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thritis. We here review the data that support the investiga-
tion of (R)-roscovitine as a potential therapeutic agent for 
the treatment of cystic fibrosis (CF). (R)-Roscovitine displays 
four independent properties that may favorably combine 
against CF: (1) it partially protects F508del-CFTR from pro-
teolytic degradation and favors its trafficking to the plasma 
membrane; (2) by increasing membrane targeting of the 
TRPC6 ion channel, it rescues acidification in phagolyso-
somes of CF alveolar macrophages (which show abnormally 
high pH) and consequently restores their bactericidal activ-
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 Abstract 

 (R)-Roscovitine, a pharmacological inhibitor of kinases, is 
currently in phase II clinical trial as a drug candidate for the 
treatment of cancers, Cushing’s disease and rheumatoid ar-
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ity; (3) its effects on neutrophils (induction of apoptosis), eo-
sinophils (inhibition of degranulation/induction of apopto-
sis) and lymphocytes (modification of the Th17/Treg balance 
in favor of the differentiation of anti-inflammatory lympho-
cytes and reduced production of various interleukins, nota-
bly IL-17A) contribute to the resolution of inflammation and 
restoration of innate immunity, and (4) roscovitine displays 
analgesic properties in animal pain models. The fact that (R)-
roscovitine has undergone extensive preclinical safety/phar-
macology studies, and phase I and II clinical trials in cancer 
patients, encourages its repurposing as a CF drug candidate.  

 © 2016 S. Karger AG, Basel 

 Introduction 

 Cystic fibrosis (CF) is a genetic disease affecting the 
gene encoding the cystic fibrosis transmembrane con-
ductance regulator (CFTR) ion channel (7q31.2, 1,480 
amino acids, 168 kDa), allowing the passage of chloride 
and bicarbonate ions across the apical membrane of epi-
thelial cells. The CFTR channel displays five domains: 
two hydrophobic membrane-spanning domains (each 
constituted of six transmembrane helical segments), two 
hydrophilic nucleotide-binding domains (NBD) and a 
cytoplasmic regulatory domain which is encoded by exon 
13 and contains numerous charged residues and most of 
the potential phosphorylation sites. The most frequent 
mutation site (F508del) is localized in NBD1. Loss of 
function of CFTR translates into pulmonary problems, 
including dehydration and overproduction of mucus, re-
spiratory difficulties, chronic infection ( Pseudomonas ae-
ruginosa  in particular) and inflammation. Good over-
views on various aspects of CF can be found in several 
recent reviews  [1–6] . 

  Lung damage secondary to chronic infection is the 
main cause of death in CF patients. Treatment of lung 
disease to reduce the impact of dysregulated innate im-
munity, infections, inflammation and subsequent lung 
injury is, therefore, of major importance  [7–13] . Im-
proved survival and increased mean age of CF patients 
worldwide is encouraging  [14] , but pulmonary infections 
remain the main problem for CF patients, as mortality in 
CF directly relates to compromised respiratory function. 
Despite some progress in the treatment of CF in recent 
years, transplantation remains the only therapeutic op-
tion for subjects reaching the terminal phase of pulmo-
nary disease. Currently, conventional medical treatment 
has little to offer to these late-stage CF patients and effec-
tive new agents need to be identified. The current devel-

opment of new drugs with antimicrobial or anti-inflam-
matory properties, and the recent discovery and use of 
CFTR correctors and potentiators provide increasing 
hope for the treatment of CF  [15–23] .

  We here review recent evidence showing that roscovi-
tine, a protein kinase inhibitor developed as a clinical 
phase II anticancer drug, rescues the trafficking defect of 
the F508del-CFTR protein, positively affects various as-
pects of the biology of innate immune cells, leading to 
potentiation of the antimicrobial defense and down-reg-
ulation of the inflammatory process, and displays anal-
gesic properties. This body of results advocates in favor of 
the evaluation of roscovitine for the treatment of CF.

  Roscovitine: A Wide-Potential Kinase Inhibitor 

 The 2,6,9-trisubstituted purine (R)-roscovitine (re-
ferred to as roscovitine above and in the rest of the article; 
 fig. 1 ) was discovered in 1997 as a pharmacological in-
hibitor of cyclin-dependent kinases (CDKs) [ 24, 25 ; re-
views:  26–29 ], a class of regulators essential for cell divi-
sion and other major cellular functions [reviews:  29–31 ]. 
Its selectivity has been extensively studied: it interacts 
with various CDKs, casein kinases (CK1), dual specificity 
tyrosine phosphorylation-regulated kinases (DYRKs) as 
well as with pyridoxal kinase  [32–34] . Roscovitine was 
cocrystallized with CDK2, CDK5, CDK9 and pyridoxal 
kinase  [24, 33, 35, 36] .

  Roscovitine has been patented (its synthesis and some 
derivatives) in the USA, Europe and Japan for several ap-
plications  [37] . The ‘Centre National de la Recherche
Scientifique’ (CNRS) holds exclusive rights to the patent 
that applies to cancers, infections and inflammatory dis-

(R)-roscovitine

N

N N

N

HN

OH

HN

N

N N

N

HN

OH

HN

N

N N

N

HN

OH

HN

O

(S)-roscovitine Metabolite M3

  Fig. 1.  Structure of the two isomers of roscovitine and M3, the ma-
jor metabolite of (R)-roscovitine. Isomer R of roscovitine has been 
developed as a cancer drug candidate under the name seliciclib 
(CYC202). 
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eases as granted to Cyclacel Pharmaceuticals. A second 
patent covers the use of roscovitine for the treatment of 
cerebrovascular conditions (e.g. stroke) and was licensed 
by the CNRS to Neurokin    [38] . Finally, a third patent pro-
posing the use of roscovitine for the treatment of CF was 
purchased from the CNRS and the University of Poitiers 
by ManRos Therapeutics  [39] . The synthesis of roscovi-
tine and related analogues has been largely described and 
optimized  [40] .

  The therapeutic potential of roscovitine has been eval-
uated for numerous medical and veterinary indications. 
In addition to cancer, we can cite stroke  [41] , Parkinson’s 
disease  [42] , Alzheimer’s disease [L.H. Tsai, pers. com-
mun.], cranial trauma  [43] , pain signaling (see ‘Roscovi-
tine Has Analgesic Properties’, below), various viral in-
fections  [44] , polycystic kidney disease  [45, 46] , glomeru-
lonephritis  [47–50] , glaucoma  [51, 52] , Lambert-Eaton 
syndrome  [53–55] , deafness  [56] , Timothy syndrome 
 [57–59] , fibrosis  [60] , Cushing’s disease  [61, 62]  and dia-
betes  [63] . These studies have made it to preclinical trials, 
with the exception of glaucoma, glomerulonephritis and 
Cushing’s disease, where roscovitine entered clinical tri-
als. In cancer research, Cyclacel Pharmaceuticals has con-
ducted preclinical, clinical phase I  [64–67]  and clinical 
phase II  [68]  trials with roscovitine under the name seli-
ciclib or CYC202. Non-small cell lung cancer, breast can-
cer and nasopharyngeal cancer have been the main indi-
cations  [68] . Recently, roscovitine has entered clinical tri-
als for the treatment of Cushing’s disease  [61, 62, 69]  and 
rheumatoid arthritis  [70] . In the animal breeding field, 
roscovitine has been used as a tool to synchronize nucle-
us donor cells for the cloning of numerous mammals  [71, 
72] .

