
HAL Id: hal-01987284
https://hal.univ-brest.fr/hal-01987284v1

Submitted on 21 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Low Cost Secured Remote Control of Mobile
Robots to Help Dependent People

Yvon Autret, Jean Vareille, David Espes, Valérie Marc, Philippe Le Parc

To cite this version:
Yvon Autret, Jean Vareille, David Espes, Valérie Marc, Philippe Le Parc. Towards Low Cost Secured
Remote Control of Mobile Robots to Help Dependent People. IARIA Journals, 2018, International
Journal on Advances in Intelligent Systems, 11 (3&4), pp.168-178. �hal-01987284�

https://hal.univ-brest.fr/hal-01987284v1
https://hal.archives-ouvertes.fr

Towards Low Cost Secured Remote Control of Mobile Robots to Help Dependent
People

Yvon Autret, Jean Vareille, David Espes, Valérie Marc and Philippe Le Parc
University of Brest

Laboratoire en Sciences et Techniques de l'Information, de la Communication et de la Connaissance
(Lab-STICC UMR CNRS 6285)

France
Email: {yvon.autret, jean.vareille, david.espes, valerie.marc, philippe.le-parc}@univ-brest.fr

Abstract—In this paper, we focus on a Web-controlled mobile
robot for home monitoring, in the context of Ambient Assisted
Living. The key point is low-cost and the robot is built from
standard components. We use a few sensors to allow the robot
to estimate its position, its direction and the obstacles in front
of it. An Ultra Wide Band system is used to estimate the
position of the robot. A distant user controls the robot by using
a map in the user interface. The result is a small robot that can
be used inside or outside a house.

Keywords-Home monitoring; Web control; UWB positioning.

I. INTRODUCTION

This paper is an extension of [1]. In 1898, Nikola Tesla
demonstrated a remote-controlled boat [2]. It was based on
the radioconduction discovered by French physicist Edouard
Branly in 1890. One century later, the emergence of Web
technology provided new opportunities. The first Web
controlled robot was developed at the University of Western
Australia by Kenneth Taylor in 1995 [3]. At the beginning
of the 2000's, Web development has led to the emergence of
Service Robotics [4].

However, Web-controlled robots have rather remained
unused until now, especially for Ambient Assisted Living
(AAL) applications. A typical application consists of
helping persons with diminishing mental or physical ability
to stay at home as long as possible. When picking up the
phone becomes too difficult, a mobile robot usable as a
phone could be useful. In the same way, care helpers or
relatives cannot spend all their time with a person. Devices
that would be able to monitor what is going on in a house, to
interact with the dependent person, and send the information
to the care helpers could be of great interest. Cameras could
be installed in every room. Such systems exist but they are
not really acceptable because they are too intrusive. Thus,
we think that a mobile robot could be more easily accepted
[5]. The robot can look like an animal. It can move in the
house, and only one camera is required in the house. If the
camera is considered too intrusive, it can be replaced by a

laser telemeter (Lidar) [6] to analyze movements in the
house.

Such robots are easy to build at affordable cost. Some of
them are even commercially available. However, there are
still problems. The Romo example is typical [7]. The robot
was launched in 2012 by the Romotive company. It is a
mobile robot that uses a smartphone to control its motors. It
can be remotely controlled from anywhere by using the
smartphone connectivity. The cost is about €180. As soon as
2013, one Romotive co-founder wanted to move in the
direction of making a robot that could solve real-world
problems. After years of aimless decisions, Romotive’s
Website was shut down in 2016. Beyond disputes that have
led Romotive to its fall, one key point appears. It is possible
to build and sell toy robots. New telepresence robots such as
UBBO or PADBOT are now available at affordable price
(about €1000). The first one is an open source robot and the
second one is a commercial robot. However, nobody knows
whether it is possible to build and sell robots that can be
used in the real world, especially in an AAL environment.
In this part, we will ask why. We will review the main
criteria required to make an AAL mobile robot truly usable.

A. Security of the system
If a software structure such as a server is installed on or

near the robot, it can cause serious security problems in the
house. It is never 100% secure. Even if techniques, such as
traffic analysis are implemented, and if a problem is
detected, who will handle the problem? It is not the role of
the robot users.

