

Global importance of oxic molybdenum sinks prior to 2.6 Ga revealed by the Mo isotope composition of Precambrian carbonates

Marie Thoby, Kurt O. Konhauser, Philip Fralick, Wladyslaw Altermann, Pieter T. Visscher, Stefan Lalonde

▶ To cite this version:

Marie Thoby, Kurt O. Konhauser, Philip Fralick, Wladyslaw Altermann, Pieter T. Visscher, et al.. Global importance of oxic molybdenum sinks prior to 2.6 Ga revealed by the Mo isotope composition of Precambrian carbonates. Geology, 2019, 47 (6), pp.559-562. 10.1130/g45706.1. hal-02300734

HAL Id: hal-02300734 https://hal.univ-brest.fr/hal-02300734

Submitted on 29 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

- 2 Global importance of oxic molybdenum sinks prior to 2.6
- 3 Ga revealed by the Mo isotope composition of Precambrian
- 4 carbonates
- 5 Marie Thoby¹, Kurt O. Konhauser², Philip W. Fralick³, Wladyslaw Altermann⁴,
- 6 Pieter T. Visscher⁵, and Stefan V. Lalonde¹
- 7 ¹CNRS-UMR6538 Laboratoire Géosciences Océan, Institut Universitaire Européen de la
- 8 Mer, Université de Bretagne Occidentale, Brest, France
- 9 ²Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton,
- 10 Alberta T6G 2E3, Canada
- ³Department of Geology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
- 12 ⁴Department of Geology, University of Pretoria, Private bag X20, Hatfield, Pretoria
- 13 0028, South Africa
- ⁵Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340,
- 15 *USA*

Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G45706.1

ABSTRACT

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Sedimentary molybdenum (Mo) isotope compositions are a promising paleoredox indicator as the Mo isotope composition of seawater reflects the balance between anoxic and oxic sinks. Most available data are from shales, however the Mo isotope composition of carbonates also reflects the composition of ancient seawater. Here we provide an expanded dataset of carbonate Mo isotope compositions, including the first data for carbonates older than 2.64 Ga, which we evaluate against a compilation of published data for carbonates, shales, and iron formations spanning geological time. Archean carbonate samples reveal maximum δ^{98} Mo values that are generally above 1‰. These heavy values indicate that Mn(IV)- or Fe(III)-oxide sinks were sufficiently important to influence the Mo isotope composition of seawater as far back as 2.93 Ga. Comparison of Mo isotope and rare earth element data, as well as residence time considerations, indicates that this metal oxide influence was likely global. Available Mo isotope data for shales over the same time period generally show crustal values, which we attribute to negligible authigenic enrichment of Mo from seawater due to low ambient concentrations and a paucity of euxinic conditions. Our work demonstrates that the carbonate record provides important new insights into marine paleoredox, especially when shale records are absent or unsuitable, and re-enforces the emerging paradigm that oxic Mo sinks were important in the marine realm prior to 2.7 Ga.

Journal: GEOL: Geology DOI:10.1130/G45706.1

INTRODUCTION

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Molybdenum (Mo) stable isotopes have emerged as a powerful proxy for marine redox evolution that is based on the redox sensitive nature of Mo sources and sinks. Under modern oxic conditions, seawater shows a homogenous value of 2.36‰ (Siebert et al., 2003; Figure DR1 in the GSA Data Repository¹). Modern Mo seawater sources are principally derived from the oxidative weathering of continental crust sulfide minerals (~90%; mean δ^{98} Mo value of 0.20%; Siebert et al., 2003; Voegelin et al., 2012) variably modified during transport to values as high as 2.39‰ (e.g., Voegelin et al., 2012). Modern Mo sinks are dominated by Mn(IV) and Fe(III) oxide minerals that sequester Mo by adsorption and co-precipitation. With an equilibrium Mo fractionation of 3.3% onto Mn(IV) oxides (Siebert et al., 2003, Barling and Anbar, 2004) and from 0.83 to 2.19\% onto Fe(III) oxides (Goldberg et al. 2009), they constitute the isotopically lightest sink and are responsible for the heavy Mo isotope enrichment of seawater. The second most important sink is sedimentary Mo scavenging under suboxic, anoxic, and euxinic conditions, which also favor the lighter isotope but to a lesser degree (see Figure DR1). As sulfide increases, sediment isotope compositions approach that of seawater as Mo scavenging becomes near-quantitative (e.g., Neubert et al., 2008). This explains why black shales are used to track marine paleoredox using Mo isotopes. The Mo isotope proxy has been used to provide critical insights into the relative importance of oxic and anoxic marine waters through geological time. Arnold et al. (2004) reported δ^{98} Mo values ~0.69% for mid-Proterozoic euxinic sediments of the Velkerri (1.40 Ga) and Wollogorang (1.70 Ga) formations, implying significant areas of seafloor anoxia at the time. Heavy Mo isotope signatures in shales extend back to 2.60

