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In the Gulf of Lions (Western Mediterranean), the emplacement of a large (160 km3) 26 

Mass Transport Deposit, the Rhone Western Mass Transport Deposit (RWMTD), at the 27 

base of slope, aside the Rhone deep-sea fan between 1800 and 2700 m water depth, 28 

resulted in a major modification of the sediment routing by clogging a drainage network 29 

and blocking at the base of slope sediments that were previously routed into the 30 

Valencia channel and the Balearic abyssal plain. The RWMTD was sourced from 31 

sediments of the western flank of the Rhone upper fan and the adjacent base of slope. 32 

The mass transport deposit is characterized by a transparent seismic facies and 33 

sediment cores show that it is composed of a stiff laminated muddy lithofacies 34 

characteristic of the Rhone fan turbidites with marked contorted beds indicative of 35 

remoulding. AMS radiocarbon dating shows that the RWMTD was emplaced between 36 

19.9-21.5 ka cal. BP. It is coeval, within dating uncertainties, with the emplacement of a 37 

megaturbidite in the Balearic Abyssal Plain and immediately predates a major avulsion 38 

of the Rhone turbidite channel that led to the emplacement of an avulsion lobe (the 39 

neofan) on top of the RWMTD. It is not possible to affirm a genetic link between these 40 

three major gravity events but one can argue that they share a common forcing in 41 

relation with massive turbiditic accumulation during the last sea-level lowstand at the 42 

end of the Last Glacial Maximum. This study outlines the importance of mass transport 43 

deposits in the building of turbidite systems and, more generally, the major control of 44 

mass wasting on the routing and dispersal of sediments across continental margins. 45 

 46 

1. Introduction 47 

 48 

Besides geohazard and societal issues, slope failures and mass transport deposits play a 49 

significant role in the long-term evolution of continental margins because they involve 50 



the displacement of very important volumes of sediments and significantly modify the 51 

margins morphology and the submarine sediment dispersal pattern (Huppertz et al., 52 

2010; Joanne et al., 2010; Kawamura et al., 2010; Mulder, 2011; Shipp et al., 2011). 53 

Furthermore, mass transport deposits may represent up to 10-20% of stratigraphic 54 

sequences on continental margins (McHugh et al., 1996; Mulder, 2011; Weimer, 1989). 55 

They can play a significant role in the movement and transfer of sediment at river mouth 56 

deltas or canyon heads at hourly or yearly time scales (Biscara et al., 2012; Clare et al., 57 

2016 ; Kelner et al., 2014; Mazières et al., 2014; Obelcz et al., 2017; Smith et al., 2007), 58 

but also at geologic time scales on canyons and whole margin development (Micallef et 59 

al., 2012; Sultan et al., 2007). This is particularly the case for large mass transport 60 

deposits that instantaneously redistribute huge volumes of sediment, in the order of 61 

several km3. These are dominantly emplaced on slopes receiving massive sediment 62 

input such as glaciated margins (Bryn et al., 2005; Gales et al., 2014; Imbo et al., 2003; 63 

Jansen et al., 1987; Lee, 2009; Piper et al., 2003) or deltaic margins during periods of low 64 

sea level (Droz and Bellaiche, 1985; Garziglia et al., 2008; Nelson et al., 2011; Piper et al., 65 

1997; Weimer, 1989). They also represent a significant sediment input into abyssal 66 

plains in the form of megabeds, particularly in the Mediterranean Sea (Cita and Aloisi, 67 

2000; Reeder et al., 2000; Rothwell et al., 1998; San Pedro et al., 2017)}. 68 

In the Gulf of Lions (GoL) (Western Mediterranean) (Fig. 1), the Rhone deep-sea fan 69 

developed since the Pliocene in a complex geologic setting characterized by a 70 

continental slope dissected by several shifting canyons (Berné et al., 1999; Bourcart, 71 

1960; Torres et al., 1995), salt tectonics (dos Reis et al., 2005; Droz, 1983; Gaullier, 72 

1993; Le Cann, 1987) and canyon and open slope mass wasting (Sultan et al., 2007). 73 

Mass transport deposits on the Rhone fan have long been recognized as major features 74 

with high impact on the Late Quaternary fan growth (Droz and Bellaiche, 1985; Gaullier 75 



et al., 1998). We present a new detailed mapping of the superficial Rhone Western mass 76 

transport deposit (RWMTD) based on a synthesis and reinterpretation of bathymetric 77 

and seismic data acquired during several oceanographic campaigns since 1997, and new 78 

litho-facies and chronological data from three sediment cores that penetrated the 79 

deposits. In addition to considerations on the sedimentary source and trigger 80 

mechanisms, the aim of this study is to outline the role played by the emplacement of 81 

the RWMTD at the base of slope in the evolution of sediment routing patterns in the 82 

western part of the GoL from the upper slope to the Balearic Abyssal Plain within the 83 

context of sea-level fluctuations since the Last Glacial Maximum (LGM). 84 

 85 

2. Geological background 86 

2.1. Sedimentary setting 87 

Following the reflooding of the basin, after a major sea level drop of the Mediterranean 88 

Sea during the Messinian (1500 m according to Hsü et al. (1973)), 3 km of prograding 89 

and aggrading sediments were deposited throughout the Plio-Quaternary to reach the 90 

present day margin morphology (Leroux et al., 2014; Lofi et al., 2003). Following the 91 

Mid-Pleistocene transition  (1,250- 700 ka BP; (Clark et al., 2006)), sediment 92 

accumulation on the GoL margin increased by two-fold as a result of the increased 93 

magnitude of global sea-level changes (Leroux et al., 2017). During the Late Pleistocene, 94 

the evolution of the margin and canyons was driven by sea-level fluctuations and 95 

thermal subsidence, in the order of 250 m.Ma-1, creating accommodation prone to the 96 

deposition of sediments (Rabineau et al., 2006; Rabineau et al., 2014). During sea-level 97 

falls thick forced-regressive sequences developed (Bassetti et al., 2008; Rabineau et al., 98 

2005; Rabineau et al., 1998; Tesson and Gensous, 1998; Torres et al., 1995) bounded on 99 

the slope by condensed intervals, deposited during highstands (Sierro et al., 2009). 100 



During this period of time the evolution of the deep GoL was also controlled by syn-101 

sedimentary salt tectonics. Gravitational gliding and spreading over the Messinian 102 

detachment salt level (dos Reis et al., 2005) developed at the mid to lower slope with 103 

basinward-dipping active and buried listric faults parallel to sub-parallel to the shelf 104 

break (dos Reis et al., 2005) (Fig. 2). 105 

 106 

2.2. Sediment routing 107 

In the GoL the main source of sediment is the Rhône River (Pont et al., 2002). Through 108 

geological times, sediment dispersal at the mouth of rivers was controlled by sea level 109 

fluctuations and the synchronous migration of the shoreline. During periods of low sea 110 

level (glacials), the seaward migration of the shoreline moved the sediment depocenters 111 

onto to the outer shelf and a significant amount of sediment was routed into the 112 

canyons, as evidenced by preserved marked sinuous incisions at some canyons (Baztan 113 

et al., 2005; Mauffrey et al., 2015). Numerous canyons dissect the shelf break. In the 114 

western part of the GoL, eight canyons, Cap de Creus to Marti canyons, coalesce down 115 

slope but do not show a connection with the Valencia channel (Amblas et al., 2006; 116 

Baztan et al., 2005; Berné et al., 2004). In the central adjacent part the Petit-Rhone 117 

canyon shows a sinuous pattern and is prolonged by the Rhone turbidite system (Droz 118 

et al., 2006) (Fig. 1). The developed sinuous channel network of the Rhone turbidite 119 

system (Droz et al., 2006) shows that during lowstands a large amount of sediment was 120 

efficiently exported as deep as 2800 m water depth and possibly into the Balearic 121 