If there is a wireless connection between a server and the
robot, the radiations may cross the limit of the house and
they can be captured and modified from the outside. Data
will have to be encrypted but it may not be sufficient.

B. Security of the persons and resilience
If there is a failure, the robot may become dangerous. It

may go anywhere in the house and hurt people. In any case,
the speed of the robot must remain low. The robot should

not exceed 1 km/h to avoid frightening the inhabitants. The
resilience of the system is also very important. The robot
must be able to work despite total or partial failure of one or
more components. For example, if the network performance
decreases, the robot should automatically reduce its speed.
When a fault is detected, the robot must be able to restart,
and eventually go to a fallback position. An accurate
positioning system must be available.

C. Performance of the network
When a command is sent to a robot through a network, if

an acknowledgment is received back in less than 200 ms,
there is no perceptible lag between the triggering of the
action and the visual result [8]. A guaranteed 200 ms
round-trip-time (RTT) allows secured remote command of
mechanical devices. In the case of AAL robots, a 300-500
ms RTT remains acceptable if the speed of the robot is low
(1 km/h). When the RTT is beyond 500 ms, the operator
feels something uncertain.

D. User interface
The user interface must be designed for a

semi-autonomous robot. When only using video feedback,
controlling the robot is not easy. If images are not sent to the
distant user for a while, the robot control may quickly get
lost. The user interface must give accurate information
about the robot, its position and its environment. The
information must be redundant.

E. Positioning
Estimating the robot position is a key point. If the

estimated position is not accurate, the whole system will
collapse. The user interface will display wrong information,
and the robot will be dangerous. Most of the previous
criteria depend on the estimation of the robot position.

F. The cost
The cost must be kept as low as possible because it will

probably be used by elderly people who often have tight
budgets. It is inconceivable to rent a satellite channel to
control the robot. In the same way, it is neither possible to
use components, such as those found in military weapons,
for example a €50000 inertial unit. From our point of view,
the cost of an AAL robot should not exceed €500. The price
of a TV or a high-tech smartphone is also a good estimate.

G. Value analysis
One important aspect of the robot is that the value is a

combination of a remotely controllable mobility, with a
panel of services, some supported by the robot itself, but
mainly on-line services. Because of the rise of the latter, it is
necessary to perform a continuous value analysis to increase
the ratio services/cost, and to adopt the PDCA strategy.

H. Sustainable robotics
The domestic robots used to assist dependent people

should be obviously sustainable. It is impossible to convince
dependent people to reinvest for new robots at the same rate
we reinvest for smart-phones or personal computers. The
robots have to be reliable, robust, and highly maintainable.
Probably the market will start when the robots will be rented
as devices supporting specialized services, like intelligent
personal assistants combined with authentic human contacts.

In this paper, Section II presents the proposed robotic

system. We will show how the previous criteria have been
taken into account. Section III presents the user interface.
The results are shown in Section IV. The paper finishes by a
conclusion and perspectives.

II. DESIGNING A HOME ROBOT FOR AN AAL ENVIRONMENT

A. The mechanical base
We use a very simple experimental mechanical base

(Figure 1). There are four wheels mounted on gearmotors
and a wooden plate. An Arduino and a motor shield control
the motors two by two. The motor shield is a 2x2A. It is
based on a L298P chip. This means that the robot will slide
slightly on the floor when turning. This choice reduces the
cost but it will make the robot more difficult to locate if
odometry is used. The gearmotors rotate at a maximum of
84 revolutions per minute. The 120 mm wheels allow a
maximum speed of 1.9 km/h. The motor torque is 0.1N.m.
Thus, the total mass of the robot can be about 3 kg. This
mechanical base is very reliable, especially if brushless
motors are used.

Figure 1. The mechanical base

 B. The software architecture
If the mobile robot is in a house and the user in a

different place, we have no choice but the Web to allow
remote control. Another solution would increase the total
cost too much. This leads to a special architecture that we
describe below (Figure 2).