60	Ga. Conversely, prior to 2.60 Ga, shales generally show crustal Mo isotope values
61	(Siebert et al., 2005; Wille et al., 2007), suggesting that either oxic Mo sinks were
62	minimal prior to the Great Oxygenation Event (GOE) ca. 2.45 Ga, or that Mo in shales is
63	a poor proxy for Archean oxygenation. Interestingly, Planavsky et al. (2014)
64	demonstrated that iron formation (IF) as old as 2.95 Ga show highly fractionated $\delta^{98}\text{Mo}$
65	values ranging from -0.71‰ to 2.32‰, which vary as a function of Fe/Mn ratio. The
66	lightest values are best explained by syndepositional adsorption of Mo to Mn(IV) oxides,
67	implying that sufficient O2 for Mn(II) oxidation, and thus the evolution of oxidative
68	photosynthesis, had already occurred by 2.95 Ga.
69	Here we turn here to another sedimentary proxy capable of recording ancient Mo
69 70	Here we turn here to another sedimentary proxy capable of recording ancient Mo cycling: the molybdenum isotope composition of Mo hosted in carbonates (δ^{98} Mo _{carb} ;
70	cycling: the molybdenum isotope composition of Mo hosted in carbonates (δ^{98} Mo _{carb} ;
70 71	cycling: the molybdenum isotope composition of Mo hosted in carbonates (δ^{98} Mo _{carb} ; Voegelin et al., 2009; 2010; Wen et al., 2011; Eroglu et al., 2015; Romaniello et al.,
70 71 72	cycling: the molybdenum isotope composition of Mo hosted in carbonates (δ^{98} Mo _{carb} ; Voegelin et al., 2009; 2010; Wen et al., 2011; Eroglu et al., 2015; Romaniello et al., 2016). Although carbonates are a negligible Mo sink, they may record the δ^{98} Mo
70717273	cycling: the molybdenum isotope composition of Mo hosted in carbonates (δ^{98} Mo _{carb} ; Voegelin et al., 2009; 2010; Wen et al., 2011; Eroglu et al., 2015; Romaniello et al., 2016). Although carbonates are a negligible Mo sink, they may record the δ^{98} Mo signature of seawater from which they were formed (Voegelin et al., 2009; Romaniello et
7071727374	cycling: the molybdenum isotope composition of Mo hosted in carbonates (δ^{98} Mo _{carb} ; Voegelin et al., 2009; 2010; Wen et al., 2011; Eroglu et al., 2015; Romaniello et al., 2016). Although carbonates are a negligible Mo sink, they may record the δ^{98} Mo signature of seawater from which they were formed (Voegelin et al., 2009; Romaniello et al., 2016). Our study provides an expanded dataset for modern and Archean carbonate

Publisher: GSA Journal: GEOL: Geology

DOI:10.1130/G45706.1

SAMPLES AND METHODS

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

The newly acquired Mo isotopic data presented here include modern thrombolites and stromatolites from the Bahamas, 2.52 Ga stromatolites from the Gamohaan Formation (Ghaap Group, S. Africa), crystal fans and stromatolites from the 2.80 Ga Mosher Carbonate (Steep Rock Group, Canada) and 2.93 Ga Ball Assemblage (Red Lake Greenstone Belt, Canada), and 2.97 Ga stromatolitic and non-stromatolitic carbonates from the Chobeni Formation (Nsuze Group, S. Africa). See Figure 1 and Data Repository for descriptions and locations of each unit and sample. Major element concentrations were measured on a HORIBA Ultima 2 ICP-AES after HF-HNO₃ total digestion, trace elements on carbonate leaches (5% acetic acid) using a ThermoFisher Scientific Element2 HR-ICP-MS, and Mo isotopic compositions on a ThermoFisher Scientific Neptune MC-ICP-MS after 6N HCl digestion, double spike (DS, 97Mo100Mo) addition, and chromatographic purification of Mo. Mo concentrations were calculated by isotope dilution. All analyses were performed at the Pôle Spectrometry Ocean, Brest, France. For all data (new and compiled), δ^{98} Mo values are reported relative to the NIST3134 standard set to 0.25% (Nägler et al., 2014; see Table DR1 for details), uncertainties are reported as two standard deviations (2SD), and datasets are tabulated in Tables DR2 to DR6. See Data Repository for extended methods.