Abyssal Plain. To the west, the sediments were likely funneled into the Sète canyon 122 

network and deposited at the base of slope where the canyons morphology abruptly 123 

smoothens (Fig. 1). The same configuration applies for La Fonera and Clots del Puget 124 

canyons. In comparison, to the southwest, on the south Catalan margin canyons coalesce 125 



and extend beyond the base of slope to finally vanish into the Valencia Fan at the 126 

northernmost part of the Algerian–Balearic Abyssal plain (Amblas et al., 2011; 127 

Maldonado et al., 1985) (Fig. 1). One particularly noteworthy event during the last sea-128 

level rise on the Ebro margin was the emplacement of the Big’95 mass transport deposit 129 

that caused a sudden change in sedimentation style in the upper segment of the Valencia 130 

drainage network, with a significant decrease in sediment transport and incision 131 

capacity (Amblas et al., 2011). 132 

 133 

2.3. Turbidite systems 134 

Two thick turbidite systems lie at the base of slope in the GoL, the Rhone turbidite 135 

system in the central part of the GoL and the Pyreneo-Languedocian Sedimentary Ridge 136 

to the west as shown on the Quaternary isopach map (dos Reis et al., 2005). Smaller 137 

turbiditic sedimentary ridges lie at the right hand side of the La Fonera and Clots del 138 

Puget canyons (Fig. 1). All these turbidite systems consist of terrigenous sediment, 139 

starved during the Holocene highstand, and displaying high sedimentation rates during 140 

the LGM lowstand (Beaudouin et al., 2004; Jallet and Giresse, 2005; Lombo Tombo et al., 141 

2015; Melki et al., 2009). The Rhone turbidite system, the largest turbidite system in 142 

terms of thickness and area in the GoL and in the western Mediterranean Sea, lies in the 143 

prolongation of the Petit-Rhône canyon that seems to have been the main feeder 144 

throughout the Quaternary (Droz and Bellaiche, 1985). It represents an accumulation of 145 

ca. 3,600 m of turbidites and mass-transport deposits. On the the upper fan, between 146 

1,350 m and 2,000 m water depths, a perched valley, 12 to 4 km wide and 500 to 200 m 147 

deep, is cut by a narrow, 1,000 to 600 m wide and 150 to 100 m deep, axial meandering 148 

channel (Lombo Tombo et al., 2015; O'Connell et al., 1991; Torres et al., 1997) (Fig. 1). 149 

The last channel avulsion most likely occurred during the LGM (Bonnel et al., 2005) and 150 



led to the emplacement of a lobe-shaped fan, called neofan (Bonnel et al., 2005; Droz and 151 

Bellaiche, 1985; Jégou, 2008; Torres et al., 1997)}. (Fig. 1). 152 

 153 

2.4 Slope instabilities 154 

At the base of slope numerous headwall scars are indicative of slope failures (Berné et 155 

al., 2004; Droz and Bellaiche, 1985; Gaullier et al., 1998; Sultan et al., 2007; Torres et al., 156 

1995). Scars are superimposed on a network of buried and active listric faults parallel to 157 

the margin (dos Reis et al., 2005; Torres et al., 1995) (Figs. 2). Although movements of 158 

these faults driven by halokinesis may be a pre-conditioning factor or even a trigger 159 

mechanism for sliding (Bellaiche et al., 1986; Droz, 1983) a causal link between these 160 

features has not yet been shown. Two large mass transport deposits are lying on the 161 

subsurface of the eastern and western sides of the fan and were named the Eastern and 162 

Western (superficial) Transparent Series (Bellaiche et al., 1986; Droz and Bellaiche, 163 

1985), Intermediate Unit (Gaullier et al., 1998), Middle Unit (Méar and Gensous, 1993), 164 

Eastern and Western Debris Flow (Bonnel et al., 2005; Droz et al., 2001; Lastras et al., 165 

2007a) and more recently Western and Eastern Mass Transport Deposits (WMTD and 166 

EMTD) (Droz et al., 2006). In this paper we will adopt the Rhone Western and Eastern 167 

Mass Transport Deposits (RWMTD and REMTD) nomenclature. These mass transport 168 

deposits are characterized by transparent seismic facies with no apparent internal 169 

structures apart from some undisturbed tilted block in the proximal area (Droz and 170 

Bellaiche, 1985). Concave and undulated features on top of both deposits, at the contact 171 

with adjacent undisturbed strata were interpreted as compression ridges formed by 172 

displaced material at the toe of the slope (Droz and Bellaiche, 1985). Scars surrounding 173 

both deposits are visible on the fan levees and on the adjacent base of slope suggesting 174 

that sliding has affected the whole base of slope and upfan area (Gaullier et al., 1998). 175 



The age of these mass transport deposits remains speculative due to the lack of direct 176 

dating. Seismic stratigraphy and coring showed that both are covered by a metric 177 

pelagic drape and that the RWMTD is overlapped by the neofan deposits (Bonnel et al., 178 

2005; Droz and Bellaiche, 1985; Gaullier et al., 1998; Torres et al., 1997; Torres et al., 179 

1995) showing that turbiditic activity persisted after its emplacement, This suggests 180 

that both deposits probably emplaced during the Last Glacial Maximum, but close to the 181 

post-glacial sediment starvation of the Rhone fan dated at ca. 18.5 ka cal BP (Beaudouin 182 

et al., 2004; Dennielou et al., 2006; Lombo Tombo et al., 2015). 183 

 184 

3. Data and methods 185 

This study is based on a variety of bathymetry and seismic data collected since 1997 186 

during several oceanographic campaigns (Fig. 3; Tab. 1) as well as on three piston cores 187 

(Tab. 2). 188 

Two bathymetric Digital Terrain Models (DTMs) were used: a 500 m resolution DTM 189 

(IFREMER/CIESM, 2011) and unpublished 50 m and 100 m resolution DTMs based on 190 

Simrad EM12 and EM300 multibeam surveys during oceanic campaigns listed (Tab. 1). 191 

Detailed mapping of the RWMTD is based on various seismic data including single and 192 

multi-channel GI and mini-GI (vertical resolution in the order of 30 and 10 m, 193 

respectively) High Resolution (HR) sparker lines as well as Very High Resolution (VHR) 194 

Sub-Bottom Profiler (SBP) lines (vertical resolution ca. 1 m) (Figs. 2, 3 and 4A; Tab. 1). 195 

This dense and multi-resolution seismic database allowed a detailed new mapping and 196 

characterization of the RWMTD and to produce isochore and isochron maps. 197 

Two sediment cores were collected with the giant Calypso piston corer aboard R/V 198 

Marion Dufresne on the northern and southern extremities of the RWMTD. Another core 199 

was collected in the central part of the RWMTD with a Kullenberg piston corer aboard 200 



R/V Le Suroit (Figs. 2, 3 and 4A; Tabs. 1 and 2). Identification of lithofacies and grain 201 

size is based on visual description and physical properties logging with a Geotek Multi-202 

Sensor Core Logger. AMS radiocarbon dating was conducted on monospecific planktonic 203 

foraminifera (Globigerina bulloides). Age calibration into calendar scales was calculated 204 

by Calib 7.1 software (Stuiver et al., 2018) with the marine13 calibration curve (Reimer 205 

et al., 2013). 206 

All data were integrated into the IHS Kingdom suite seismic interpretation software. For 207 

the interpolation of isochrone and isochore grid, we used the Flex Gridding algorithms, 208 

defining a cell size of 50 m. Conversion of seismic two-way travel times into meters in 209 

the sedimentary column was made with a sound velocity of 1600 m.s-1, which may 210 

represent the minimum sound velocity according to wave velocities measured in 211 

sediment cores. 212 

 213 

4. Results 214 

4.1 Seabed morphology 215 

The RWTMD has a faint expression on the seabed (Fig. 1) because it is partly overlain by 216 

more recent deposits that are the Rhone Neofan, the Pyreneo-Langudocian Sedimentary 217 

