of 300 pA for ~0.5–
2 min, targeting a cumulative charge of ~22 pC cm−2.
Analyses were performed using a 1.2 pA Cs+ primary ion
beam focused to a spot size of 60–120 nm for 1000 µs px−1.
At least 20 planes were accumulated for each analysis,
alternatively recording the masses 12C−, 13C−, 12C14N−,

12C15N−, 30P−, and
12C−, 13C−, 12C14N−, 13C14N−, 30P−.

The mass resolution for CN− ions was > 7000. Switching
between the ions 12C15N− and 13C14N− was performed
using the “peak jumping” mode, without changing the
magnetic field but varying the deflectors’ voltage. This
allowed the quasi-simultaneous measurement of the 15N/14N
and 13C/12C ratios using the 12C15N−/12C14N− and 13C14N
−/12C14N− ions. The ions 13C14N−/12C14N− were preferred
over the 13C−/12C− ions because of the higher ionization
efficiency of CN− compared to C−

, leading to a greater
precision in the determination of the 13C/12C isotopic ratios
(Fig S1).

Due to the high number of cells analyzed, the cells were
automatically (instead of manually) outlined using the
particle detection mode of the LIMAGE software, based on
the total 12C14N− ion counts. Each identified cell was
individually checked for quality based on its shape, size,
and ion counts. Poor quality cells were withdrawn from
further analyses. In each assay and for each group, 218 cells
were analyzed on average (range: 12–1040) which was
achieved in one to four ion images randomly chosen within
the previously defined ROIs. This led to a total of ~16,000
cells analyzed for this study. The average sizes of the
analyzed Prochlorococcus, Synechococcus, and PPE cells
were 0.6 ± 0.1, 1.2 ± 0.2, and 1.7 ± 0.2 µm, respectively.

Rate calculations and statistical analyses

For each cell analyzed with nanoSIMS, CN− ion isotopes
were recorded and fractional abundances of A13C

13C 14N�
13C14N�þ 12C14N� � 100

� �
and A15N

12C15N�
12C14N�þ 12C15N� � 100

� �
were computed (Fig. 2).

The cellular C- and N-specific uptake rates (h−1) were
calculated as follows:

specific uptake ¼ Acell � Anat

Asource � Anat
� 1
t

where Acell, Anat , and Asource reflect the isotopic fractional
abundances of the cell after incubation (A13C or A15N), of
the cells (mean) prior to incubation (Fig S2) and of the
source pool, respectively. t is the incubation time. Specific
uptake rates were converted to group absolute uptake rates
(fmol L−1 h−1), by multiplying the specific rates by the cell
C or N content and by the cell abundances. Cell C content
was computed from cell biovolume (derived from its
equivalent spherical diameter) and a volumetric C cell
content of 237 fg C µm−3 [34]. The cell N content was
derived from the cell C content, assuming C/N ratios of 7.7,
9.7 and 11 for Prochlorococcus, Synechococcus and PPE,
respectively [35].

In the case of DI13C incubations, C-based specific divi-
sion rates were calculated as follows, assuming that DIC

NanoSIMS single cell analyses reveal the contrasting nitrogen sources for small phytoplankton



was the only C source for cellular growth:

specific division ¼ log2
Asource � Anat

Asource � Acellð Þ � Anat

� �
� 1
t

Hourly specific division rates were scaled to daily rates
using the model developed by Moutin et al. [36].

Total community uptake rates (nmol L−1 h−1) were
estimated from the material collected on GF/F filters and
analyzed with an elemental analyzer coupled to an isotope
ratio mass spectrometer (EA-IRMS), and calculated as fol-
lows:

total community uptake ¼ APOM;GFF � Anat;GFF

Asource � Anat;GFF
� POM

t

where Anat,GFF, APOM,GFF, and POM represent the isotopic
abundances prior to and after incubations and the particulate
organic matter C or N concentrations (nmol L−1),
respectively.

Ambient NO3
−, NH4

+, and urea concentrations were
often low, and the addition of isotopes at tracer level (i.e. <
10% of initial concentration) was not always possible,
leading to a potential overestimation of N uptake rates [37].
To overcome this issue, kinetics experiments consisting of
increasing additions of N substrates were conducted and N
uptake rates were corrected using the equation described in
Rees et al. [38], as detailed in the supplementary
information.