Journal: GEOL: Geology DOI:10.1130/G45706.1

RESULTS AND DISCUSSION

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

when shale records fall short.

The Phanerozoic Mo Isotope Record

The modern seawater δ^{98} Mo value of 2.36% (± 0.1 %, Siebert et al., 2003) is reflected in the maximal δ^{98} Mo values of both modern black shales and carbonates (See Figure 2A, Tables DR3 and DR4). With a maximum value of 1.76‰, our new data from modern Bahamian microbialites fall within the range observed for contemporaneous carbonates, but due to detrital impurities, or local production of sulfide, they do not reach the modern seawater value (see sample description in the DR; Figure 2A and Table DR2). For all available carbonate data, δ^{98} Mo values are never heavier than modern seawater and are thus useful for constraining the minimum value of seawater at any given time (Figure 2A). During the Phanerozoic, carbonates record a range of δ^{98} Mo values from 2.42% to -0.91% (see Figure 2A), with maximum values universally attaining the modern seawater value of 2.36 \pm 0.1% (Figure 2A). Shales record a range of δ^{98} Mo values similar to carbonates (from 2.44% to -1%), but also include the few outliers lower than -1%. Only about one-fifth of compiled Phanerozoic shale values fall within 1‰ of the modern seawater value, in part due to non-quantitative Mo removal. Carbonates are also limited in their ability to record seawater signatures, notably by their low Mo contents that make them susceptible to diagenetic resetting or dilution by detrital materials, by the presence of organic matter or porewater sulfide during diagenesis that may alter whole-rock values, and/or their pervasive re-crystallization at even low metamorphic grades. Nonetheless, carbonates provide complimentary insight into Mo cycling during periods 120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

Mo Cycling in the Precambrian

For the Proterozoic, no Mo isotope data are available for carbonate rocks. Maximum values for shales are highly variable, ranging from -0.09‰ to 1.98‰ and averaging 0.81±1.31%; Arnold et al. (2004) inferred a Proterozoic δ⁹⁸Mo_{sw} value of 1.08%. Available IF data during this period are limited, but universally heavy in δ^{98} Mo, with maximum values for each deposit ranging from 1.03% to 2.08% (n=3). Archean Mo isotope data are more abundant in literature for all three lithologies, and a significant contrast in Mo isotope compositions between the three lithologies appears to occur prior to ~2.6 Ga. Maximum shale values range from 1.72‰ to 1.76‰ and average 1.73±0.05‰ from 2.50 Ga to 2.60 Ga, yet are universally low (ranging from -0.46‰ to 0.89\%, averaging 0.31\pm 0.52\%) before 2.64 Ga. In contrast, and with the exception of the Chobeni carbonates, maximum values for carbonates and IF are consistently positive from 2.50 Ga to 2.97 Ga (0.82% to 1.97% with an average of $1.31\pm0.72\%$ for carbonates; 0.97% to 1.87% with an average of 1.52±0.79% for IF; see Figure 2B). As discussed below, this contrast likely relates to the chemical conditions that enable the capture of seawater molybdenum in shale records. From 2.50 to 2.60 Ga, maximum δ^{98} Mo values in shales and carbonates vary from 1.40% to 1.97%, and their average places a lower limit on global seawater Mo isotopic composition of 1.63±0.48% during this period (Figure 2B). IF deposits analyzed during this period present a maximum value between 0.97% and 1.76%. New data from 2.52 Ga carbonate samples from the Gamohaan Formation, Griqualand West basin, show a maximum δ^{98} Mo of 1.11‰, in line with elevated values observed for carbonates of the