Ridge (Berné et al., 1999) and some deposits at the outlet of La Fonera canyon (Droz et 218 

al., 2001). The seabed morphology is also imprinted by erosional scours developed 219 

during the lowstand functioning of the Neofan (Bonnel et al., 2005) and of Cap de Creus 220 

canyon (Lastras et al., 2007b) which are still likely active due to deep water active 221 

hydro-sedimentary processes related to open-ocean convection (Stabholz et al., 2013). 222 

The most obvious morphological evidence of mass wasting lies in the occurrence of slide 223 

scars in the proximal area of the RWMTD at the base of slope and on the side of the 224 

Rhone fan (Fig. 4B). All scars show a NE-SW orientation. The orientation of the biggest 225 



scar, 30 km long, 10-100 m high headwall, running along slope and gradually becoming 226 

perpendicular to the slope on the side of Rhone fan between 2,000-1,900 m water depth, 227 

suggests a relation with the RWMTD (Fig. 4B). To the SW the headwall is nearly parallel 228 

to the slope at 2,100-2,200 m water depth, while to the NE it gradually becomes 229 

perpendicular to the slope between 2,000-1,900 m water depth, on the side of Rhone fan 230 

(Fig. 4B). Similar parallel headwalls, also facing to the SE, but shorter and discontinuous 231 

and less high are visible about 4 km upslope to the north (Fig. 4B). About 4 km to the 232 

south, on the side of the Rhone fan, a 15 km long headwall facing to the NW is 233 

perpendicular to the slope (Fig. 4B). The configuration of headwalls across the side of 234 

the Rhone fan forms a 7 km wide, 40 m deep along slope corridor that can be 235 

interpreted as a pathway for the RWMTD. Noteworthy, the scars are superimposed to 236 

the active and buried listric faults network developed by syn-sedimentary salt tectonics 237 

(dos Reis et al., 2005) (Fig. 4B). 238 

To the south, the only obvious morphological expression of the RWMTD is a faint NE-SW 239 

lineation at the foot of a Rhone fan channel-levee and corresponding to a compression 240 

bulge at the lateral toe contact between the RWMTD and the Rhone fan (Fig. 4C). 241 

 242 

4.2 Seismic structure of the RWMTD and of adjacent and underlying sediments 243 

The RWMTD appears as a body with a transparent acoustic facies on the VHR, low 244 

penetration, SBP lines and on the HR single channel seismic lines (Figs. 5 to 9). However, 245 

on the 24-channel HR seismic it shows sub-continuous internal reflections roughly 246 

parallel to the seabed that onlap on the sedimentary basement (Fig. 5B). This is evidence 247 

that the infill occurred on an inherited morphology. In some areas the top reflector, 248 

close to the seabed, shows incisions and roughness, but in relation to more recent 249 

superficial deposits or hydro-sedimentary processes such as the neofan channels and 250 



scours (Figs 6B, 7 and 8). Truncation of the Rhone fan strata (Fig. 5C) indicates that the 251 

RWMTD is related to the failure of the fan levee as also suggested by the collapsed 252 

western levee of the Rhone fan. (Fig. 4B). 253 

The top of the RWMTD is rather smooth and shows a slope towards the SW and towards 254 

the south that roughly follows the overall trend of the underlying substratum (Fig. 10). 255 

To the north and to the south, the RWMTD outcrops, at least at the seismic vertical 256 

resolution, while in its central area it is overlapped to the east by the neofan deposits 257 

(Figs. 5D and 10A) and to the west by a thin veneer of Pyreneo-Langudocian 258 

Sedimentary Ridge deposits and of La Fonera canyon deposits (Fig. 5D, 7 and 8A). The 259 

compression bulge to the SE in the distal area is clearly visible and clearly shows that 260 

the RWMTD has overlapped the Rhone fan (Fig. 9). 261 

On the VHR SBP lines the structure of the basement of the RWMTD is not visible because 262 

of the low seismic penetration. On VHR seismic, in the proximal (north) area the 263 

basement corresponds to stratified folded and/or faulted sediments characteristics of 264 

the base of slope deposits to the north (Fig. 5D) and Rhone fan stratified Pleistocene 265 

deposits to the east (Fig. 5). In the central area the RWMTD is confined between the 266 

Rhone fan deposits, to the east, where it pinches out, and the stratified deposits of the 267 

Pyreneo-Langudocian Sedimentary Ridge to the west (Figs. 6, 7, 8B and 9). From north 268 

to south the RWMTD width is ca. 40 km in the proximal area, 50 km in the central area 269 

and gradually narrows to 5 km in the most distal area. The horizontal run-out distance 270 

(L) is 180 km (Fig. 10), the height fall (H), i-e the height between the head scar and the 271 

most distal deposits is ca. 740 m and the H/L ratio is 0.004. 272 

 273 

4.3 Extension, thickness and morphology at the base of the RWMTD 274 



The RWMTD extends from 1,900 to 2,700 m water depth and covers a surface of 6800 275 

km2. The isochrones map of the basement shows that the RWMTD is emplaced in the 276 

large depression between the Rhone fan and the Catalan margin (Fig. 10B). The 277 

thickness of the RWMTD (Fig. 10C) is largely between 10 and 50 m thick, with the 278 

thickest deposits (67 m) located along a large valley against the Rhone fan (Fig. 10C). 279 

Otherwise, downslope, the thickness is rather constant and the volume of the RWMTD is 280 

estimated at 160 km3. By comparison earlier mapping with low resolution seismic gave 281 

a surface of ca. 7500 km2 with a thickness up to 120 mstwtt (96 m) and commonly 282 

around 50 mstwtt (40 m) for an estimated volume of 230 km3 (calculation after Gaullier 283 

et al. (1998) with the same velocities as this study). For further comparison, the REMTD 284 

covers an area of 7800 km2 with a thickness up to 160 mstwtt (128 m) and commonly 285 

around 50-100 mstwtt (40-80 m) for an estimated volume of 170 km3 (Coutellier, 1985; 286 

Droz and Bellaiche, 1985) 287 

The morphology at the base of the RWMTD is very different from the present-day 288 

seabed. Besides an overall slope gradient to the SW and south, it shows a complex 289 

morphology characterized by highs and lows. To the north the most proximal deposits 290 

lie on stair-like morphologies corresponding to the tip of listric faults (Fig. 5D). To the 291 

east, the contact with the adjacent Rhone fan is characterized by truncations of the fan 292 

levees indicative of failure and collapse of the levee (Fig. 5C). To the south the RWMTD 293 

fills several depressions that build a 12 to 18 km wide and 30 m deep valley against the 294 

Rhone fan (Figs 5C, 7 and 9) in the continuation of the present Sète canyon outlet, 295 

widening downslope and that connects to the Valencia valley. The RWMTD shows a 296 

bifurcation to the SW where it becomes narrower (5 km) and connects to the Clots del 297 

Puget and Valencia valleys (Figs. 8C and 8D). A parallel but fainter valley also runs along 298 

the Pyreneo-Langudocian Sedimentary Ridge (Fig. 10B). This buried valley to the east 299 



shows a concave-up longitudinal profile that fits with the concave-up longitudinal shape 300 

of the Sète canyon and Valencia channel suggesting that the three valleys were a 301 

continuum before the emplacement of the RWMTD (Fig. 10D). 302 

 303 

4.4 Lithofacies and chronology of the RWMTD 304 

Three sediment cores were collected in areas where the RWMTD outcrops at the seabed 305 

at the seismic resolution. Core MD01-2435 was collected at a RWMTD proximal location 306 

where the WMTD lies on the Rhone fan deposits (Fig. 6A), core KSGC-10 was collected at 307 

a RWMTD central location on the neofan area where scours have eroded into the 308 