The large number of cells analyzed for each group in
each assay (218 on average) allowed for an assessment of
the intra-group cell-to-cell rate heterogeneity or “metabolic
heterogeneity”, defined as the coefficient of variation in
isotope uptake rate. However, a fraction of the measured
variability stems from analytical errors associated with the
determination of cellular isotopic ratios. This uncertainty,
resulting from the limited signal of CN− ions detected with
the nanoSIMS, follows a Poisson distribution (Fig. S2). The

metabolic heterogeneity was thus corrected for the influence
of the Poisson dispersion (Po) as follows:

metabolic heterogeneity ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
std Agroup

� �2�std Poð Þ2
q

eAgroup � eAnat

std(Agroup) is the standard deviation of the isotopic
abundance of the group, eAgroup the mean isotopic abundance
of the group, eAnat, the mean natural isotopic abundance of
the group, and std(Po) is the standard deviation associated
with the Poisson distribution modeled for each group. The
Poisson distribution was modeled using an average number
of events (λ):

λ ¼ eAgroup � eNCN�;group

where eNCN�;group is the average total number of CN− ions
detected in the cells of the group. On average, std(Po)
represented 15 ± 21 and 27 ± 18% of the measured standard
deviation of cell N uptake and C fixation, respectively. To
err on the side of caution, we only show results where std
(Po) contributed to less than 50% of std(Agroup).

Cellular rates were considered to be detected when their
fractional abundance enrichment Acell � eAnat was higher
than two times the standard deviation associated with the
Poisson distribution parameterized by λ ¼ Acell � NCN�;cell,
where eNCN�;cell is the CN− ion count of the cell. We note
that the latter metric should be interpreted cautiously, as it
depends not only on the cellular activity itself but also on
the isotopic fractional abundance in the initial pool, the
duration of the incubation, and the number of ions detected
in the cells, which are variable between groups and assays.
Both detected and undetected cellular rates were considered
in the calculation of average group rates. The groups were
considered as active when the mean cellular fractional iso-
topic abundances of the groups were significantly higher
than those of non-incubated cells belonging to the same

Fig. 2 Examples of nanoSIMS images showing the sum of 12C14N ions detected (a), the A15N enrichment (b), and the A13C enrichment (c) for
Synechococcus. The white outlines define the identified cells. Scale bars are 5 µm

H. Berthelot et al.



group (unpaired Mann-Whitney test, p < 0.001). Differences
in C or N uptake rates between stations, depths or groups
were tested using unpaired Mann-Whitney test and con-
sidered significant if p < 0.05.

Results

Hydrography and Biogeochemistry of the sampled
regions

Stations one and two were characteristic of the oligotrophic
NPSG, with low NO3

− ( < 2 nmol L−1) and Chl a con-
centrations ( < 0.2 µg L−1) in surface waters and a DCM
deeper than 100 m (Table 1). In contrast, station three
showed some evidence of coastal upwelling associated with
the CCS, with higher NO3

− (>100 nmol L−1) and Chl a
(0.71 µg L−1) concentrations in surface waters. NH4

+ con-
centrations ranged between < 3 to 21 nmol L−1 in the
NPSG, and were higher in the CCS (55–59 nmol L−1)
(Table 1). Urea concentrations were generally higher but
followed the same pattern, ranging between 50–109 nmol N
L−1 in the NPSG and from 162 to 165 nmol N L−1 in the
CCS. While Prochlorococcus numerically dominated the
picoplankton community over Synechococcus and PPE,
both at the surface and at the DCM in the NPSG, the
opposite was observed in the CCS (Table 1).

C fixation rates and N uptake at the community
level

In the NPSG, the low NO3
− concentrations at the surface led to

significantly lower total community NO3
− uptake

( < 0.1 nmol L−1 h−1) compared to at the DCM (0.1–0.6 nmol
L−1 h−1) (p < 0.05). In contrast, rates of total community NH4

+

uptake were significantly higher in the surface than in the DCM
(p < 0.001) (Table 1). Rates of community C fixation, and
NO3

− and NH4
+ uptake were lower in the NPSG than in the

CCS (p < 0.05) (Table 1). Community N-urea uptake rates
ranged from 0.7–3.3 nmol N L−1 h−1, without clear trends
between the two oceanic regions and at rates similar or higher
than NO3

− and NH4
+ uptake in the NPSG. In contrast to the

relatively high N-urea uptake, C-urea uptake was not detected
in the sampled planktonic communities.