Journal: GEOL: Geology DOI:10.1130/G45706.1

adjacent Transvaal basin (up to 1.97%; Eroglu et al., 2015; Figure 2E	3). The general
agreement in maximum $\delta^{98}\text{Mo}$ values for available shale, carbonate,	and IF records
during this period is remarkable. All three archives appear to record s	seawater that is
isotopically heavy due to sequestration of light Mo isotopes by Mn(IV)- ar	nd Fe(III)-oxide
exit channels, consistent with evidence for increasing surface redox poten	ntial in the run-
up to the GOE. Enhanced supply of sulfate (and likely Mo) to the oceans	at this time and
the development of euxinic conditions (e.g., Reinhard et al., 2009) would	have promoted
the authigenic enrichment of seawater Mo into organic-rich shales.	
In several carbonate samples measured by others (Voegelin et al.,	2010; Eroglu et
al., 2015), δ^{98} Mo compositions are isotopically light (as low as -0.82‰)	, indicating the
former presence of Mn(IV)- or Fe(III)-oxides in the samples. As chemical	l sediments that
often contain little detrital material, Precambrian carbonates are generall	y characterized
by low Mo concentrations (<200 ppb), with average isotope-dilution v	whole rock Mo
concentrations of 140 ± 470 ppb for the period 2.50 to 2.97 Ga (Voege	lin et al., 2010;
Eroglu et al., 2015; this study). By contrast, shales generally refle	ect crustal Mo
abundances (1.1 ppm; Rudnick and Gao, 2003), unless authigenic er	nrichment from
seawater occurs. Accordingly, detritus-poor carbonate rocks should be m	ore sensitive to
the addition of small amounts of isotopically light Mo associated with	ith Mn(IV)- or
Fe(III)-oxide sedimentary inputs.	
Our dataset includes the first available Mo isotope data for carbon	nates older than
2.64 Ga. Microbialitic calcite and aragonitic crystal fans (now replaced by	y calcite) from
the 2.80 Ga Mosher Formation at Steep Rock (Canada) show a maximum	δ^{98} Mo value of
1.22±0.04‰, comparable to dolomitic stromatolites and dolomitized crysta	al fans from the

166	2.93 Ga Ball Assemblage at Red Lake (Canada) that display a maximum δ^{98} Mo value of
167	1.03±0.03‰ (Figure 2B). Both of these values are remarkably heavy. While the low Mo
168	contents of these samples might make their $\delta^{98} \text{Mo}$ values more susceptible to diagenetic
169	alteration, multiple lines of evidence indicate this was not responsible for heavy isotope
170	enrichments prior to 2.64 Ga. Briefly, there is no relationship between $\delta^{98}\text{Mo}$ and
171	$\delta^{18}O_{carb}$, and $\delta^{98}Mo$ data tend toward crustal values as a function of degree of
172	silicification (see discussion in Data Repository and Figures DR4 and DR5).
173	Furthermore, burial of light Mo with organic carbon at concentrations typical of Archean
174	shale is unlikely to have affected the global marine Mo cycle (see Data Repository).
175	Instead, these heavy values suggest that Mn(IV)- and Fe(III)-oxide exit channels for Mo
176	were sufficiently important to impart a heavy Mo isotope signature on Mesoarchean
177	seawater. This conclusion is similar to that of Planavsky et al. (2014) and Ossa Ossa et al.
178	(2018), who also concluded that an Mn(IV)-oxide exit channel was in operation ca. 2.95
179	Ga. Crucially, the isotopically light data of these studies simply implies some unknown
180	degree of Mo removal by an oxide-based exit channel, while the isotopically heavy data
181	in our new dataset (also present in the IF examined by Planavsky et al., 2014) reflects the
182	composition of residual seawater.
183	If both carbonates (this study) and iron formations (Planavsky et al., 2014) are
184	characterized by Mo isotope compositions reflecting an important role for metal oxide-
185	based Mo sinks prior to 2.7 Ga, then with the exception of recently analyzed shales from
186	the Pongola Supergroup (Ossa Ossa et al., 2018), why has this not been detected in the
187	larger shale record? Several possible explanations for this discrepancy exist, notably the
188	possibility of spatial heterogeneity in seawater δ^{98} Mo (see below and supplementary