RWMTD and open-ocean convection has prevented the deposition of sediment since 309 

beginning of the Holocene (Dennielou et al., 2009; Stabholz et al., 2013), core MD01-310 

2438 was collected at a RWMTD distal location (Figs. 2, 3 and 6B). Sediment in MD01 311 

cores show disturbance related to non-stationary behaviour of the piston, which led to 312 

oversampling during coring (Bourillet et al., 2007; Skinner and McCave, 2003), thus 313 

preventing straightforward correlation between cores and seismic data. However, the 314 

identification of lithofacies was still possible, and sharp contrasts between pelagic, 315 

turbiditic and mass transport deposits make straightforward the analogy between 316 

lithofacies and well-contrasted seismic facies. 317 

Three sedimentary units were identified (Fig. 11). Unit 1 is composed of foraminifera 318 

and calcareous nannoplankton oozes that correspond to ambient pelagic sedimentation. 319 

Unit 2 is composed of laminated mud with frequent silt to very fine sand laminae. This 320 

facies is interpreted as turbidites deposited by turbidity current spillover from the 321 

adjacent perched valley. They are similar to those already described in the Rhone fan 322 

valley or on the neofan levees (Bonnel et al., 2005; Dennielou et al., 2006; Lombo Tombo 323 

et al., 2015). Unit 3 is composed of stiff mud with colour banding corresponding to 324 



sulphide rich laminae and few silt layers characteristics of lithofacies in the Rhone fan 325 

(Lombo Tombo et al., 2015). Laminae are either horizontal, oblique or show tight 326 

folding. In core MD01-2438 a layer of coarse material in the form of fine to very coarse 327 

sand bioclasts and lithoclasts have been involved in the sediment deformation but no 328 

evidence of matrix supported clasts or blocks was found. This lithofacies is much denser 329 

(>2 g.cm-3) and stiffer than the units above with similar (muddy) grain sizes (Fig. 11) 330 

suggesting that it is over-consolidated and was therefore either previously buried 331 

deeper than its present stratigraphic depth or has gained strength after remoulding. The 332 

unit is interpreted as the RWMTD deposits. The plastic deformation and contortion are 333 

indicative of shearing and the lack of faulting and blocks show that the sediment 334 

remained a coherent mass, at least for the upper sampled part, so that the RWMTD can 335 

be classified as a slide or slump because of evidence of plastic deformation (cf. Mulder 336 

and Cochonat (1996); Piper et al. (1997); Tripsanas et al. (2008); Nelson et al. (2011); 337 

Shanmugam (2015)). The transparent echo-facies that characterizes the RWMTD is 338 

commonly interpreted as indicative of disintegration as a result of break up of blocks in 339 

the downslope evolution of a slide into a debris flow (Piper et al. 1997). The absence of 340 

blocks in the retrieved sediment cores may be due to the low penetration. However, the 341 

sediment contortion is also a factor of strata disorganisation consistent with the 342 

transparent echo-facies. 343 

In core MD01-2435 (Fig. 11) Unit 1 is described from top to 0.25 m and Unit 2 from 0.25 344 

to 8.90 m. The contact between the units is oblique and erosional. Unit 3 is described 345 

from 8.90 to 15,50 m, colour banding is horizontal to sub-horizontal (up to 15° 346 

inclination) but inclination varies down core. From 15.50 m to the base of core, the 347 

sediment is fully disturbed because it was sucked up during coring, however, despite 348 

disturbance the collected sediment is very similar to Unit 3. 349 



In core KSGC-10 (Fig. 11), only Unit 3 is present showing that no sediments were 350 

deposited during the Holocene (Dennielou et al., 2009; Stabholz et al., 2013). 351 

In core MD01-2438 (Fig. 11) Unit 1 is described from 0 to 1.00 m. Two layers of coarse 352 

sand (2 and 16 cm thick) are intercalated in the unit and correspond to post-glacial and 353 

Holocene turbidites already described at the base of slope of the study area (Dennielou 354 

et al., 2009). Unit 2 is not present and Unit 1 rests on Unit 3. Unit 3 is described from 355 

1.00 m to the base of core (8.00 m), the contact between Unit 1 and 3 is sharp and 356 

horizontal. Colour banding is contorted from 1.00 m to 5.00 m and becomes gradually 357 

horizontal to sub-horizontal downcore. From 8.00 m to the base of core the sediment is 358 

also fully disturbed and the collected sediment is very similar to Unit 3. 359 

Radiocarbon dating (Tab. 3 and Fig. 11) shows that the hemipelagic Unit 1 was 360 

deposited during the deglacial sea level rise and during the Holocene highstand and that 361 

turbiditic Unit 2 was deposited at the end of the LGM during and shortly after the onset 362 

of the sea level rise (20.7-14.7 ka cal BP). These ages are consistent with those obtained 363 

for the same units on the Rhone fan and adjacent areas (Beaudouin et al., 2004; Bonnel 364 

et al., 2005; Dennielou et al., 2006; Dennielou et al., 2009; Lombo Tombo et al., 2015). 365 

Ages obtained at the top of the RWMTD (Unit 3) and at the base of overlapping units 366 

(turbiditic Unit 2 in the proximal position and Unit 1 in the distal position) are similar 367 

and show that emplacement of the RWMTD occurred between 19.9 and 21.5 ka cal BP (2 368 

sigma) with an average median age of 21.0 ka cal BP (Fig. 12). However, this does not 369 

discard a possibility of several stages of sliding in this age bracket. 370 

 371 

5. Discussion 372 

5.1. The Rhone WMTD: a hidden landslide 373 



Unlike several recent mass transport deposits around the world (e.g. Storegga (Bugge et 374 

al., 1988), BIG’95 (Lastras et al., 2002), Ruatoria (Collot et al., 2001), among the largest), 375 

the RWMTD has a faint seabed morphological expression and could be easily overlooked 376 

if no seismic data was available. The lack of morphologic expression is a consequence of 377 

two factors : (1) the fact that displaced and deposited sediment infilled the topographic 378 

low between the Rhone fan and Pyreneo-Languedocian Sedimentary Ridge and adjacent 379 

slope to the west (Fig. 1) and did not created any distal positive relief, (2) seabed 380 

rejuvenation by rapid burying related the high sedimentation rates that persisted at the 381 

base of slope until 18.5 ka BP (Bonnel et al., 2005; Lombo Tombo et al., 2015), i-e during 382 

ca. 1.5 to 3.5 ka after the emplacement of the RWMTDT, and by the development of the 383 

neofan avulsion lobe and channel-levee on top of it. 384 

At river mouth subaqueous deltas or upper slopes under high sedimentation rates 385 

sliding seems to be a frequent quasi intrinsic process of sediment movement and 386 

transfer but resulting morphologies are quickly buried and obscured, sometimes within 387 

days to years (Biscara et al., 2012; Clare et al., 2016 ; Kelner et al., 2014; Mazières et al., 388 

2014; Obelcz et al., 2017; Smith et al., 2007). Our study shows that obscuration may 389 

occur on much larger areas at slope bases. Indeed, the RWMTD case may be atypical but 390 

it raises the question of the recognition of large mass transport deposits and outlines 391 

that bathymetric data alone are not sufficient for their recognition on high 392 

sedimentation rate continental margins such as glacigenic and deltaic margins and that 393 

inventories (e.g. Urgeles and Camerlenghi, (2013)) may be incomplete at the largest end 394 

of the spectrum. 395 

 396 

5.2. Source and trigger mechanisms 397 



The recurrence of mass transport deposits in many deep-sea fans on deltaic margins 398 

such as the Mississippi (Twichell et al., 1991; Weimer, 1989), Amazon (Piper et al., 399 