  Kinetic biodistribution analysis in rats revealed that 
the highest area under the curve for roscovitine was ob-
served in the lungs  [73] . Several mouse models of lung 
inflammation or injury were efficiently treated with 
roscovitine by intraperitoneal administration: bleomy-
cin-induced lung injury  [74] , lipoteichoic acid- and  Strep-
tococcus pneumoniae -induced lung inflammation  [75] , 
and lung injury induced by mechanical ventilation  [76] . 
Furthermore, roscovitine has been evaluated in phase IIa 
clinical trials against non-small cell lung cancer, where a 
substantial increase in overall survival was observed (388 
vs. 218 days in the placebo arm) despite no difference in 
progression-free survival  [68] . Altogether, these data 
demonstrate that the lung is a viable target for roscovi-
tine.

  Roscovitine is orally bioavailable in man  [66–68]  and 
rodents  [73, 77] . Once in the organism, roscovitine is rap-

idly metabolized by the liver, essentially by oxidation 
 [27] . The main metabolite is the carboxylate product 
(M3;  fig. 1 )  [66, 67, 73, 77] , which does not inhibit the ki-
nases targeted by roscovitine but may account for other 
effects of the drug  [77–79] . Although the half-life of M3 
in humans is similar to that of roscovitine  [66, 67] , its CF-
favorable biological activity could extend that of roscovi-
tine in CF treatment. Alternatively, the M3 compound 
could feasibly be developed as a drug candidate per se. 
Indeed, since it is essentially ‘kinase dead’, the toxic ef-
fects of roscovitine associated with its antiproliferative
effects should thus be considerably reduced, permitting 
chronic administration of M3 over long periods and/or 
an increase in the treatment dose. As inhibition of CDKs 
appears to be important regarding the effects exerted by 
roscovitine on neutrophils, this could limit the anti- 
inflammatory action of M3 on CF, thus normalizing the 
inflammatory response in CF rather than completely ab-
rogating it. It seems, therefore, possible to envisage the 
development of M3, or one of its analogues, as an alterna-
tive CF drug candidate derived from roscovitine.

  Roscovitine and CF 

 Roscovitine Protects the Chloride Channel F508del-
CFTR from Proteolytic Degradation and Acts as a 
Corrector for Its Membrane Localization 
 The described CFTR mutations are grouped into class 

I (mutations leading to lack of CFTR protein synthesis), 
class II (mutations leading to anomalies in CFTR process-
ing, such as disruption of folding and trafficking to the 
surface), class III (mutations leading to defective regula-
tion or gating of CFTR), class IV (mutations leading to 
defective chloride conductance) and class V (mutations 
leading to alternative splicing and production of insuffi-
cient quantity of CFTR polypeptide)  [17, 18] . Alterations 
in CFTR activity in CF, thus, originate from different 
causes, depending on the type of mutation. Although 
2002 mutations have been described in CFTR (http://
www.genet.sickkids.on.ca/StatisticsPage.html), deletion 
of the codon corresponding to phenylalanine 508 
(F508del-CFTR) is by far the most frequent, representing 
almost 70% of all CF cases. Only five other mutations 
(G542X, G551D, W1282X, N1303K and R553X) repre-
sent more than 1% of all CF cases. All other mutations are 
rare and even exceptional, often uniquely detected in a 
single family.

  The F508del-CFTR protein is expressed normally but, 
due to misfolding, it is not transported to the apical mem-
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brane of epithelial cells. The mutation is temperature sen-
sitive, meaning that physiological activity of F508del-
CFTR is partially restored when cells are cultured at a low 
temperature (27   °   C). This is probably linked to proper 
folding, partial restoration of trafficking and correct 
translocation to the plasma membrane. The F508del-
CFTR protein is, thus, potentially functional but, at phys-
iological temperatures, deletion of F508 prevents the cor-
rect folding and subsequent correct localization of CFTR 
to the plasma membrane. Correctors are usually low-
molecular-weight molecules that allow the localization of 
F508del-CFTR to the plasma membrane. Correctors are 
diverse in terms of chemical structure, mechanism of ac-
tion and potency to rescue the abnormal trafficking and 
function of F508del-CFTR. However, all of these com-
pounds are only partial correctors  [15–19] . We have re-
cently shown that roscovitine also acts as a partial correc-
tor of F508del-CFTR  [78] . This corrector effect seems to 
originate both from a negative effect on the recognition 
of F508del-CFTR by the endoplasmic reticulum (ER) 
conformation-based quality control pathway and from a 
partial inhibition of F508del-CFTR proteolysis by the ER-
associated degradation pathway ( fig. 2 ). Depletion of ER 
Ca 2+  stores by roscovitine reduces the Ca 2+ -dependent 
interaction of F508del-CFTR with calnexin, preventing 
F508del-CFTR to be taken up by the ER-associated deg-
radation pathway to proteolysis. In parallel, roscovitine 
reduces proteolytic degradation of F508del-CFTR by the 
proteasome in a Ca 2+ -independent manner. This increas-
es the availability of F508del-CFTR for translocation to 
the plasma membrane ( fig. 2 ). The resulting corrector ef-
fect does not require the kinase-inhibitory activities of 
roscovitine as M3, the main hepatic metabolite of rosco-

vitine ( fig. 1 )  [73, 77] , also displays corrector properties. 
Furthermore, other roscovitine derivatives which are ac-
tive on kinases (CR8, olomoucine) do not show a correc-
tor activity. Recently, a screen to detect potential correc-
tors among a chemical library of 231 kinase inhibitors 
revealed several corrector products (active at 10 μ M ), no-
tably kenpaullone and alsterpaullone, two inhibitors of 
CDK/GSK-3  [80] . These compounds, which we also 
identified as correctors [unpubl. results], were developed 
during a long-term collaboration between our laboratory 
in Roscoff and Prof. Conrad Kunick’s team in Braun-
schweig  [81] .

  Roscovitine Reduces the Intraphagolysosomal pH
in CFTR-Deficient Macrophages and Restores Their 
Bactericidal Properties 
 For several years, treatment of CF has aimed at cor-

recting the epithelial defect due to CFTR absence or dys-
function. Several lines of evidence are converging to a 
novel paradigm of a dysregulated innate immunity result-
ing in the defects in bacterial clearance observed in CF 
 [7–12] . Pivotal to these processes are neutrophils and 
macrophages  [12] . 