Journal: GEOL: Geology DOI:10.1130/G45706.1

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

discussion). However, considering that nearly all available data for shales older than 2.64 Ga show δ^{98} Mo values in the crustal range, we suggest that the most parsimonious explanation is that most shales simply did not experience authigenic Mo enrichment prior to 2.64 Ga. Indeed, shales older than ~2.64 Ga rarely show signs of enrichment in Mo above crustal values (Figure 2B) and generally reflect detrital Mo sources. This can be explained by the fact that euxinic conditions that strongly promote Mo enrichment in shales were generally absent, whereas after 2.63 Ga, when the first euxinic conditions were established (e.g., Reinhard et al., 2009), carbonates and shales show comparable δ⁹⁸Mo records. Moreover, shales deposited under anoxic but non-euxinic conditions today still become authigenically enriched in Mo; it would appear that lower marine Mo concentrations rendered this process less effective in the Archean. In this context, carbonates that contain a smaller Mo contribution from detrital components, and do not depend on local euxinia or a large marine Mo reservoir for authigenic enrichment, provide unique insight into the upper limit of δ^{98} Mo evolution of seawater prior to 2.63 Ga that is otherwise cryptic in the shale sedimentary record. The rare cases where authigenic signals are recorded in shales (e.g., Ossa Ossa et al., 2018) point to the intriguing possibility of localized Mo isotope responses to local redox conditions. The new carbonate δ^{98} Mo data presented here show no relation with Mn content or Mn/Fe ratio, and considered in light of other redox indicators such as the presence of negative Ce anomalies (represented here as Pr/Pr* > 1; see Data Repository), it becomes apparent that interpretation of carbonate δ^{98} Mo data may not always be straightforward. Simple mixing calculations reveal that the Mo isotope composition of carbonates is more resistant to dilution by detrital material than REE-based signatures (Figure 3). However,

Journal: GEOL: Geology DOI:10.1130/G45706.1

paired 8% Mo – Ce anomaly data from the 2.97 Ga Chobeni Formation (Figure 3) reveal
the presence of significant negative Ce anomalies, as reported elsewhere (Siahi et al.,
2018), yet show no sign of Mo isotope fractionation outside of the crustal range. This
apparent contradiction may be reconciled by the significantly shorter residence times of
light REE (<300 years; see Data Repository) compared to Mo (likely greater than 17 ky
during the Archean; Asael et al., 2015), making REE signals a local proxy, and as a
result, the two proxies are necessarily recording redox at different spatial and temporal
scales. Thus, one interpretation of the paired Chobeni δ^{98} Mo-Ce anomaly data is that the
basin experienced oxidative Ce cycling at a local scale, while oxic sinks for Mo remained
minor in seawater at a global scale. The reverse is true for Red Lake samples, while the
Mosher carbonate shows evidence for both local Mn(IV) oxide precipitation (positive
Pr/Pr*, consistent with Riding et al., 2014, Fralick and Riding, 2015) as well as global
Mn(IV) oxide precipitation (positive δ^{98} Mo). For the Chobeni, another possibility is that
mixing occurred between authigenic Mo from seawater and oxide sources, with the
resulting mixture falling within the crustal $\delta^{98} Mo$ range. Some points fall below the
crustal δ^{98} Mo range, supporting this possibility. While caution is warranted as late
oxidative alteration of surface samples may be difficult to detect (Albut et al., 2018), our
Chobeni dataset is consistent with at least some O ₂ present locally in the basin, similar to
recent findings based on REE data (Siahi et al., 2018) and Fe, Mo and S isotope data
(Eickmann et al., 2018; Ossa Ossa et al., 2018).

CONCLUSION

Journal: GEOL: Geology DOI:10.1130/G45706.1

234	This study presents the first δ^{98} Mo data for carbonates older than 2.64 Ga, with
235	values ranging from -1.54‰ to 1.22‰. By contrast, Mo isotope compositions of shales of
236	similar age generally show crustal values. We suggest that this discrepancy results from
237	low concentrations of Mo in seawater as well as a general absence of euxinic conditions.
238	This, in turn, prevented widespread authigenic Mo enrichment in shales prior to the onset
239	of oxidative continental weathering, an increased Mo reservoir, and the first
240	establishment of localized euxinia ca. 2.7-2.6 Ga (e.g., Reinhard et al., 2009). Carbonate
241	rocks are not subject to these constraints, and along with IF, provide additional
242	perspective on the $\delta^{98}\text{Mo}$ composition of Mesoarchean seawater. Our dataset further
243	indicates minimum global seawater $\delta^{98} \text{Mo}$ values of 1.2% and 1.0% at 2.80 and 2.93 Ga,
244	respectively, consistent with the idea that Mn(IV)- and Fe(III)- oxide sinks for Mo were
245	globally important as far back as 2.95 Ga (Planavsky et al., 2014; Ossa Ossa et al, 2018).
246	Despite possible limitations stemming from detrital contamination and mixing of
247	different authigenic components in the same sample, the $\delta^{98} Mo$ composition of
248	carbonates is a promising proxy for understanding marine molybdenum cycling and
249	paleoredox evolution before conditions permitted widespread authigenic Mo enrichment
250	in shales.
251	