1997), Danube (Popescu et al., 2001) or Nile (Garziglia et al., 2008) shows that sediment 400 

loading, mostly during lowstands, is a major preconditioning factor for sliding. Sliding 401 

can occur when the stress exceeds the sediment strength and no external trigger 402 

mechanism is actually needed to explain sliding of high sedimentation rate poorly-403 

consolidated sediment, even with low slopes, (Croguennec et al., 2017; Dennielou et al., 404 

2017). This configuration can be clearly invoked for the Rhone slope and fan where high 405 

sedimentation rates, in the order of several meters per thousand years, during the Last 406 

Glacial Maximum (Lombo Tombo et al., 2015; Sierro et al., 2009) have shortly preceded 407 

the emplacement of the RWMTD. Among preconditioning factors, the occurrence of a 408 

presently buried valley adjacent to the Rhone fan, in the continuation of the Sète valley, 409 

suggests oversteepening by lateral retrogressive erosion along the Rhone fan. This 410 

process has been proposed for explaining the broadening of the Bourcart Canyon 411 

(Baztan et al., 2005; Sultan et al., 2007). At some stage, these recurrent failures may 412 

have triggered a massive retrogressive failure of the fan levee and adjacent slope. 413 

Another preconditioning factor could be local slope oversteepening by vertical 414 

movements of listric faults (dos Reis et al., 2005) (Fig. 4B).  415 

External triggers can occur and hasten sliding. In the GoL. earthquake shaking can be 416 

discarded as the GoL is a low seismicity area where during the last 50 years most 417 

earthquake magnitudes were lower than 4 (Manchuel et al., 2017). Furthermore, a 418 

minimum magnitude of 7 is needed to trigger instabilities on high sedimentation rate 419 

lowstand sediments in the neighbouring Bourcart Canyon (Sultan et al., 2007). 420 

 421 

5.3. Processes for propagation and long runout distance 422 



The RWMTD appears as a seismically homogenous and transparent body with no 423 

evidence of particular internal structure. A large part of the body is buried under late 424 

and post-glacial turbiditic deposits and erosions that might have obliterated 425 

morphological features on top of the RWMTD (Bonnel et al., 2005; Droz and Bellaiche, 426 

1985; Gaullier et al., 1998; Torres et al., 1997). However, seismic data reveal a rather flat 427 

morphology on top (Figs. 6 to 10) and do not show evidence of faulting, blocks 428 

formation, rafting or retrogression as observed in the neighbouring Big’95 landslide on 429 

the Ebro Margin (Lastras et al., 2002; Lastras et al., 2004). On the contrary, the RWMTD 430 

shows evidence of widespread ductile-plastic behaviour with folding and contortion in 431 

the clay-rich sampled sediment (Fig. 11), and the formation of a compression bulge at 432 

the SE limit against the Rhone fan (Figs. 4C, 4D and 9). The ductile-plastic interpretation 433 

is reinforced by the fact that the RWMTD has spread onto and filled the pre-existing 434 

seabed morphologies (Figs. 5 to 10). 435 

Mass transport deposits can propagate over very long distances, in the order of several 436 

hundreds of kilometres for the largests, and the runout distance is roughly proportional 437 

to the size of the slide (De Blasio and Elverhøi, 2011; Haflidason et al., 2005). The 438 

RWMTD exhibits a H/L ratio in the order of 0.004, which fits within the morphometric 439 

characteristics of many mass transport deposits in the world (Issler et al., 2005). In 440 

particular, it fits particularly well with the characteristics of the Storegga’s 63 slide lobes 441 

(Haflidason et al., 2005; Issler et al., 2005) suggesting that they share common 442 

mechanical properties and propagation processes. Indeed, like the Storrega slide, the 443 

RWMTD involved clay-rich sediments but with drastically different sources because the 444 

Norwegian margin is fed by glacial and glacigenic sediments, while the GoL is fed by 445 

temperate deltaic sediments. Many studies outline a discrepancy between the 446 

mechanical properties (high strength, high density, low porosity) of cohesive sediment 447 



in mass transport deposits and their exceptional long runout distances that would 448 

necessitate much lower sediment strength (De Blasio et al., 2005). This is also the case 449 

for the RWMTD that exhibits clay-rich sediments with exceptional high densities 450 

(between 2 and 2.2 g.cm-3) that evidence over-consolidation with regards to the 451 

overlying sediment (Fig. 11). Modelling of long runout distance by viscoplastic model 452 

requires to introduce very low sediment strength (De Blasio et al., 2005), much lower 453 

than that of the slided sediment and of the mass transport deposit. However, 454 

remoulding of sediment and adjunction of water (shear wetting) during transport can 455 

significantly decrease the sediment strength (De Blasio et al., 2005) and enhance 456 

lubrication at the base and front of the mass transport deposit and explain long runout 457 

distances (De Blasio and Elverhøi, 2011). In addition, hydroplaning may also increase 458 

lubrication (De Blasio et al., 2005; Mohrig et al., 1998). The present high density of the 459 

RWMTD suggests a drastic strengthening of sediment during transport or after 460 

transport. Sediment densification is a common feature of mass transport deposits that 461 

occurs in response of shearing in highly sensitive clays and explaining that they exhibit 462 

contrasted impedance with the surrounding sediment and are very well imaged on 463 

seismic data (Dugan, 2012). The important folding and contortion in the clay sediment 464 

sampled on the top 7 m of the RWMTD at proximal, central and distal locations, is an 465 

evidence that shearing occurred during transport and may thus explain the present high 466 

density. 467 

 468 

5.4. Timing and synchronism with other major sediment gravity deposits in the 469 

north-western Mediterranean 470 

The emplacement of the RWMTD is dated during the LGM between 19.9-21.5 ka cal BP 471 

(end of the LGM) according to our radiocarbon dating at the base of sediment drape on 472 



top of the RWMTD (Fig. 11). In the north-western Mediterranean, this period of time and 473 

the ensuing post-glacial sea level rise are characterized by several other major events 474 

that are the BIG’95 mass transport deposit (26 km3) on the Catalan-Ebro margin 475 

(Lastras et al. 2002), the Rhone EMTD (150-200 km3) (Droz and Bellaiche, 1985; Droz et 476 

al. 2006) in the GoL, and the megaturbidite in the Balearic Abyssal Plain (ca. 500 km3) 477 

(Rothwell et al., 1998). 478 

The BIG’95, seems to have been emplaced in a different setting than that of the RWMTD. 479 

It affected the Ebro fed clay-rich deposits but that, unlike the Rhone fed deposits, are 480 

less focused and spread through several canyons and developed at the base-of-slope 481 

several channel–levee complexes with an apron-ramp turbidite system (Alonso and 482 

Maldonado, 1990; Lastras et al., 2004). Sliding and long runout occurred at shallower 483 

water depth from the upper slope at 200 m water depth to 2000 m water depth (and 484 

more recently, at the end of the deglacial sea level rise at 11.0-11.5 ka cal BP (Lastras et 485 

al., 2002; Lastras et al., 2004). However, like for the RWMTD, high sediment load and 486 

over-steepening during lowstand may have been a determinant trigger mechanism 487 

(Lastras et al., 2004). 488 

The age of the REMTD is still unknown but like the RWMTD it is very shallow, it also 489 

involved adjacent turbidite leveed deposits and it lies at the same water depths (1,900-490 

2,700 m). Although both deposits are clearly separated by the Rhone deep-sea turbiditic 491 

valley (Droz and Bellaiche, 1985), it is quite likely that their emplacement is coeval, 492 

share common trigger mechanisms and that may even correspond to a single event. 493 

Megaturbidites are interpreted as the possible product of massive slope failures that 494 

evolved into turbidity current(s) eventually deposited and trapped in the deepest part of 495 

closed oceanic basins like in the Mediterranean (Cita and Aloisi, 2000; Reeder et al., 496 