Figure 2. The proposed architecture

1) The Web server: The heart of the system is the
Web server. We have chosen to use a Virtual Private Server
(VPS) on the cloud. A 1-core VPS can now be rented at a
reasonable cost of 3 or 4 euros per month. It is powerful

enough to manage at one robot and one distant user. Of
course, it can manage several distant users and several
robots. For security reasons, it can be interesting to use one
VPS to manage one robot and the users who use it.
The installation is relatively simple. A user interface is
usually provided to install the system, for example an
Ubuntu 16.04. The next step is software installation. It is
nothing more that the installation of a Tomcat Web Server.
That operation can be easily automated because there is only
one archive file to copy and decompress. The installation of
the application on the Tomcat server is also performed by
copying a file. The copied file is automatically detected by
the Tomcat server and installed as an application. Thus,
installing thousands of VPS is possible at low cost.

2) The security of the Web server: The VPS provider
monitors the network 24 hours a day. In case of problem, an
email is sent and the VPS can be automatically rebooted,
and even stopped in case of attack. If the server was
installed at home, the monitoring would be less efficient.
We can guess that the reaction time would be much higher
in case of attack. Sophisticated algorithms are required to
prevent an attack before it becomes a problem. Worst, a
periodical ping to verify that the server is still alive, would
be difficult to do at home. A second computer would be
required to ping the first server. If installed at home, the
second computer would also be vulnerable, and the solution
to this problem has no end.

3) The distant user: There is no direct communication
between the distant user and the robot. The distant user
sends commands to the Tomcat server. Next, the Tomcat
server sends commands to the robot. To perform such an
operation, the distant user has a Web application running on
a standard Web browser. Two solutions are possible to send
the commands.

● The first solution uses Websockets. There is a first
Websocket between the distant user and the
Tomcat Web server, and second Websocket
between the robot and Tomcat. Events sent on the
Websockets are detected by Tomcat and copied
from one Websocket to the other. Thus, when
using a VPS located at 600 km from the robot, a
complete round trip (user-tomcat-robot-
tomcat-user) takes about 100 ms.

● The second solution consists of continuously
sending HTTP requests. The distant user sends an
HTTP request that is stored on the server. When
the robot sends an HTTP request to the server, it
receives a response containing the HTTP request
sent by the distant user. In the same way, the
distant user receives as response, the HTTP request
sent by the robot. The synchronization is ensured
by the server. When working at full speed, the
robot sends an HTTP request and is let pending by
the server until the distant user sends an HTTP

request. When the distant user has received its
response, it sends a new HTTP request and is let
pending by the server until the robot sends a new
HTTP request. Thus, the server manages a standard
producer-consumer system. In case of problem, a
timeout is triggered and the process automatically
restarts. The second solution is a bit slower. A
complete round trip takes about 150 ms
(user-tomcat-robot-tomcat-user). It has the
advantage to be very simple and more flexible.
There is no initialisation problem like with
Websockets. Only asynchronous HTTP request are
sent from the distant user and from the robot. The
system can work forever with reliable automatic
reinitialisation. There is no need for full speed at
any time. The system can detect that the robot is
not in use and can gradually decrease the number
of HTTP request sent. For example, the robot can
send one HTTP request every minute when it is not
used. When the robot receives a command sent by
the distant user, it can leave the standby mode and
send up to several HTTP requests per second.
We have chosen this second solution because in
our case, the state of the robot must be
continuously sent to the distant user. Thus,
continuously sending data on the Websocket, or
continuously sending HTTP requests is not very
different.

4) The robot: We have seen that the robot must send
HTTP requests to the Tomcat server to get commands and
send its state. A Java program running on a Raspberry will
be used to do that. A second program runs on the robot. It is
a Node JS server used to manage the motors and the sensors
of the robot. The Java program sends HTTP requests to the
Node JS server to make it move and get its state. The node
JS server cannot be accessed from the outside for security
reasons. The Node JS server has been chosen for its ability
to manage asynchronous events and easily capture
information from the sensors.
The electronics on the robot is managed by a set of
Arduinos. All the information goes through a master
Arduino connected to the Node JS server. The master
Arduino is connected to a set of Arduinos (Figure 3). All the
communications, including that of the master Arduino to the
Node JS server, are at the rate of 9600 bauds. Such a speed
brings reliability and is fast enough for our purpose. The
speed can be very low because information coming from the
sensors can be stored in one or two bytes. For example, it
takes about 1 ms to get a distance produced by a Lidar.
Sending the whole state of the robot to the Node JS will take
less than 10 ms when the position of the robot and the
distance to obstacles are taken into account.