  Intraphagolysosomal pH and Bactericidal Abilities of 
Macrophages 
 The intraphagolysosomal pH of CFTR-deficient or 

cftr–/– macrophages has been shown to be abnormally 
high (pH 6.5–7.2) when compared to the intraphagolyso-
somal pH of non-CF macrophages (pH 4.5–5.2;  fig. 3 a, b) 
 [82] . Neither the phagocytic capacity of macrophages nor 
the fusion of phagosomes with lysosomes are affected by 
the mutant CFTR  [82] . However, bacteria, once phagocy-
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e  Fig. 2.  Roscovitine corrects the trafficking 

defect of F508del-CFTR by regulating its 
proteolytic degradation. Abnormally fold-
ed F508del-CFTR is taken up by the ER 
quality control (ERQC) system. It binds to 
the calnexin chaperone in a calcium-de-
pendent manner. The complex is then tak-
en up by the ER-associated degradation 
(ERAD) pathway for proteolytic degrada-
tion by the proteasome. Roscovitine de-
pletes ER Ca 2+  stores, reducing the interac-
tion of F508del-CFTR with calnexin. In
addition, roscovitine lowers proteasomal 
activity in a Ca 2+ -independent manner.
Altogether, this favors the stabilization of 
F508del-CFTR and its trafficking to the 
plasma membrane. 
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  Fig. 3.  Schematic overview of TRPC6 rescue of microbicidal activ-
ity in CFTR-deficient AMs through GPCR (G protein-coupled
receptor) activation with (R)-roscovitine. Ionic fluxes in alveolar 
phagosomal membranes are permissive for intraluminal acidifica-
tion and the development of a microbicidal environment. GPCR 
stimulation with (R)-roscovitine sets sequential intracellular sig-
naling events in motion, leading to vesicle-mediated TRPC6 trans-
location and insertion. Calcium-dependent TRPC6 insertion into 
the plasma membrane and subsequent uptake into phagosomes de-
termines the production of an intraluminal microbicidal environ-
ment.  a  CFTR+/+ AMs. Phagosomal acidification is driven by the 
flow of protons into the phagosomal lumen through V-ATPase ac-
tivity, which, if uncompensated, produces charge buildup in the 
confined intraluminal compartment. Charge compensation is pro-
vided by Cl –  influx through CFTR allowing for a decrease in
phagosomal membrane potential and enhanced acidification. The 
phagosomal lumen pH is approximately 5, and the phagosomal
membrane potential (Ψ) is low (approx. +28 mV). The acidified 

phagosomal lumen supports the proteolytic activity of lysosomal 
enzymes, leading to bacterial killing.  b  CFTR–/– AMs. The absence 
of a Cl –  influx pathway reduces the level of acidification, and the 
phagosomal lumen pH reaches near-neutral levels, leaving a high 
phagosomal membrane potential. The lack of an acidified phago-
somal lumen prevents bacterial lysis and supports bacterial growth. 
The elevated phagosomal membrane potential reduces proton 
movement into the phagosomal lumen.  c  CFTR–/– AMs exposed 
to roscovitine. Recruitment of the cation channel TRPC6 to the 
plasma membrane and subsequently to the phagosomal membrane 
upon particle engulfment provides an alternative charge shunt 
pathway in the absence of CFTR expression. Activation of TRPC6 
in the phagosomal membrane by (R)-roscovitine-generated diacyl-
glycerol (DAG) opens a cation exit pathway from the phagosomal 
lumen acting as an alternate charge shunt, thereby allowing for pH 
regulation and acidification. The phagosomal pH is maintained at 
a level of approximately 5 and the membrane potential is low. These 
conditions support microbicidal activity [adapted from  79 ].  
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tosed, are not destroyed in the phagolysosomes  [82, 83] . 
Bacteria are even able to multiply within the phagolyso-
somes  [83] , which sit at neutral pH far from the normal 
acidic pH optimum for lysosomal lipases and proteases. 
As a consequence, the inability of F508del-CFTR macro-
phages to destroy bacteria can aggravate infections that 
affect CF patients. Elevation of intraphagolysosomal pH 
by 2 units is also observed in  cftr–/–  macrophages which 
completely lack expression of this ion channel.

  The pH abnormalities in CF are now being document-
ed in different cellular compartments, cells and tissues 
 [82–89]  despite earlier resistance in certain camps  [90–
94] . Recent findings from Zhang et al.  [88]  identified a 
population of secretory lysosomes that exhibit a higher 
pH in alveolar macrophages (AMs) deficient in  cftr–/–  
than in wild-type lung macrophages. The role of CFTR in 
bacterial clearance in the lung is underscored in recent 
studies on CF pigs which develop human-like CF lung 
disease  [95–97] . Newborn pigs do not exhibit signs of air-
way inflammation but already display a defect in their 
ability to eliminate bacteria, which leads to the accumula-
tion of bacteria in the lungs [reviewed in  98 ]. These stud-
ies provide further validation for our data which estab-
lished that AMs express functional CFTR and cells from 
CFTR null as well as mutant mice exhibit defective bacte-
ricidal activity  [82, 86] . The cause of this deficiency is ap-
parently a failure of lysosomes and phagosomes to acidi-
fy properly in the knockout model. The severity of the 
acidification phenotype scales with the mutant genotype 
with F508del-CFTR being the most severe  [86] . Phagocy-
tosis per se is not affected and it does not appear that 
CFTR affects phagolysosomal fusion or reactive oxygen 
species production. Interestingly, only AMs showed a de-
pendence of lysosomal acidification upon CFTR expres-
sion. Recently published data demonstrate that the mac-
rophage tissue source determines dependence of intracel-
lular acidification on CFTR expression  [86] . We surmise 
that other Cl – channels may play a similar role in phago-
somal function in other innate immune cells. Mice null 
for CLC-3 are susceptible to sepsis, and Moreland et al. 
 [99]  suggested that CLC-3 is crucial for normal host de-
fense by mechanisms that may involve phagocytic and 
secretory behavior in neutrophils, observations which are 
in conflict with those of Painter et al.  [100–102] , who 
maintained that CFTR mediates halide transport in hu-
man neutrophils.