C fixation rates and N uptake at the single-cell and
group levels

13C-enrichment measurements at the cellular level following
DI13C incubations allowed a direct assessment of specific
C-based division rates of wild groups of Prochlorococcus,
Synechococcus, and PPE. At the single-cell level, division
rates varied widely, ranging from undetectable to 1 d−1Ta
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(Fig. 3) with clear group-level differences in C-based
division rates. Prochlorococcus groups were active at all the
stations (Fig. 3) but mean division rates were significantly
higher in the NPSG (ranging between 0.32 and 0.43 d−1)
than in the CCS ( < 0.1 d−1) (p < 0.001) which is in agree-
ment with the findings of Ribalet et al. [39] along a similar

transect. Mean PPE division rates showed an opposite
pattern, with significantly higher rates in the CCS (0.42–
0.50 d−1) than in the NPSG (0.15–0.26 d−1) (p < 0.001)
highlighting the contrasting biogeography of these two
groups. Mean Synechococcus division rates ranged from
0.21 to 0.46 d−1

, without a clear pattern between the NPSG
and the CCS (p > 0.05). Using cellular volume-to-biomass
conversion factors, the measured C fixation by picoplankton
(sum of the C fixation attributed to PPE, Prochlorococcus
and Synechococcus) was estimated to account for 43 to 67%
of the total community C fixation (55% on average),
without a clear geographical pattern, demonstrating the
important contribution of picoplankton to oceanic C fixation
(Table S1). In the NPSG, Prochlorococcus accounted for
the largest fraction of community C fixation (25–56%),
followed by PPE (7–18%), and Synechococcus ( < 1–3%).
In the CCS, PPE and Synechococcus accounted for most of
the community C fixation (42–50 and 11–19%, respec-
tively), while Prochlorococcus accounted for < 1%.

N-specific uptake rates at the single-cell level were also
highly variable (Fig. 4). NH4

+ and urea uptake rates were
detected in most cells (86 ± 20 and 86 ± 23%, respectively)
at rates on average twice higher (p < 0.001) for Synecho-
coccus (0.0130 and 0.0151 h−1, respectively) than for
Prochlorococcus (0.0099 and 0.0077 h−1, respectively) and
PPE (0.0073 and 0.0067 h−1, respectively). In contrast,
group specific NO3

− uptake rates were significantly (p <
0.001) higher for PPE (0.0041 h−1) than for Pro-
chlorococcus (0.0004 h−1) and Synechococcus (0.0010 h−1)
and were detected in a greater proportion of PPE cells (81 ±
23%) than for Prochlorococcus (37 ± 32%) or Synecho-
coccus (56 ± 42%) (Fig. 4). As a result, in most of the
assays, the average contribution of NO3

− to group N uptake
(sum of NH4

+, urea and NO3
− uptake rates) was sig-

nificantly higher for PPE (17.4 ± 11.2%) than for Pro-
chlorococcus (4.5 ± 6.5%) or Synechococcus (2.9 ± 2.1%)
(p < 0.001, Fig. 5c). The contribution of NO3

− to group N
uptake was, however, highly variable between assays, ran-
ging from 2.4to 31.8%, undetectableto17% and undetect-
able to 5.3% for PPE, Prochlorococcus and Synechococcus,
respectively. The contributions of NO3

− to group N uptake
were higher in the CCS than in the NPSG for Pro-
chlorococcus (10.1 ± 7.5 vs. 1.5 ± 0.4%, p < 0.05) and PPE
(22.3 ± 10.2 vs. 14.5 ± 11%, p > 0.05), albeit not sig-
nificantly in the latter case. For Synechococcus, variability
was lower and no clear spatial trends were observed. In
agreement with the results at the community-level, C-urea
uptake was undetectable at the group level.