251

252

REFERENCES CITED

- Albut, G., Babechuk, M. G., Kleinhanns, I. C., Benger, M., Beukes, N. J., Steinhilber, B., 253
- 254 Smith, A. J. B., Kruger, S. J., Schoenberg, R., 2018, Modern rather than
- 255 Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic

256	signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa): Geochimica et
257	Cosmochimica Acta, v. 228, p. 157-189, doi: 10.1016/j.gca.2018.02.034.
258	Arnold, G. L., Anbar, A., Barling, J., and Lyons, T., 2004, Molybdenum isotope evidence
259	for widespread anoxia in mid-Proterozoic oceans: Science, v. 304, p. 87-90, doi:
260	10.1126/science.1091785.
261	Asael, D., Rouxel, O., Bekker, A., and Scott, C., 2015, Dissolved Mo in the Archean
262	oceans - a case study from the 2.63 Ga Jeerinah Formation, Australia: Goldschmidt,
263	25th, p. 121.
264	Barling, J., and Anbar, A. D., 2004, Molybdenum isotope fractionation during adsorption
265	by manganese oxides: Earth and Planetary Science Letters, v. 217, p. 315-329, doi:
266	10.1016/S0012-821X(03)00608-3.
267	Eickmann, B., Hofmann, A., Wille, M., Bui, T. H., Wing, B. A., and Schoenberg, R.,
268	2018, Isotopic evidence for oxygenated Mesoarchaean shallow oceans: Nature
269	Geoscience, p.1, doi: 10.1038/s41561-017-0036-x.
270	Eroglu, S., Schoenberg, R., Wille, M., Beukes, N., and Taubald, H., 2015, Geochemical
271	stratigraphy, sedimentology, and Mo isotope systematics of the ca. 2.58-2.50 Ga-old
272	Transvaal Supergroup carbonate platform, South Africa: Precambrian Research, v.
273	266, p. 27–46, doi: 10.1016/j.precamres.2015.04.014.
274	Goldberg, T., Archer, C., Vance, D., and Poulton, S. W., 2009, Mo isotope fractionation
275	during adsorption to Fe (oxyhydr) oxides: Geochimica et Cosmochimica Acta, v. 73,
276	p. 6502–6516, doi: 10.1016/j.gca.2009.08.004.
277	Nägler, T. F., Anbar, A. D., Archer, C., Goldberg, T., Gordon, G. W., Greber, N. D.,
278	Siebert, C., Sohrin, Y., and Vance, D., 2014, Proposal for an International

279	Molybdenum Isotope Measurement Standard and Data Representation: Geostandards
280	and Geoanalytical Research, v. 38, p. 149-151, doi: 10.1111/j.1751-
281	908X.2013.00275.x.
282	Neubert, N., Nägler, T. F., and Böttcher, M. E., 2008, Sulfidity controls molybdenum
283	isotope fractionation into euxinic sediments: Evidence from the modern Black Sea:
284	Geology, v.36, p. 775–778, doi: 10.1130/G24959A.1.
285	Ossa Ossa, F., Hofmann, A., Wille, M., Spangenberg, J. E., Bekker, A., Poulton, S. W.,
286	Eickmann, B., Schoenberg, R., 2018, Aerobic iron and manganese cycling in a
287	redox-stratified Mesoarchean epicontinental sea: Earth and planetary science letters,
288	v. 500, p. 28-40, doi: 10.1016/j.epsl.2018.07.044.
289	Planavsky, N. J., et al., 2014, Evidence for oxygenic photosynthesis half a billion years
290	before the Great Oxidation Event: Nature Geoscience, v. 7, p. 283, doi:
291	10.1038/NGEO2122.
292	Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D., and Lyons, T. W., 2009, A late
293	Archean sulfidic sea stimulated by early oxidative weathering of the continents:
294	Science, v. 326, p. 713-716, doi: 10.1126/science.1176711.
295	Riding, R., Fralick, P., and Liang, L., 2014, Identification of an Archean marine oxygen
296	oasis: Precambrian Research, v. 251, p. 232-237, doi:
297	10.1016/j.precamres.2014.06.017.
298	Fralick, P.W. and Riding, R., 2015, Steep Rock Lake: Sedimentology and geochemistry
299	of an Archean carbonate platform: Earth-Science Reviews, v. 151, p. 132-175, doi:
300	Fralick, P., & Riding, R. (2015). Steep Rock Lake: Sedimentology and geochemistry