  In collaboration with ManRos Therapeutics, the Uni-
versity of Chicago group (V.R., A.G.G. and D.N.) demon-
strated that roscovitine reduces the intraphagolysosomal 
pH of F508del-CFTR macrophages by more than 1 unit 

( fig. 3 c). This effect is also observed with the M3 metabo-
lite of roscovitine. We initially thought that roscovitine 
was acting as a corrector in F508del-CFTR AMs with the 
F508del-CFTR being addressed to the phagolysosome 
membranes following uptake of the bacterial cargo, and 
thus correcting the intraphagolysosomal pH. Unexpect-
edly, roscovitine also reduced the intraphagolysosomal 
pH of  cftr–/–  macrophages. This demonstrates that the 
CFTR channel is not involved in the acidifying effect of 
roscovitine in phagolysosomes. This effect could thus, in 
principle, take place in any macrophage that shows a neu-
tral intraphagolysosomal pH linked to a functional inac-
tivation of CFTR, in other words independently of the 
mutation involved. In terms of therapeutic applications, 
this signifies that roscovitine could, therefore, have a 
macrophage phagolysosomal pH-correcting effect in 
many forms of CF, regardless of the mutation affecting 
the CFTR gene and channel functionality.

  The consequence of the intraphagolysosomal pH res-
cue, even if partial, is a marked improvement in the abil-
ity of  cftr–/–  and F508del-CFTR macrophages to elimi-
nate  P. aeruginosa , the major pathogen in CF ( fig.  4 ).
Improvement in the bactericidal properties of these mac-
rophages lacking CFTR or functional CFTR, by treat-
ment with roscovitine, is therefore independent of CFTR 
and – perhaps more importantly – of the antibiotic resis-
tance profile of bacterial isolates .  Roscovitine could, 
therefore, have a general bactericidal   effect on most CF 
forms. Improvement in the bactericidal properties is ob-
served with the M3 metabolite, S-CR8, N6-methyl-rosco-
vitine and O6-benzyl-roscovitine, but is not observed 
with S-roscovitine, miglustat, olomoucine, finisterine, 
perharidine or purvalanol A  [79] .

  Molecular Mechanisms of Action: Indirect Targeting 
of the TRPC6 Ion Channel 
 Recent results suggest that the effects of roscovitine on 

the intraphagolysosomal pH of macrophages could be ex-
plained by an action mediated by the Ca 2+ -permeable 
channel TRPC6  [79] . TRPC6 belongs to the TRP (tran-
sient receptor potential) family of ion channels, particu-
larly important in respiratory system diseases. The TRP 
family comprises 28 members, which are grouped into 
several different classes: TRPC (canonical), TRPV (vanil-
loid), TRPM (melastatin), TRPP (polycystin), TRPML 
(mucolipin) and TRPA (ankyrin) [reviewed in  103–108 ]. 
The TRPC channels comprise 6 members, TRPC1, TRPC3, 
TRPC4, TRPC5, TRPC6 and TRPC7. TRPC6 is a channel 
activated by diacylglycerol derived from the hydrolysis of 
phospholipids (phosphoinositides) by phospholipase C. 
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TRPC6 is expressed in cells implicated in inflammation 
and innate immunity, neutrophils  [109–111]  and macro-
phages  [112, 113] . TRPC6 is highly expressed in the lungs. 
Its expression is increased in macrophages from patients 
with chronic obstructive pulmonary disease and pulmo-
nary hypertension  [112, 113] . Activation of TRPC6 is im-
plicated in pulmonary edema (lung ischemia-reperfu-
sion-induced edema)  [114] . Deletion of TRPC6 in mice 
( trpc6 –/–) specifically inhibits pulmonary inflammatory 
reactions of allergic origin  [115] . Few antagonists and ag-
onists of TRPC6 have been described; they generally dis-
play low efficiency  [116] . Hyperforin (from the St. John 
herb or St. John’s wort) is an activator of TRPC6  [117] . A 
series of TRPC6 channel antagonists has been described 
by Sanofi  [118] . Work by Antigny et al.  [119, 120]  sug-
gested that TRPC6 activity is regulated by the CFTR chan-
nel. The physical interaction of the two channels leads to 
an inhibition of calcium entry through TRPC6. On the 
other hand, F508del-CFTR is unable to interact with 
TRPC6, and this would lead to excessive activation of 

TRPC6 and abnormal entry of calcium. The influx of cal-
cium can be normalized once the trafficking of F508del-
CFTR is corrected (miglustat) or by anti-TRPC6 siRNA 
 [119, 120] . Our results show that roscovitine acts as an 
indirect activator of the TRPC6 channel, independently of 
CFTR channel expression or mutation. Roscovitine in-
duces the production of diacylglycerol, which activates the 
translocation of TRPC6 calcium channels to the plasma 
membrane. Following phagocytosis, TRPC6 channels are 
integrated in the phagosomal membrane and contribute 
to cation depletion inside the phagolysosomes, thus am-
plifying intraphagolysosomal acidification due to vacuo-
lar-type (V)-ATPase (which, by hydrolyzing ATP, allows 
proton entry). This effect is responsible for the intra-
phagolysosomal acidification of macrophages ( fig. 3 c).

  Roscovitine Displays Anti-Inflammatory Properties  
 Effects on Neutrophils 
 Neutrophils represent the first line of defense against 

microbes but are also powerful proinflammatory cells 
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  Fig. 4.  Roscovitine acidifies the phagolysosomes of F508del-CFTR 
and cftr–/– macrophages and prevents bacterial growth ( b ,  c ).
 a  Intraphagolysosomal pH in  cftr +/+, F508del-CFTR or  cftr–/– 
 mouse AMs. Mutation or absence of CFTR leads to increased pH. 
Exposure to roscovitine results in phagolysosomal acidification. 
Means ± SEM.  *  *  *   p < 0.001 vs. control (two-way ANOVA).
   b ,  c  F508del-CFTR ( b ) or  cftr–/–  (   c ) AMs were exposed to DsRed-
labeled bacteria, and fluorescence intensity at 607 ± 20 nm was 

monitored over time following exposure to 20 μ M  roscovitine, M3 
or corresponding amounts of vehicle (control). Bacterial growth is 
shown as fold increase in DsRed fluorescence. Summary data from 
at least 3 separate experiments [adapted from  79 ]. Mean fluores-
cence intensities ± SEM. Bacterial growth is prevented by  cftr +/+ 
AM (data not shown), but not by F508del-CFTR or  cftr–/–  AM. 
Bacterial growth is prevented by both roscovitine and its metabo-
lite.  
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able to injure host tissue ( fig. 5 a). CF constitutes a repre-
sentative example of a pathogenic condition in which the 
deleterious power of neutrophils is at work, with uncon-
trolled activated neutrophils unable to kill invading bac-
teria  [121] . This particular picture has led to a still unre-
solved neutrophil conundrum in CF, i.e. whether neutro-
phils could be genetically modified to display such a 
proinflammatory phenotype  [9] . Indeed, as in macro-
phages  [89]  and monocytes  [122] , CFTR is expressed in 
neutrophils and regulates bactericidal activity  [101, 123–
125] .