2000). Exceptional high-impact hazards capable of broadly shaking or reworking 497 



sediments on slopes such as volcanic eruptions, earthquakes and tsunamis have been 498 

suggested as a trigger mechanism (San Pedro et al., 2017), but environment-climatic 499 

driven triggers such as sea-level change or gas hydrate destabilisation are also evoked 500 

(Reeder et al., 2000; Rothwell et al., 2000). A 8–10 m thick dominantly muddy 501 

megaturbidite fills the whole Balearic Abyssal Plain over 60,000 km2. In seismic data it 502 

appears as a laterally continuous, acoustically transparent layer (Rothwell et al., 1998). 503 

The source remains unknown but thickening and coarsening of the basal sand of the 504 

megabed towards the north suggests emplacement from that direction (Rothwell et al., 505 

1998). The calibration of the weighted mean radiocarbon age obtained on top of the 506 

megabed by Rothwell et al. (1998) gives a 2 sigma age comprised between 20.3 and 20.9 507 

ka cal BP with a median probability of 20.6 ka cal BP (Reimer et al., 2013) but the group 508 

of dates obtained is bracketed between 19.5 and 21.7 ka cal BP (Fig. 12). Therefore, ages 509 

of both RWMTD and Balearic Abyssal Plain megaturbidite are the same within 2-sigma 510 

confidence interval and no chronological order can be given between the two deposits, 511 

reinforcing the possibility of a genetic link compatible with the proposed northern 512 

source. However, the exceptional volume of the Balearic Abyssal Plain megaturbidite 513 

shows that the related mass movement was likely efficiently evacuated from the source 514 

failure, which is not the case of the RWMTD and REMTD. Therefore, even though the 515 

RWMTD and REMTD may have contributed to feed the megaturbidite, the failure source 516 

must be also sought in adjacent areas characterized by recurrent slope failures like the 517 

Ligurian margin (Ioualalen et al., 2010; Migeon et al., 2011). 518 

 519 

5.5. Consequences on sediment routing in the western Gulf of Lions rise and 520 

Rhone fan 521 



Sedimentation and sediment transfer processes in the GoL and Catalan-Ebro margins 522 

are characterized by high sediment input from the Rhone and Ebro River and by 523 

numerous canyons dissecting the outer shelf and slope efficiently draining sediments 524 

towards the base of slope. The transfer was obviously efficient during the LGM lowstand 525 

with the growth of the deep-sea fans and sedimentary ridges (Beaudouin et al., 2004; 526 

Jallet and Giresse, 2005; Lombo Tombo et al., 2015; Melki et al., 2009). Even during the 527 

Holocene highstand, although sediment fluxes at the shelf break are several orders of 528 

magnitude lower than during the LGM, canyons remain an efficient pathway as they can 529 

focus high amplitude hydro-sedimentary processes with a strong imprint on the sea bed 530 

morphology (Canals et al., 2006; Lastras et al., 2007b; Palanques et al., 2006; Payo-Payo 531 

et al., 2017) and even deposit sandy turbidites at the base of slope (Dennielou et al., 532 

2009). In the western part of the GoL, the Sète canyon network, the La Fonera canyon 533 

and the Clots del Puget canyon presently reach the base of slope and vanish at ca. 2300 534 

m (Fig. 1). 535 

The longitudinal concave-up shape of the buried valley along the western flank of the 536 

Rhone fan, in the direct prolongation and in good fit with the concave-up longitudinal 537 

shape of the Sète canyon and the Valencia channel (Figs. 10B, C, D and 13A), shows that 538 

during the LGM, prior to the emplacement of the RWMTD, the western GoL canyon 539 

drainage network and the Ebro-Valence canyon drainage networks were coalescing and 540 

that, probably, the Valencia fan was collecting significantly more important volumes of 541 

sediment (Fig. 13A). The presence of such an important erosional channel questions 542 

about the sediment source and flow capable of developing and maintaining this conduit. 543 

The presence of an axial incision in several canyons (Bourcart, Herault and Marti) 544 

suggests that these canyons heads were connected with major rivers during the last 545 

glaciation and were fed by sustained confined turbidity currents (Baztan et al., 2005). 546 



This is confirmed by the mapping of the LGM paleo-fluvial drainage network on the shelf 547 

that shows that the Herault canyon was fed by the Rhone River (Jouet et al., 2006) and 548 

may have supplied frequent turbiditic flows to develop the valley. 549 

The burying and clogging of this channel resulted in a major reorganisation of the 550 

sediment routing in the north-western Mediterranean. It is not possible to determine 551 

the magnitude of the decrease in the quantity of sediment supply into the Valencia 552 

channel, but this question could be easily addressed by collecting sediments cores along 553 

the Valencia channel, both upstream and downstream of the channels coalescence. The 554 

RWMTD was not found inside the Valencia valley, while it is still visible inside the 555 

extremity of the Clots del Puget/Entrant de Palamos valley where both valleys coalesced 556 

(Fig. 8D). Indeed, the RWMTD may have never been engaged inside the Valencia 557 

channel, but it is also possible that deposits have been eroded and removed from the 558 

valley. This is also suggested by evidences of upstream erosion in the Valencia channel, 559 

in the order of several meters per thousand years since the LGM (Amblas et al., 2011). 560 

A close examination of seabed morphology at the outlet of the Sète canyon network 561 

shows large erosive bedforms in the distal reaches, including grooves and crescent 562 

scours (Lastras et al., 2007b) and shows that the seabed has a concave-up shape on top 563 

of the RWMTD (Fig. 4B and 4D). This is indicative that bed-load sediment transport with 564 

dominantly bypassing and erosive processes have persisted down the Sète canyon 565 

network during the LGM after the emplacement of the RWMTD and have started the 566 

excavation of a new drainage at the same location of the buried one. Shallow, lobe-567 

shaped deposits, such as the Sète lobe (Droz et al., 2001), at the extremity of the canyon 568 

are also suspected (Fig. 13B). There are also evidences of currently active hydro-569 

sedimentary processes in the Cap de Creus canyon such as dense water cascading 570 



capable of transporting huge quantities of sediment (Canals et al., 2006; Lastras et al., 571 

2007b; Palanques et al., 2009) further suggesting that excavation is still ongoing. 572 

We have shown that several sediment failures that fed the RWMTD have affected the 573 

Rhone fan deposits and that headscars have even nearly reached the perched valley (Fig. 574 

4B and 6A). The last, westward, avulsion of the Rhone deep-sea channel occurred 575 

shortly after the emplacement of the RWMTD as indicated by the subsequently 576 

deposited neofan resting on top of the RWMTD (Figs. 5 to 8) (Droz and Bellaiche, 1985; 577 

Torres et al., 1997). Interestingly, the channel avulsion occurred in an area where the 578 

RWMTD extends onto the Rhone levee and that can be interpreted as a failure area 579 

similar to that further north (Fig. 4B and 5C). Therefore one can argue that channel 580 

avulsion may have been triggered after breaching of the levee by the failure of the levee, 581 

although downstream clogging of the Rhone channel is also evoked (Droz and Bellaiche, 582 

1985). 583 

The major disruptions in the sediment routing occurred shortly (ca. 3 ky) before the 584 

onset of the post-glacial sea level rise at ca. 18.5 cal. ka BP and the sediment starvation 585 

of slope and base-of-slope fans consecutive to the backstepping of sediment depocenters 586 

onto the shelf (Berné et al., 2007; Lombo Tombo et al., 2015). Therefore the 587 

consequences on the sedimentation in the Valencia fan, the final sink, may not be well 588 

visible and recorded. It is possible to extrapolate the consequences during a future 589 

lowstand. Since there are evidences that the concave-up morphology at the base of slope 590 

has already started to recover, one can argue that during a future lowstand the recovery 591 

may be complete and that the Valencia channel may collect again the sediments from the 592 