301	of an Archean carbonate platform. Earth-Science Reviews, 151, 132-175.
302	doi:10.1016/j.earscirev.2015.10.006.
303	Romaniello, S. J., Herrmann, A. D., and Anbar, A. D., 2016, Syndepositional diagenetic
304	control of molybdenum isotope variations in carbonate sediments from the Bahamas:
305	Chemical Geology, v. 438, p. 84–90, doi: 10.1016/j.chemgeo.2016.05.019.
306	Rudnick, R. L., and Gao, S., 2003, Composition of the continental crust: Treatise on
307	geochemistry, v. 3, p. 659, doi: 10.1016/B0-08-043751-6/03016-4.
308	Siahi, M., Hofmann, A., Master, S., Wilson, A., and Mayr, C., 2018, Trace element and
309	stable (C, O) and radiogenic (Sr) isotope geochemistry of stromatolitic carbonate
310	rocks of the Mesoar- chaean Pongola Supergroup: Implications for seawater
311	composition: Chemical Geology v. 476, p. 389-406, doi:
312	10.1016/j.chemgeo.2017.11.036.
313	Siebert, C., Nägler, T. F., von Blanckenburg, F., and Kramers, J. D., 2003, Molybdenum
314	isotope records as a potential new proxy for paleoceanography: Earth and Planetary
315	Science Letters, v. 211, p. 159–171, doi: 10.1016/S0012-821X(03)00189-4.
316	Siebert, C., Kramers, J., Meisel, T., Morel, P., and Nägler, T. F., 2005, PGE, Re-Os, and
317	Mo isotope systematics in Archean and early Proterozoic sedimentary systems as
318	proxies for redox conditions of the early Earth: Geochimica et Cosmochimica Acta,
319	v. 69, p. 1787–1801, doi: 10.1016/j.gca.2004.10.006.
320	Voegelin, A. R., Nägler, T. F., Samankassou, E., and Villa, I. M., 2009, Molybdenum
321	isotopic composition of modern and carboniferous carbonates: Chemical Geology, v.
322	265, p. 488–498, doi: 10.1016/j.chemgeo.2009.05.015.

323	Voegelin, A. R., Nägler, T. F., Beukes, N. J., and Lacassie, J. P., 2010, Molybdenum
324	isotopes in late Archean carbonate rocks: implications for early Earth oxygenation:
325	Precambrian Research, v. 182, p. 70–82, doi: 10.1016/j.precamres.2010.07.001.
326	Voegelin, A. R., Nägler, T. F., Pettke, T., Neubert, N., Steinmann, M., Pourret, O., and
327	Villa, I. M., 2012, The impact of igneous bedrock weathering on the Mo isotopic
328	composition of stream waters: Natural samples and laboratory experiments:
329	Geochimica et Cosmochimica Acta, v. 86, p. 150–165, doi:
330	10.1016/j.gca.2012.02.029.
331	Wen, H., Carignan, J., Zhang, Y., Fan, H., Cloquet, C., and Liu, S., 2011, Molybdenum
332	isotopic records across the Precambrian-Cambrian boundary: Geology, v. 39, p. 775-
333	778, doi: 10.1130/G32055.1.
334	Wille, M., Kramers, J. D., Nägler, T. F., Beukes, N., Schröder, S., Meisel, T., Lacassie,
335	J., and Voegelin, A., 2007, Evidence for a gradual rise of oxygen between 2.6 and
336	2.5 Ga from Mo isotopes and Re-PGE signatures in shales: Geochimica et
337	Cosmochimica Acta, v. 71, p. 2417–2435, doi: 10.1016/j.gca.2007.02.019.
338	
339	Acknowledgments
340	We thank Dawn Sumner for providing samples and Olivier Rouxel for providing
341	Mo standards and double spike. We also thank Emmanuel Ponzevera, Alexis de Prunelé,
342	Yoan Germain, Bleuenn Guegen, Marie-Laure Rouget, and Céline Liorzou for analytical
343	assistance, and Matthieu Plasman for GIS assistance. This work was supported by an
344	NSERC Discovery Grant to K.O.K. (RGPIN-165831), an NSERC Discovery Grant to
345	P.W.F. (RGPIN 16400), and an NSF EAR Grant to P.T.V (1561173). W.A.