Comparisons of specific C fixation to the sum of specific
N uptakes from the daylight incubations were close to the
1:1 unity line (except for surface Prochlorococcus and
Synechococcus at station 1) without clear patterns between
groups or depths, suggesting that cells meet their N

Fig. 3 Whisker plot of C-based specific division rate (d−1) for each
group (Prochlorococcus, Synechococcus, and PPE) in each daylight
assay. Each dot represents an analyzed cell. Grey dots denote cells
with rates not significantly different from zero. Colored lines denote
mean division rates and standard deviations (plain horizontal and
dashed vertical, respectively) in each assay. The percentages indicate
proportions of detected active cells. Grey lines denote mean division
rates and standard deviations (horizontal plain and vertical dashed,
respectively) in the North Pacific Subtropical Gyre (NPSG) and in the
California Current System (CCS) regions
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requirement during their photosynthetic C acquisition per-
iod (Fig. S3 and further discussion in the SI information).

Single-cell analyses revealed heterogeneity in C and N
uptake of individuals within each planktonic group. The
metabolic heterogeneity is qualitatively estimated using the
coefficient of variation of cellular rates corrected for the
influence of instrumental noise. In all groups, heterogeneity
was the lowest for C fixation and NH4

+ uptake (0.2 to 0.8),
slightly higher for urea (0.3 to 1.3) and highest for NO3

−

uptake (0.5 to 2.6) (Fig. 6). In most of the assays and for
most of the measured rates, Synechococcus was the most

homogeneous group, followed by Prochlorococcus and
PPE, respectively (Fig. 6).

In assays where Prochlorococcus and Synechococcus
contributed to a significant fraction of community C fixation
(>5%), these groups did not rely on NO3

− for their growth
(<2% of the group N uptake) (Fig. 7). In contrast, in assays
where PPE contributed significantly to C fixation, this
group relied substantially on NO3

− for its growth (11–36%
of the group N uptake, Fig. 7), again highlighting the
contrasting biogeography and physiologies of these plank-
ton groups.

Discussion

In this study, we determined the forms of N taken up by the
most abundant groups of marine phytoplankton: PPE,
Prochlorococcus, and Synechococcus. We report the first
measurements of the contribution of NO3

−, NH4
+, and urea

to N uptake, estimated at the single-cell level, in relation to
C-based division rates by individual cells. Our results,
based on ~16 000 cells collected in contrasting biomes of
the North Pacific Ocean, clearly show substantial intra- and
inter-group heterogeneity.

Inter-group similarities and differences in N uptake

NH4
+ and urea species are generally scarce in oligotrophic

regions, but are believed to represent the main sources of N
for phytoplankton because of their high turnover rate of <
1–5 days [40–44]. Our measurements confirm these results
at the scale of the entire plankton community (Table 1), but
also for each plankton group investigated in the two regions
sampled (Fig. 5). In line with earlier studies ([45] and
references therein), we find that urea is an important source
of N for open ocean photosynthetic picoplankton popula-
tions, accounting for the largest fraction of N uptake for all
groups tested (38–68%; on average greater than that of
NH4

+). However, the absence of 13C-enrichment following
the 13C-15N-urea incubations indicates that the C derived
from urea is not used by the groups investigated (see sup-
plementary information for further discussion).

While NH4
+ and urea uptake rates were systematically

significant for all the groups tested, the contribution of
NO3

− uptake showed greater contrasts between plankton
groups. At all the study sites, the prokaryotes Pro-
chlorococcus and Synechococcus relied ~4–6 times less on
NO3

− than PPE on average, indicating clear functional
diversity between photosynthetic prokaryotes and PPE
(Fig. 5). This is in line with the contrasting δ15N signatures
of prokaryotes and eukaryotes in the subtropical Atlantic
[22, 46]. If we exclude groups that contributed to an
insignificant fraction of C fixation (<5%), N strategies are

Fig. 4 NH4
+, urea, and NO3

− specific uptake rates (h−1) of photo-
synthetic picoeukaryotes (PPE), Prochlorococcus, and Synechococcus
in each assay. Each dot represents an analyzed cell. Colored and grey
dots denote cells with detected and undetected activities, respectively.
The percentages are the proportions of detected active cells in each
assay
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even more clear, with an order of magnitude discrepancy in
the NO3

− contribution to N uptake between prokaryotes and
eukaryotes (Fig. 7). However, our results do show sig-
nificant, albeit small, NO3

− uptake by photosynthetic pro-
karyotes including Prochlorococcus. This confirms the
potential for NO3

− uptake by wild populations of Pro-
chlorococcus as suggested by genomic and culture studies
[23, 24, 47].