  Neutrophil extracellular traps (NETs) contribute to 
inflammation in a number of diseases, such as systemic 
lupus erythematosus  [126]  and inflammatory arthritis 
 [127] , and have been described in CF  [128–130] . Fur-
thermore,  P. aeruginosa  can induce NETosis  [127, 131–
134] . Oxidative burst and NADPH oxidase activity are 
central to the process of NET formation, with myeloper-
oxidase and neutrophil elastase acting as essential cofac-
tors  [135, 136] . The importance of NETs in the killing of 

pathogens is a matter of concern and has recently been 
challenged by a report showing that neutrophils from pa-
tients with the Papillon-Lefèvre syndrome lacking serine 
proteinases and unable to produce NETs did not show 
any defect in bacterial killing  [137] . Oxidative burst 
causes downstream activation of peptidyl dearginase 
(PAD4), which in turn translocates to the nucleus and 
hypercitrinulates histones, leading to nuclear deconden-
sation  [138] . NETosis is entirely distinct from apoptosis 
 [139]  but may involve the activation of autophagic path-
ways  [140, 141] . The clearance of NETs, unlike that of 
apoptotic neutrophils, is poorly understood, with unde-
graded NET fragments promoting inflammation in sys-
temic lupus erythematosus  [142] . As such, the proin-
flammatory potential of NETs in the CF airway cannot 
be ignored.

  A complex relationship exists between infections and 
inflammation in the lungs of CF patients [reviewed in  1–
7, 143–146 ]. The persistence of neutrophils in CF lung 
that failed to clear bacterial infection and are not cleared 
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    Fig. 5.  Roscovitine and neutrophils.  a  The 
different steps of inflammation: initiation by 
neutrophil infiltration is followed by neu-
trophil apoptosis. Macrophage infiltration 
then allows phagocytosis of apoptotic neu-
trophils and resolution of inflammation 
[adapted from                                159 ]. Neutrophils from CF 
patients appear to be partially protected 
from apoptosis. Roscovitine induces apop-
tosis of neutrophils, improving their elimi-
nation by macrophages and thus favoring 
the resolution of inflammation.  b  Proposed 
molecular mechanisms underlying induc-
tion of apoptosis by roscovitine [adapted 
from  36 ]. The cell survival/cell death balance 
is maintained by Mcl-1, a Bcl-2 family mem-
ber survival factor that binds to and neutral-
izes proapoptotic proteins such as Noxa. 
Mcl-1 is a short-lived protein being con-
stantly synthesized (through RNA poly-
merase 2, itself under the control of CDK7/
cyclin H and CDK9/cyclin T) and constant-
ly degraded (through Mcl-1 ubiquitin ligase 
and proteasome). Roscovitine inhibits 
CDK7 and CDK9, preventing phosphoryla-
tion of RNA polymerase 2 at Ser-2 and Ser-9, 
respectively. Consequently, mRNA synthe-
sis is transiently inhibited, and short-lived 
mRNAs and proteins are down-regulated. 
This is the case for Mcl-1. Reduction in the 
Mcl-1 protein level results in a transient in-
crease in free Noxa protein, which triggers 
Bax/Bak-dependent apoptotic cell death.        
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themselves by macrophages following apoptosis strongly 
points to the importance of innate immune cells in this 
process in CF. Furthermore, other forms of neutrophil 
death, such as NETosis, may be prevalent in the CF lung 
and contribute to lung damage and bacterial colonization 
 [147, 148] . Of note is the modulation of immune respons-
es to infections by proteases from neutrophils, especially 
through chemokines  [149] .

  Through several structural and pharmacological 
properties, roscovitine targets innate immune cells via 
different mechanisms. The discovery that CDK inhibi-
tors, such as roscovitine, could indeed favor the disposal 
of neutrophils by enhancing both their apoptosis and 
their phagocytosis by macrophages has opened a promis-
ing research field [ 74 , reviews in  150, 151 ]. Roscovitine 
resolves the inflammatory response in various animal 
models  [74, 150] . This activity is linked to the proapop-
totic action of roscovitine on neutrophils ( fig. 5 a). The 
molecular mechanism is likely to implicate inhibition of 
CDK7 and CDK9  [152] , which leads to reduced expres-
sion of the cell survival and anti-apoptotic factor Mcl-1 
 [153, 154] , an effect we have also observed while analyz-
ing the anticancer activity of roscovitine and its deriva-
tives ( fig. 5 b)  [155] . Roscovitine also inhibits the produc-
tion of nitric oxide and inhibits the activation of NFκB in 
macrophages  [156, 157] . Inhibition of the NFκB pathway 
by CR8, an analogue of roscovitine, was also observed in 
chronic lymphocytic leukemia cells  [158] . The anti-in-
flammatory effect of roscovitine via enhanced apoptosis 
of neutrophils was confirmed in a zebrafish inflamma-
tory model  [159, 160] , a mouse model with pulmonary 
inflammation induced by  S. pneumoniae  and lipoteicho-
ic acid (a proinflammatory constituent of Gram-positive 
bacteria)  [75] , a mouse model of ventilator-induced lung 
injury  [76]  and an experimental mouse model of pneu-
mococcal meningitis  [161] . It was also shown that rosco-
vitine, by inhibiting CDK2 and CDK5, blocks endothe-
lial activation and leukocyte/endothelial cell interac-
tions, contributing to the anti-inflammatory effect  [162] . 
One of the specificities of CF is the persistence of an 
enormous burden of neutrophils in the airways [ 163, 
164 , reviewed in  165, 166 ]. In spite of the overabundance 
of neutrophils, the deficit in antimicrobial activity results 
in a chronic  P. aeruginosa  infection suggesting defective 
innate immunity  [9, 10, 166–168] . In vitro studies show 
that the apoptotic death of neutrophils from CF patients 
is delayed, thus impairing their elimination by macro-
phages and promoting inflammation  [169–171] . The in 
vitro kinetics of apoptosis is slowed down in neutrophils 
from CFTR mutation heterozygote parents, as seen with 

neutrophils of their children (homozygotes)  [171] . In vi-
tro, roscovitine restores a normal level of apoptosis in 
neutrophils isolated from CF patients  [171] . Roscovi-
tine-induced apoptosis of neutrophils and their progeni-
tors has been linked to the Noxa-dependent degradation 
of Mcl-1, which liberates Bim and Puma, two activators 
of the proapoptotic factor Bax  [172] , which, interesting-
ly, has been demonstrated to be deficient in CF  [173] . 
Furthermore, roscovitine inhibits the proliferation of 
those progenitor neutrophils which managed to escape 
apoptosis  [161] .

  The spectrum of biological activities of roscovitine is 
wide and, importantly, appears to be cell specific. For in-
stance, the proapoptotic effect in neutrophils is extreme-
ly effective, while no such effect is observed in macro-
phages. Roscovitine effects should, thus, be studied in 
each cell type and might also depend on the type of  CFTR  
mutation. 