Sète canyon network, but, in addition and this is a major contrast with the LGM, the 593 

neochannel avulsion will possibly also route the Rhone sediment into the Valencia 594 

channel and fan making it the collector from the two major north-western 595 



Mediterranean rivers, the Ebro and the Rhone. However, this would be a temporary 596 

situation because the Rhone levees display several collapses prone to trigger breaches 597 

and new channel avulsions (Fig. 4B and 6A). 598 

 599 

5.6. Significance for sediment routing in the submarine realm 600 

Modification of sediment transport pathways in the terrestrial realm by rerouting of 601 

rivers after hillslope landslides or glacier retreat is well documented and major (>105 602 

m3) terrestrial landslides can instantaneously modify river pathways for periods of 603 

times relevant to landscape evolution (>104 yr) (Ouimet et al., 2007; Shugar et al., 2017). 604 

Large landslides can also act as a primary control on channel morphology and 605 

longitudinal river profiles, modify the adjustment of rivers to regional tectonic, climatic, 606 

and lithologic forcing (Ouimet et al., 2007), and therefore influence the volume and rates 607 

of sediment delivered into the oceans. Though marine landslide volumes are up to three 608 

order of magnitude larger than their aerial counterparts (Hampton et al., 1996; Urgeles 609 

and Camerlenghi, 2013) and are major elements of sedimentary margin development, 610 

their contribution to deep-sea sediment routing is not well documented. As a 611 

consequence of their widespread occurrence in turbidite systems, landslides, mass 612 

transport deposits or mass transport complexes play a significant role in the topography 613 

of channels or slopes, affect the resulting accommodation space, the development and 614 

bifurcation of deep-sea channel, and in fine can control the routing and dispersal of 615 

sediment at the fan scale (Armitage et al., 2009; Bernhardt et al., 2012; Corella et al., 616 

2016; Kawamura et al., 2010; Kneller et al., 2016; Ortiz-Karpf et al., 2015). However, a 617 

fundamental modification of a deep-sea sediment transport network by a single 618 

submarine mass transport deposit at continental margin scale seems unprecedented. 619 

Noteworthy, the present case also involves rapid turbidite accumulation showing that 620 



rapid changes of sediment routing may occur in areas of massive sediment deposition 621 

prone to rapid evolution of submarine morphologies. We suggest that the converging 622 

pattern of the canyon network as well as the semi-confined morphology at the base of 623 

slope of the western part of the GoL created a receptacle suitable for rapid infill and 624 

blocking of canyons. 625 

 626 

6. Conclusions 627 

A comprehensive mapping of the Rhone RWMTD was performed, based on seismic data 628 

collected during several oceanographic campaigns between 1997 and 2008. The 629 

RWMTD emplaced on the western flank of the Rhone fan and involved sediment from 630 

the base of slope and from the adjacent Rhone fan levee. The RWMTD covers a surface of 631 

6800 km2. It represents a volume of 160 km3 of folded and contorted laminated clayey 632 

high-density stiff sediments that have spread over 180 km. 633 

Our results show that : 634 

- Large mass transport deposits can be obscured in settings where sedimentation 635 

rates are high. This underlines the importance of integrated (swath bathymetric, 636 

seismics, core data) studies, and also suggests that hazard catalogues constructed 637 

from seafloor morphology alone may be incomplete. 638 

- Mass wasting is a major process of the margin development in the GoL and more 639 

generally in the north-western Mediterranean. Several very large events occurred 640 

within a very small time window in the Western Mediterranean (Rhone Western and 641 

Eastern mass transport deposits and Balearic Abyssal Plain megaturbidite) and 642 

account for a significant proportion of the stratigraphy. Though probably not 643 

genetically linked, they occurred in period of time of large sediment transport into 644 

the base of slope during the Last Glacial Maximum. 645 



- Large landslide deposits can fundamentally modify sediment routing systems in the 646 

marine realm at margin scale. Mass wasting must therefore be considered as a major 647 

internal forcing on sediment dispersal. These drastic events can have a major impact 648 

on downstream sedimentation at the base of slope and abyssal plains where 649 

sedimentation is therefore not only controlled by externally forced fluctuations of 650 

sea level and sediment flux. 651 

It can be pointed out that the emplacement of the RWMTD in the lowstand systems tract, 652 

shortly (1-2 ky) before the onset of the post-glacial sea level rise and Rhone fan 653 

sediment starvation (Lombo Tombo et al., 2015), is conform to the Exxon sequence 654 

stratigraphy sea-level based model. 655 
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 1176 

Figure captions 1177 

Figure 1 1178 

Bathymetric map of the Gulf of Lions and Catalan margins with indication of main 1179 

morpho-sedimentary features (white dashed lines: sedimentary deposits; black dashed 1180 

lines: Mass Transport Deposits; violet dashed lines: main canyons; black solid line: 1181 

current Petit-Rhone canyon/channel). Gulf of Lions canyons (Berné et al., 2004): CC: Cap 1182 

de Creus, LD: Lacaze Duthier, P: Pruvost, Bc: Bourcart, He: Herault, S: Sète, CL: Catherine 1183 

Laurence, M: Marti (whose coalescence forms the Sète canyons network), PR: Petit-1184 

Rhone, GR: Grand-Rhone, Ms: Marseille, PL: Planier, C: Cassidaigne. Catalan margin 1185 

canyons (Canals et al., 1983): LF: La Fonera, CdP: Clots del Puget, B: Blanes. REMTD: 1186 



Eastern Mass Transport Deposit, RWMTD: Western Mass Transport Deposit. Limits of 1187 

sedimentary bodies are from Droz et al. (2006) except Valencia Fan from Maldonado et 1188 

al. (1985). 1189 

 1190 

Figure 2 1191 

Location map of slides headwalls, of buried and active listric faults (dos Reis et al., 1192 

2005), of seismic lines shown in Figs 5 to 9 and of sediment cores (white dots). PLSR: 1193 

Pyreneo-Langudocian Sedimentary Ridge, PRDSF: Petit-Rhone Deep-Sea Fan, PRN: Petit-1194 

Rhone Neofan, REMTD: Eastern Mass Transport Deposit, RWMTD: Western Mass 1195 

Transport Deposit. See Fig. 1 for canyon names. 1196 

 1197 

Figure 3 1198 

Location map of used seismic data and sediment cores 1199 

 1200 

Figure 4 1201 

A: Seabed morphology of the study area (map of slope) with location seismic lines and 1202 

sediment cores. B: zoom in on the seabed morphology on the proximal area of the 1203 

Western Mass Transport Deposit (RWMTD) at the base of slope. See scars headwall 1204 

superimposed on active listric faults. Thick red arrows indicate possible main sources 1205 

and pathways of the RWMTD across the western levee of the Rhone fan. C:  zoom in on 1206 

the seabed morphology of the eastern distal area of the RWMTD showing a bulge against 1207 

the Rhone fan. D: Bathymetric section A-A’ and B-B’ show the morphologic expression of 1208 

the compression bulge. C: bathymetric sections across the Sète valley (A-A’), showing 1209 

the compression bulge at the contact between the RWMTD and the Rhone fan (B-B’ and 1210 

C-C’). See Figs. 2 and 4A for location. PLSR: Pyreneo-Langudocian Sedimentary Ridge. 1211 



 1212 

Figure 5 1213 

The Rhone Western Mass Transport Deposit (RWMTD) as seen by several types of 1214 

seismic: (A and C) single channel mini GI air-gun, (B) 24-channel mini-GI air-gun, (D) 6-1215 

channel 50 Hz GI air-gun, in the proximal area at the base of slope; strike lines (A, B, C), 1216 

dip lines (D). Lines A and B were acquired simultaneously but with two different 1217 

streamers. See the nearly transparent facies of the RWMTD on the single channel air-gun 1218 

line (A) while on the 24-channel air-gun line (B) it shows internal reflections. See Figs. 2 1219 

and 4A for lines location. The top (red line) and base (blue line) of the RWMTD in D are 1220 

issued from the interpretation of sub-bottom profiles. PLSR: Pyreneo-Langudocian 1221 