Intra-group differences in N uptake between
stations and sampled depths

In addition to the inter-group differences in N uptake stra-
tegies, we also found large group variations in Pro-
chlorococcus and PPE in the contribution of NO3

− to the N
uptake between locations, with NO3

− uptake increasing
with NO3

− availability (Fig. 5). This suggests adaptive
strategies in response to the N species available, which
might result from genetic selection and/or phenotypic
plasticity. Prochlorococcus and PPE groups harbor geneti-
cally diverse populations [4, 6, 7, 28, 48–51]. These
populations display varying affinities for the different
sources of N [23, 24, 52, 53] and do not always possess the
necessary pathways for NO3

− assimilation [47, 54] which
could result in ecological adaptation as a function of NO3

−

availability.

Our results could also be explained by phenotypic plas-
ticity, since photosynthetic organisms can regulate the
expression of genes involved in N assimilation as a function
of the availability of different forms of N [54–56]. NO3

− is
energetically more expensive than NH4

+ to assimilate ([57]
and references therein), leading to NO3

−uptake inhibition
with increasing NH4

+ availability [52, 58, 59]. One would
therefore expect the contribution of NO3

− to the total N
uptake would be controlled by NH4

+ availability. This is
not what we observed, presumably because the NH4

+

concentrations observed in this study ( < 60 nmol L−1) were
not high enough to fully inhibit NO3

− uptake [37]. In other
words, at the ambient concentrations measured in this study,
both sources of N could efficiently be used by the phyto-
plankton community and may explain the adaptation of
groups to N availability.

Intra-group heterogeneity in C and N uptake within
assays

While genetic diversity of plankton in the ocean has
received increasing attention in the past two decades
[60, 61], the heterogeneity of cellular metabolisms remains
poorly characterized. However, there is growing evidence
that phenotypic heterogeneity, or the diversity of metabo-
lisms between genetically identical cells living in the same

Fig. 5 a Group N specific uptake (sum of NO3
−, NH4

+, and urea specific uptake, h−1) of photosynthetic picoeukaryotes (PPE), Prochlorococcus
(pro), and Synechococcus (syn) in each assay. b Contribution of the different N sources to group N uptake (%) in each assay. c Contribution of the
different N sources averaged over all assays for each population investigated (%)
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environment, plays a role in population dynamics and
consequently in ecosystem functions [62]. Through the
specialization of subsets of cells in metabolic processes,
phenotypic heterogeneity represents an adaptive advantage
in fluctuating environments [63–65] and can enhance
populations growth rates [66]. Here we shed light on
cell-to-cell C and N uptake and metabolic heterogeneity of
pico-phytoplankton groups in the ocean using a single cell
approach. Within our cytometrically sorted groups we
cannot quantitatively assess the relative influences of
genetic and phenotypic variabilities on the measured

metabolic heterogeneity. Nevertheless, our results of
heterogeneity for C fixation and NH4

+ uptake (0.2–0.9)
are within the range of those measured from C fixation in
pure cultures of the cyanobacterial diazotroph Croco-
sphaera (~0.5) and from NH4

+ uptake in the heterotrophic
bacteria Staphylococcus aureus and Pseudomonas aeru-
ginosa (0.4–0.9) [67, 68]. This suggests that, at the group
level, C-fixation and NH4

+ uptake are within the range of
the phenotypic noise, despite potentially high genetic
diversity.