  Effects on Eosinophils 
 In addition to neutrophils, eosinophils may participate 

to lung tissue injury in CF  [174, 175] . The pathophysio-
logical importance of eosinophils may be specifically rel-
evant in CF patients showing allergic bronchopulmonary 
aspergillosis  [176] .

  Upon stimulation, eosinophils release the content of 
their secretory granules, which comprise various toxic 
proteins, such as eosinophil cationic protein (ECP) and 
eosinophil peroxidase (EPX), and produce proinflamma-
tory mediators, such as leukotrienes (LTC 4 ). Although 
their number remains stable in the peripheral blood and 
lung, eosinophils are activated in CF  [177, 178] , resulting 
in enhanced production of ECP and EPX  [175–179]  and 
LTC 4   [180]  compared to healthy controls. Eosinophils 
isolated from CF patients release higher amounts of ECP 
than those of control, healthy patients  [181] . ECP levels 
found in the sputum of CF patients reach levels similar to 
those able to induce pulmonary damage in vitro  [179–
181]  and correlate with ions levels  [182] . 

  Eosinophils express various CDKs, CDK5 in particu-
lar  [183, 184] , and its activating partners p35 and p39 
 [185] . Upon eosinophil stimulation, CDK5 is phosphory-
lated on Ser-159, and its catalytic activity is increased 
 [184] . This correlates with phosphorylation of one of its 
substrates, Munc-18  [184–186] , release of syntaxin-4
and its binding to SNARE proteins (soluble N-ethyl-
maleimide-sensitive factor attachment protein recep-
tors). The binding of syntaxin-4 to SNARE proteins al-
lows interaction of vesicular R-SNAREs to plasma mem-
brane Q-SNAREs, subsequent membrane fusion and 
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exocytotic degranulation  [184] . Pharmacological inhibi-
tors of CDKs, such as roscovitine and AT7519, or CDK5 
siRNA, reduce EPX release by eosinophils activated by 
PMA (phorbol 12-myristate 13-acetate) or secretory IgA 
 [184] . These results suggest that roscovitine, by inhibiting 
CDK5, may reduce degranulation of challenged eosino-
phils ( fig. 6 ).

  Finally, roscovitine also induces apoptosis (assessed by 
several techniques) of activated human eosinophils in
vitro by reducing Mcl-1 expression  [187] , possibly by a 
mechanism involving inhibition of CDK7 and/or CDK9 
 [188] . Whether roscovitine, other CDK inhibitors or oth-
er agents that drive eosinophil apoptosis enhance the res-
olution of eosinophilic-dominant inflammation in vivo is 
under intense investigation  [189, 190] .

  Altogether, these data suggest that roscovitine may re-
duce the number and secretory activity of eosinophils, an 
effect which is expected to be potentially beneficial to CF 
patients if seen in vivo.

  Effects on T Lymphocytes 
 CD4+ T-helper (Th) cells play a major role in immune 

responses. Once activated by antigens, these cells differ-
entiate into different cell types, typically Th1 and Th2 
lymphocytes, but also Th17 cells and iTregs (induced reg-
ulatory T cells;  fig.  7 ). Proinflammatory Th17 cells are 
characterized by the production of IL-17A and play an 
important role in autoimmune diseases, cancer and elim-
ination of extracellular bacteria. On the other hand, anti-
inflammatory Treg cells play a key role in controlling
immunological tolerance and in suppressing excessive 
immune responses deleterious to the host. There is an in-
tricate link between iTreg and Th17 cell programs of dif-

ferentiation, which both require TGF-β (transforming 
growth factor-β). Upon activation in the presence of 
TGF-β, naive CD4+ T cells (Th0) can differentiate into 
either Th17 or iTreg cells, depending on the overall cyto-
kine milieu  [191] . Low or intermediate concentrations of 
TGF-β together with proinflammatory cytokines (IL-6, 
IL-1β and IL-23) promote the differentiation of Th17 
cells through expression of the nuclear receptor RORγt 
(retinoic acid-related orphan receptor). Such activation 
inhibits the expression and function of Foxp3, the tran-
scription factor driving the Treg differentiation program. 
Conversely, in the absence of proinflammatory cytokines, 
high levels of TGF-β promote the expression of Foxp3 
and differentiation of iTreg cells. This process is further 
enhanced by IL-2 and retinoic acid, and is associated with 
inhibition of RORγt expression and function. Th17 and 
iTreg cells thus reciprocally inhibit their differentiation 
( fig. 7 )  [192, 193] . 

  Emerging evidence suggests that an imbalance of T-
cell responses may contribute to CF pathophysiology. A 
role for the Th17 and Th2 T lymphocytes in chronic pul-
monary inflammation in CF patients was recently pro-
posed. Th0 cells from CF patients or mice show a predis-
position to differentiate towards the proinflammatory 
Th17 phenotype, while normally having a propensity to 
differentiate into Th1 and Treg lineages  [194] . High pe-
ripheral blood Th17 levels are associated with poor lung 
function in CF  [195] . A specific profile of proinflamma-
tory cytokines/chemokines (particularly IL-17A and IL-
5) may be a risk factor for  P. aeruginosa  infection  [196] . 
A link between the inflammatory background mediated 
by T cells and susceptibility to  P. aeruginosa  infection 
remains to be shown. IL-17A plays a major role in the 