346	acknowledges financial support by the Exxaro Chair at the University of Pretoria and by
347	NRF Incentive Funding. S.V.L. acknowledges support from the European Union's
348	Horizon 2020 research and innovation programme (grant agreement nº 716515). Ronny
349	Schönberg and two anonymous reviewers are thanked for their constructive and
350	insightful reviews.
351	

Journal: GEOL: Geology DOI:10.1130/G45706.1

352

FIGURE CAPTIONS

353 Figure 1. Maps showing (A) Canadian and (B) South African Archean carbonate 354 occurrences analyzed in this study. See Data Repository for additional details and GPS 355 coordinates. 356 Figure 2. New and compiled δ^{98} Mo data for shales, iron formations, and carbonates 357 358 through geological time: (A) data from 3.5 Ga to present; (B) focus on the period from 359 2.5 Ga to 3.0 Ga. See Data Repository for values and data sources. The dark grey area 360 represents modern continental crust values (± 2SD; Siebert et al., 2003) and the light grey 361 area represents the value of modern seawater (± 2SD; Siebert et al., 2003). (C) New and 362 compiled Mo concentration data for shales, iron formation, and carbonates through 363 geological time. Figure 3. δ^{98} Mo data for carbonate samples analyzed in this study plotted against PAAS– 364 365 normalized Pr anomalies as a proxy for true Ce anomalies (see Data Repository). Grey 366 areas represent crustal ranges for both proxies, with the darker grey box indicating their intersection; black lines represent mixing trajectories between crust (δ98Mo≈0% and 367 368 Pr/Pr*=1) and different authigenic end-members, including modern seawater $(\delta^{98}\text{Mo}=2.36\%)$ and Pr/Pr*=1.4) and different hypothetical $\delta^{98}\text{Mo}$ compositions of 369 ancient seawater and Mn- and Fe-oxides (δ⁹⁸Mo ranging from 1.5 to 0‰; Pr/Pr* fixed at 370 371 1.2). Grey arrows show the trajectory of admixing of Mo associated with Mn- and Fe-372 oxide sources. 373

Publisher: GSA Journal: GEOL: Geology DOI:10.1130/G45706.1

¹GSA Data Repository item 2018xxx, containing supplemental discussion on marine Mo cycling and post-depositional modification, description of samples and their REE spectra, detailed methods and compilation data sources, and data tables, is available online at http://www.geosociety.org/datarepository/2018/, or on request from editing@geosociety.org.

Figure 1

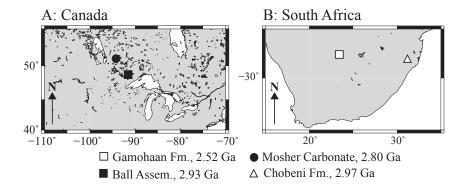


Figure 2

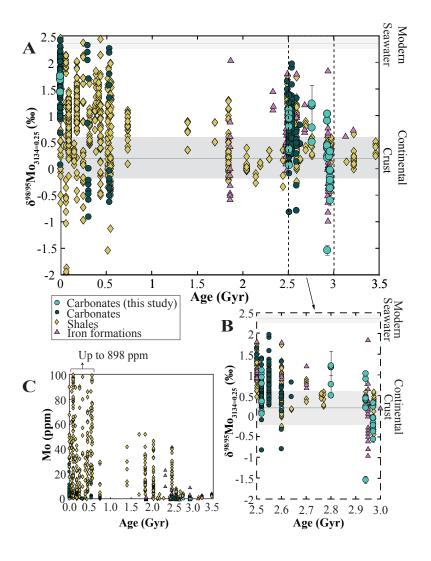
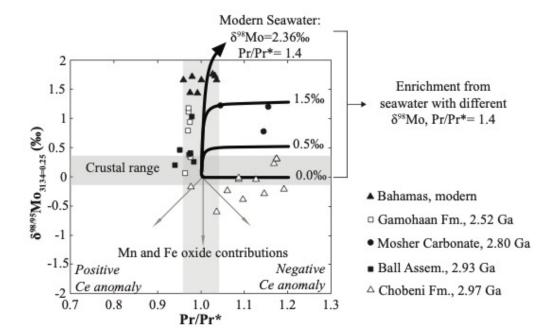



Figure 3