Interestingly, for each group investigated, the metabolic
heterogeneity was systematically higher for NO3

− uptake
compared to NH4

+ and urea uptake or to C fixation (Fig. 6).
The lack of data documenting phenotypic diversity in NO3

−

uptake from pure cultures makes it difficult to contextualize
our values. However, NO3

− assimilation is an energetically
costly process and NO3

− availability can be highly dynamic
throughout the year in the studied area. It can be postulated
that within planktonic populations, a subset of cells invests
in NO3

− assimilation machinery in prevision of higher
NO3

− availability, which might facilitate population’s
adaptation to new nutritional environment. Similar strate-
gies for N2 fixation, another energetically costly N assim-
ilation process, have been reported in multicellular
filamentous cyanobacteria [69, 70] and in unicellular cya-
nobacteria [63, 71]. However, we cannot completely rule
out the influence of genetic diversity on the metabolic
heterogeneity measured here. While the genetic potential for
NO3

− assimilation is widespread in PPE and Synechococcus
[54, 72], this is not the case for Prochlorococcus, for which
only some ecotypes present the full set of genes involved in

Fig. 6 Box-and-whisker plot of the metabolic heterogeneity for C
fixation and NH4

+, NO3
−, and N-urea uptake for photosynthetic pico-

eukaryote (PPE), Prochlorococcus, and Synechococcus groups. Each
dot represents an assay. Only daylight assays were considered for the
C metabolic heterogeneity. For each group, metabolic heterogeneity
medians that are not statistically different are indicated by the same
letters (unpaired Kruskal-Wallis test, p > 0.05)

Fig. 7 Contribution to total community C fixation as a function of the
contribution of NO3

− to the group N specific uptake for each group in
each daylight assay. The size of the dots represents the group N
specific uptake (sum of NO3

−, NH4
+, and urea specific uptakes)
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the NO3
− assimilation process [47]. Thus, further studies

characterizing the relative influence of genetic and pheno-
typic factors in metabolic heterogeneity are needed to
improve our understanding of the role of cell-to-cell het-
erogeneity in the adaption of plankton populations to their
highly dynamic environments.

Potential links between the biogeography of
plankton groups and their N uptake strategies

A multitude of factors can limit plankton growth and bio-
mass accumulation, including temperature, light, and N
availability. For example, the decrease in Prochlorococcus
abundances and growth from the NPSG to the CCS (Fig. 3,
Table 1), as reported in previous studies [39], has been
attributed to low sea surface temperatures in the CCS (8–
12 °C) inhibiting growth [15, 16, 73]. Similarly, the slightly
lower division rate of PPE at the bottom of the euphotic
layer compared to the surface (Fig. 3) suggests regulation
by light availability, as previously hypothesized [10, 74]. In
addition, the nature of the N sources available are suspected
to affect planktonic community structure, particularly in
regions where N limits primary production such as in the
NPSG [75–78]. Our results highlight group specific N
strategies that are in line with this theory. However, with the
present dataset it is difficult to disentangle the combined
effects of temperature, light and N availability on this
contrasting biogeography. Combined with controlled per-
turbation experiments (e.g. light, temperature, nutrients), the
present approach will help to better resolve the relative
influence of environmental parameters on the biogeography
of marine plankton.

Conclusion

In this study, we investigated the C and N uptake strategies
of marine picophytoplankton. For this purpose, we incu-
bated our samples with isotopically-labelled substrates,
sorted cells by flow cytometry, and analyzed their isotopic
signatures using nanoSIMS technology. The analysis of a
large number of cells by nanoSIMS provided a robust
characterization of the average nutrient uptake strategy for
each group as well as the cell-to-cell heterogeneity in each
analyzed group. Our results confirm the differing N acqui-
sition strategies of eukaryotes and prokaryotes. While both
groups use reduced sources of N such as NH4

+ and urea,
eukaryotes also rely on NO3

− to fulfill their N demand, a
finding which may drive the contrasting biogeography of
these pico-phytoplankton groups. However, the relatively
large heterogeneity in NO3

− uptake for all groups implies
that only subsets of cells are involved in this process.
Molecular [23, 79] and biogeochemical approaches [22]

have reported conflicting evidence on whether prokaryotic
picoplankton assimilate NO3

−. Our results reconcile these
approaches by showing that NO3

− can represent a sig-
nificant proportion of N nutrition in some Prochlorococcus
and Synechococcus cells, but that this process is small at the
group level. We postulate that variability in cell-to-cell
uptake of NO3

−, possibly resulting from genetic and/or
phenotypic heterogeneity, may provide wild populations a
competitive advantage in fluctuating environments. Our
study thus raises numerous questions concerning diversity
in the cellular metabolic activities of oceanic phytoplankton,
which may be best investigated with a combination of
culture, field and modeling experiments.
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