Eosinophils

Roscovitine

Munc-18

Granule
exocytosis

CDK5

Munc-18/syntaxin-4

SNAREs/syntaxin-4

p-Munc-18

Granule
integrity

Release of
EPX, ECP, LTC4

Fig. 6. Roscovitine and eosinophils. Pro-
posed molecular mechanisms underlying 
the action of roscovitine on eosinophils. 
Under resting conditions, Munc-18 binds 
to syntaxin-4, preventing it from interact-
ing with SNARE proteins. During inflam-
mation, CDK5 catalytic activity is in-
creased, leading to Munc-18 phosphory-
lation (p) and preventing the binding of 
syntaxin-4 to Munc-18. Syntaxin-4 is then 
free to bind SNAREs, allowing the fusion of 
intracellular granules to the plasma mem-
brane and release of their contents (e.g. 
EPX, ECP and LTC 4 ) in the extracellular 
space. Roscovitine, by inhibiting CDK5, 
prevents the release of syntaxin-4 from 
Munc-18 and binding to SNAREs. Conse-
quently, exocytosis is inhibited.                                           
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recruitment, activation and migration of neutrophils in 
CF patients  [197] , its expression is increased in CF pa-
tients’ sputum  [198]  and its overproduction has even 
been suggested as the cause of chronic lung inflamma-
tion in CF patients  [199, 200] . Expression of IL-17 could 
serve as an early biomarker for  P. aeruginosa  infection 
 [196] . A robust increase in Th17 lymphocytes (proin-
flammatory) together with enhanced Th2 responses and 
a decrease in Treg lymphocytes (anti-inflammatory), ob-
served in  cftr –/– mice, was coupled to susceptibility to 
infection by  Aspergillus fumigatus . A reduction in the ex-
pression of indoleamine 2,3-dioxygenase (IDO), the first 
enzyme in the tryptophan degradation pathway, was ob-
served in CF patients and in the  cftr –/– mouse model. 
The imbalance of Th17 versus Treg is linked to the reduc-
tion in IDO activity. Inhibition of Th17 activation (IL-
17A siRNA) or stimulation of the IDO pathways (ky-
nurenines) restores protection against  A. fumigatus 
  [200] . Heightened Th2 responses in CF patients with al-
lergic bronchopulmonary aspergillosis were associated 
with lower frequencies of Tregs compared with  A. fumi-
gatus -colonized CF patients without allergic broncho-
pulmonary aspergillosis  [201] . A previous report sug-
gested significantly lower percentages of circulating 
Tregs in children with CF, and a correlation between de-
creased frequencies of Tregs and lower FEV 1   [202] . A 
recent study further showed that patients with CF who 
have chronic  P. aeruginosa  infection show an age-depen-
dent, quantitative and qualitative impairment in Tregs. 
Tregs isolated from CF patients or from  cftr–/–  mice 
showed reduced functional suppressive activity com-
pared with Tregs from non-CF controls. Both ‘extrinsic’ 
 P. aeruginosa -induced effects and ‘intrinsic’ CFTR-me-

diated Treg functional skewing contributed to Treg im-
pairment in CF  [203] . Th17 cells, through IL-17 produc-
tion, may also be involved in CF-related diabetes  [204] . 
The involvement of T lymphocytes in CF is presented in 
two brief reviews  [205, 206] . 

  Several articles have described the effects of roscovi-
tine on T lymphocytes  [207–209] . A screen of 256 inhib-
itors of intracellular signaling pathways has led to the 
identification of CDK inhibitors, and roscovitine in par-
ticular, as suppressors of Th17 differentiation and, thus, 
as activators of iTreg differentiation  [207] . Induction of 
iTreg cell differentiation by CDK2 inhibition was recent-
ly confirmed with kenpaullone, another pharmacological 
inhibitor of CDKs  [210] . Another essential kinase regu-
lating the differentiation of Th17 and Tregs is DYRK1A 
 [211] . Inhibition of DYRK1A enhances Treg differentia-
tion, impairs Th17 differentiation and attenuates inflam-
mation  [211] . As roscovitine is also a DYRK1A inhibitor 
(IC 50  in the μ M  range)  [34, 212] , its effect on DYRK1A 
may contribute to its effects on T-cell differentiation. In 
a mouse model, roscovitine ameliorates experimental au-
toimmune encephalomyelitis, an autoimmune disease 
mediated by Th17 cells  [207] . Roscovitine suppresses 
CD4+ Th cells and has a beneficial effect on a uveitis 
mouse model, an autoimmune disease  [208] . Roscovitine 
decreases the production of proinflammatory interferon 
and IL-17  [208] , confirming previous results  [209] . 
Roscovitine thus modifies the Th17/Treg balance in a
favorable, anti-inflammatory direction ( fig. 7 ). Whether 
roscovitine displays additional direct effects that may 
mitigate CFTR-dependent intrinsic functional skewing 
of Tregs remains to be determined.
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  Fig. 7.  Roscovitine and lymphocytes. De-
pending on external stimuli, CD4+ Th0 
cells differentiate into Th1 (IL-12), Th2 
(IL-4), Th17 (TGF-β, IL-6, IL-1β and IL-
23) and iTreg (TGF-β, IL-2 and retinoic 
acid) lymphocytes. The relative amounts of 
TGF-β, interleukins, retinoic acid and ad-
ditional cytokines skew the differentiation 
of Th0 cells into either highly proinflam-
matory Th17 (through RORγt) or anti-
inflammatory iTreg (through Foxp3) cells. 
Possibly through inhibition of CDKs and 
DYRK1A, roscovitine inhibits the differen-
tiation into Th17 cells, lowering the pro-
duction of proinflammatory interleukins 
(IL-17A, IL-17F, IL-21 and IL-22). Conse-
quently, the balance of Th17/iTreg shifts 
towards the anti-inflammatory response.                                             
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  Roscovitine Has Analgesic Properties 
 Pain is a common event in CF  [213, 214] . Among sev-

eral CDKs, roscovitine inhibits CDK5, a kinase activated 
by the binding of one of the regulatory subunits (p35 or 
p39) and their respective proteolytic fragments (p25 or 
p29). CDK5 is known to be involved in modulating pain 
signaling [review in  215 ]. CDK5 is mostly expressed in the 
nervous system, namely sensory neurons of dorsal root 
ganglia (DRG), spinal cord and trigeminal ganglia  [216–
218] , and its expression as well as activity is significantly 
increased upon pain sensation. Roscovitine exhibits anal-
gesic properties in various animal models of pain. Wang 
et al.  [219]  were the first to carry out behavioral studies 
based on the antinociceptive properties of roscovitine. 
Subsequent studies revealed the efficacy of roscovitine in 
attenuating peripheral inflammation induced by com-
plete Freund’s adjuvant (CFA). The subcutaneous injec-
tion of CFA evokes local inflammation, redness, swelling 
and hypersensitivity to noxious stimuli (hyperalgesia) 
that, subsequently, activate protein kinases like CDK5 in 
primary sensory neurons. Roscovitine treatment signifi-
cantly reverses heat hyperalgesia induced by intraplantar 
CFA injection  [218, 220–223] . The analgesic effects of 
roscovitine can occur through inhibition of CDK5 activ-
ity, decreased p35 expression  [218]  and/or reduced CDK5 
phosphorylation at S159 by ERK MAP kinase, a posttrans-
lational modification that promotes CDK5 activity  [223] . 
Roscovitine can also affect CFA-induced inflammatory 
pain by suppressing TrkB (tropomyosin receptor kinase 
B) levels  [222] , reducing synaptophysin expression  [221]  
and by preventing trafficking of TRPV1, an ion channel 
known to be involved in the detection of noxious heat, to 
the plasma membrane  [224, 225] . The level of CDK5 activ-
ity can also affect heat hyperalgesia from acute inflamma-
tion induced by carrageenan  [216] , and inhibition of 
CDK5 by roscovitine in cultured DRG neurons attenuates 
calcium influx through TRPV1  [226] . 