Sedimentary Ridge. 1222 

 1223 

Figure 6 1224 

Sub-Bottom Profiler lines (A) across the Rhone fan valley and proximal area of the 1225 

Rhone Western Mass Transport Deposit (RWMTD) showing sliding of the turbiditic 1226 

levee, and (B) along the central and distal area of the RWMTD. See also location and 1227 

penetration of sediment cores on the RWMTD. See Figs. 2 and 4A for lines location. 1228 

 1229 

Figure 7 1230 

Sub-Bottom Profiler (A) and air gun (B) seismic line across the central area of the Rhone 1231 

Western Mass Transport Deposit (RWMTD). See overlapping more recent deposits and 1232 

erosional features (Rhone neofan deposits and channels, scours field and deposits from 1233 

La Fonera canyon). The top (red line) and base (blue line) of the RWMTD are indicated. 1234 

See Fig. 2 and 4A for lines location. 1235 

 1236 



Figure 8 1237 

Sub-Bottom Profiler line across the distal area of the Rhone Western Mass Transport 1238 

Deposit (RWMTD). See infill of substratum relief (A), overlap of RWMTD on the Rhone 1239 

fan (B), infill of Palamos valley (C) and confluence of Clots del Puget/Entrant de Palamós 1240 

and Valencia valleys. The top (red line) and base (blue line) of the RWMTD are indicated. 1241 

See Figs. 2 and 4A for lines location. 1242 

 1243 

Figure 9 1244 

Sub-Bottom Profiler line across the eastern side of the Rhone Western Mass Transport 1245 

Deposit (RWMTD) showing overlapping and a compression bulge against the Rhone fan. 1246 

The top (red line) and base (blue line) of the RWMTD are indicated. See Figs. 2 and 4A 1247 

for lines location. 1248 

 1249 

Figure 10 1250 

Set of maps obtained after interpretation of seismic lines. A: isochron map converted 1251 

into meters below seafloor of the top of the Rhone Western Mass Transport Deposit 1252 

(RWMTD). White lines outline deposits that overlap the RWMTD, thick lines: Pyreneo-1253 

Langudocian Sedimentary Ridge (PLSR) and neofan, thin lines the Sète and La Fonera 1254 

lobes (Droz et al., 2001). B: isochron map converted into meters below seafloor of the 1255 

base of the RWMTD. White arrows outline the presently buried valleys in the 1256 

prolongation of the Sète canyon. Blue dotted line (A-A’) shows the location of depth 1257 

profiles shown on D. C: isochore map of the RWMTD. D: Depth profiles along the buried 1258 

valley in the prolongation of the Sète canyon; red: base of the RWMTD; blue: top of the 1259 

RWMTD; black: present bathymetry. Listric faults (LF) offsets are visible on the 1260 

bathymetry profile at the base of slope, in the RWMTD proximal area. 1261 



 1262 

Figure 11 1263 

Lithofacies of sediment cores collected in the Rhone Western Mass Transport Deposit 1264 

(RWMTD) at proximal (core MD01-2435), central (core KSGC-10) and distal (core 1265 

MD01-2438) locations. See Figs 2, 3 and 4A for location of sediment cores. 1266 

 1267 

Figure 12 1268 

Graphic presentation of radiocarbon dating at the base of the hemipelagic drape on top 1269 

of the Rhone Western Mass Transport Deposit (RWMTD) (this paper) and of the Balearic 1270 

Abyssal Plain Megabed (Rothwell et al., 1998). 1271 

 1272 

Figure 13 1273 

Reconstruction maps of canyons and turbidic channels drainage network and sediment 1274 

routing during the Last Glacial Maximum (LGM), before (A) and after (B) the 1275 

emplacement of the Rhone Western Mass Transport Deposit (RWMTD). Solid black line 1276 

indicated location of the buried valley as mapped from seimic lines. Dashed black lines 1277 

indicate possible location of another parallel valley and areas where the lack of seimic 1278 

lines do not allow mapping the buried valley. See Fig. 1 for canyon names. 1279 

 1280 

Table captions 1281 

Table 1 1282 

Oceanographic campaigns and data used in this study. See location in Fig. 3 1283 

 1284 

Table 2 1285 



Location and characteristics of sediment cores used in this study. See Figs. 2 and 3 for 1286 

location. 1287 

 1288 

Table 3 1289 

Radiocarbon dating carried out on sediment cores. Calendar ages BP (Before Present) 1290 

calculated with Calib 7.1 and Marine13 calibration curve (Reimer et al., 2013). ∆R = 48 y 1291 

; SD = 101 y was determined after reservoir ages in the Gulf of Lions obtained from Calib 1292 

7.1 marine reservoir database. 1293 

1294 



Table 1 1295 

Campaign Year Ship Data Reference 

Calmar97 1997 R/V L’Atalante 
EM12, HR 6-channel 50 Hz 
GI, VHR 3.5 kHz SBP 

(Loubrieu, 1997) 

Marion 2000 R/V Le Suroît 
EM300, HR single channel 
and 24 channels 130 Hz 
mini-GI 

(Berné, 2000) 

Gmo1 2001 R/V Le Suroît EM300 (Cochonat, 2001) 

MD123 / 
Geoscience1 

2001 R/V Marion Dufresne Calypso cores (Turon, 2001) 

Gmo2-Carnac 2002 R/V Le Suroît EM300 
(Sultan and Voisset, 
2002) 

Progres 2003 R/V Le Suroît 
EM300, HR 6-channel 50 
Hz GI, VHR 2-5.2 kHz SBP 

(Droz, 2003) 

Sardinia 2006 R/V L’Atalante EM12, VHR 3.5 kHz SBP (Aslanian et al., 2006) 

Melrose 
Seepgol 

2007 R/V Le Suroît EM300 
(Rabineau and Aslanian, 
2007) 

Rhosos 2008 R/V Le Suroît EM300, VHR 2-5.2 kHz SBP 
(Berné and Dennielou, 
2008) 
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Table 2 1298 

Core Area Latitude Longitude 
Water depth 

(m) 

Length 

(m) 
IGSN 

MD01-2435 
Proximal 

area 
42°15.66’ N 004°47.18’ E 2025 19.23 BFBGX-88347 

KSGC-10 Central area 41° 55.277’N 004 44.608’ E 2399 2.03 BFBGX-87938 

MD01-2438 Distal area 41°14.91’ N 004°29.97’ E 2628 9.00 BFBGX-88349 
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Table 3 1301 

Core 
Depth 

(cm) 

Radiocarbon 

age (y BP) 

1σ 

calendar 

age (y BP) 

2 σ 

calendar 

age (y BP) 

Median 

calendar 

age (y BP) 

Dated 

material 

Lab. 

number 

MD01-2435 22-24 12,940±70 
14,379-
14,980 

14,163-
15,134 

14,666 
G. 

bulloides 

Poz-
14639 

MD01-2435 853-858 17,940±90 
20,921-
21,331 

20,726-
21,535 

21,128 
G. 

bulloides 

Poz-
14641 

MD01-2435 917-923 18,310±90 
21,450-
21,825 

21,194-
21,981 

21,625 
G. 

bulloides 

Poz-
14642 

MD01-2438 96-100 17,260±80 
20,110-
20,446 

19,949-
20,600 

20,276 
G. 

bulloides 

Poz-
14649 

KSGC-10 1-2 840±30 318-499 239-621 415 
G. 

bulloides 

Poz-
13817 
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