  Recent reports have also demonstrated the antinoci-
ceptive effects of roscovitine in neuropathic pain models. 
Significantly increased expression of CDK5 is observed in 
the dorsal horn of rats following chronic constriction in-
jury of the sciatic nerve, and intrathecal delivery of rosco-
vitine significantly attenuates mechanical allodynia in 
these rats  [227] . Roscovitine can down-regulate expres-
sion of the NR2A receptor, which, in turn, can alleviate 
neuropathic pain caused by chronic DRG compression 
 [228] . Additionally, roscovitine prevented remifentanil-
induced postoperative thermal and mechanical hyperal-
gesia by decreasing expression and activity of CDK5/p35 
and phosphorylation of NR2A (S1232), NR2B (Y1472) 

and mGlur5 (S1167)  [229] . Roscovitine can also down-
regulate NMDA (N-methyl- D -aspartate) receptors in an-
imal models of cancer pain, where roscovitine treatment 
significantly reduced mechanical allodynia and thermal 
hyperalgesia by inhibiting the NR2B receptor  [230] . Ad-
ditional evidence indicates that roscovitine promotes an-
algesia through of DARPP-32 dephosphorylation (T75) 
in a formalin-induced model of nociception  [231] . Inter-
estingly, CDK5 is found to be involved in cross-organ re-
flex sensitization and colon irritation caused an increase 
in CDK5 expression in the spinal cord and DRG. Intra-
thecal injection of roscovitine attenuates cross-organ sen-
sitivity and colon irritation by decreasing NR2B phos-
phorylation  [232] . 

  All of these studies indicate promising analgesic effects 
of roscovitine in different animal models of pain. The an-
tinociceptive properties of roscovitine along with its anti-
inflammatory effects may prove helpful in developing ef-
fective treatments of pain in CF patients. 

  The ‘Weaknesses’ of Roscovitine 

 Beside its properties in favor of its evaluation as a CF 
drug candidate, roscovitine has a few weaknesses, which 
can be summarized as follows. First of all, it was not op-
timized for this specific indication, in particular for its 
effects on macrophage intraphagolysosomal acidifica-
tion. One can anticipate that identification of its molecu-
lar target(s) in macrophages – different from the usual 
kinase targets – should allow the optimization of much 
more potent and selective roscovitine analogues. Second-
ly, roscovitine was not optimized in terms of action on its 
anti-inflammatory targets. Analogues much more potent 
at inhibiting kinases are available, but, unfortunately, 
they are more toxic. Thirdly, roscovitine was not tested in 
animal models of CF. Despite their disputed predictive 
values, a positive effect would have been encouraging. 
Fourthly, roscovitine has a short half-life in human plas-
ma. It remains, thus, to be seen whether sufficient lung 
biodistribution and exposure can be reached via the oral 
route. Possibly improved efficacy of roscovitine by ad-
ministration through inhalation/nebulization has not 
been but should be evaluated. Despite these weaknesses, 
and considering its specific favorable properties and the 
benefits of drug repurposing in general, roscovitine has 
been favorably evaluated by official institutions to enter a 
first clinical trial which will both investigate tolerability 
in CF patients chronically infected with  P. aeruginosa  and 
possible beneficial effects  [233] .
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  Conclusion and Perspectives 

 Evidence indicates that roscovitine has diverse biolog-
ical properties that could potentially converge toward a 
novel treatment for CF ( fig. 8 ): (1) roscovitine acts as a 
corrector of the F508del-CFTR channel by protecting it 
from proteolytic degradation, favoring its relocation in 
the plasma membrane; (2) roscovitine improves the bac-
tericidal properties of macrophages from CF patients by 
translocating/activating the TRPC6 calcium channel (in-
dependently of the CFTR mutation) and by partially low-
ering the intraphagolysosomal pH, which is abnormally 
elevated in CF macrophages; (3) its main hepatic metabo-
lite also shows a F508del-CFTR corrector effect and bio-
logical activity on macrophages, despite extremely re-
duced kinase-inhibitory effects; (4) roscovitine has an 
anti-inflammatory effect likely originating from its ability 
to promote apoptosis in neutrophils and their elimina-
tion by macrophages; (5) roscovitine reduces degranula-
tion of eosinophils and promotes their apoptosis; (6) 
roscovitine suppresses the differentiation of CD4+ Th 
cells into Th17 (proinflammatory lymphocytes, thus re-
ducing the production of proinflammatory interleukins 
such as IL-17) and promotes their differentiation into 
Tregs (anti-inflammatory lymphocytes); (7) roscovitine 
displays analgesic properties, which could contribute to 
the management of CF-associated pain, and (8) roscovi-
tine is an orally available drug which has already under-
gone preclinical pharmacological and toxicological stud-
ies, and extensive phase I and II clinical trials, in particu-
lar against lung cancer. Repurposing this anticancer drug 

candidate for CF should thus be a therapeutically valid 
proposal. 

  Besides direct clinical trials of roscovitine in CF pa-
tients, we foresee four main developments in this novel 
approach to CF. Firstly, the effects of roscovitine on CF 
models (organoids  [234] , ferret  [235–237]  and pig  [95–
98, 237, 238]  models of CF and animal models of  P. aeru-
ginosa -induced infection  [238, 239] ) should be investi-
gated. Secondly, given the host-directed antibacterial
effects of roscovitine, its action on other pulmonary 
pathogens associated with CF, besides  P. aeruginosa , 
 [240–242] , should be investigated. Thirdly, the expected 
long-term treatments required for CF and the multiple 
biological consequences of the disease call for serious 
consideration of combination treatment of roscovitine 
with other currently developed treatments and for alter-
native modes of administration. The recent combination 
therapy Orkambi ®  composed of the corrector lumacaftor 
(or VX809) and the potentiator ivacaftor (or VX770; 
www.vrtx.com) can now be prescribed to F508del homo-
zygous CF patients  [243] . It will thus be important to 
compare the combination of roscovitine/ivacaftor with 
lumacaftor/ivacaftor in a future study. Fourthly, the opti-
mization and development of second-generation drugs 
derived from roscovitine, based on its CF-relevant mo-
lecular and cellular targets, should be envisaged. The 
chemistry and biology of purines in general  [244, 245] , 
and 2,6,9-trisubstituted purines in particular, have been 
extensively explored, providing a solid starting ground.

Epithelial cells

Lymphocytes

Eosinophils

Neutrophils

Macrophages

Proinflammatory response

Apoptosis
Exocytosis

Apoptosis

Acidification of phagolysosomes

F508del-CFTR degradation
F508del-CFTR trafficking to the membrane

Microbiocidal activity

Roscovitine effects

  Fig. 8.  Summary of cellular effects of rosco-
vitine which may be beneficial for the treat-
ment of CF. Roscovitine acts independent-
ly on epithelial cells, macrophages, neutro-
phils, eosinophils and lymphocytes. 
Arrows: induction or enhancement; lines: 
inhibition or reduction.                                             
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