Figure 3. The Raspberry and the Arduinos

5) Complete stop of the robot: Another element of

security is the complete power off of the robot when not
used. The distant user can switch the power off or on the
robot. We have a special charging dock for that. There is an
Arduino on the robot, different from those seen above. It is
completely independent and not powered when the robot is
used. It manages relays, in fact inverters. When the Arduino
is not powered, relays are in a mode such that the robot is
powered. When the robot comes to the charging dock, a
connector powers the Arduino. When powered, the Arduino
reverses the relays and the robot is powered off. The
connector that powers the Arduino can be controlled by the
distant user. Thus, the distant user can power the robot on or
off. The control of the connector is similar to that of the
robot. A second Raspberry working like that of the robot is
used. The only difference is that the second Raspberry is
programmed to send HTTP requests to the Tomcat server at
a low rate of one per minute. We also use batteries with
embedded charger. By just adding another connector on the
docking base, charging of the batteries can be triggered,
either automatically and periodically by the system, or
manually by the distant user. We just send power to the
charging devices of the batteries by using relays. When the
battery is fully charged, the charging device automatically
switches the charging off. The battery life time is increased
because both the robot and the charging device are powered
off. Intrusion also becomes more difficult on the robot. The
system is designed to be used by a small number of users.
When the robot is powered on, an email is sent to the users
and a confirmation can be expected from one of them. In
this way, the users will be able to easily detect eventual
intrusions.

6) The client side: The remaining question is the
software on the user side. We have chosen a thin client for
security reasons. A fat client would have been more
powerful but the risk of security breach would have been
higher. When using a thin client, we use a standard Web
browser and rely on its security. The Web browser
communicates with a Tomcat Web server that is fairly
secure. The HTTP protocol is used.

C. The sensors
A distant user could make the robot move by using

basics commands, such as forward, backward, right or left.
If video is available, remote control is possible.

A webcam is available on the robot. It is managed by a
Raspberry. It is a light solution to stream videos over an
IP-based network. The webcam is independent from the
robot. The Tomcat Web server catches the video and sends
it to the distant user when required. Thus, the webcam is not
directly accessible from the outside. Only the Tomcat Web
server can be accessed from the outside and security is kept
relatively high because distant users must be identified in
order to get the video images.

However, if the mobile robot is used by caregivers who
do not know the house very well, video feedback is not
sufficient because experience shows that users are quickly
lost. Moreover, estimation of the position of obstacles is not
easy with video only. Thus, we have two main problems:
estimating the obstacle positions, and estimating the robot
position in the house.

Estimating the obstacle positions can be done by using a
laser telemeter (Lidar) [6]. Such devices are available since
several years. However their price can easily reach €2000.
We rather use a €150 Lidar-lite that can measure distances
in only one direction. To scan a 180 degree field in front of
the robot, we have mounted the Lidar-lite on a servo motor.

To make the robot go forward and follow a direction, we
also use a 9-axis accelerometer/magnetometer. Experiments
have shown that for our problem, a Kalman filter is
required. Without the Kalman filter, the magnetometer
produces many wrong values. Using an extended Kalman
filter does not seem to be necessary until now. We use a €30
CMPS11 tilt compensated compass module from
Robot-Electronics [9]. The module includes a processor to
compute a Kalman filter. It processes the raw values
produced by the gyroscope, the accelerometer and the
magnetometer. The compass output is pitch, roll and
heading. To give correct results, the compass must be at 30
cm above the gear motors. Only heading will be used in our
case. We will use that value to make the robot follow a
direction. The distance traveled by the robot could also be
computed from the accelerometer data, but the errors would
accumulate and the position of the robot would be incertain.
We will rather use UWB to determine the distance traveled
by the robot.

D. Estimating the robot position
Estimating the absolute robot position is now possible,

thanks to UWB. One of the main features of UWB signals is
their potential for accurate position location and ranging.
UWB technologies are often described as the next
generation of real time location positioning systems. Due to
their fine time resolution, UWB receivers are able to
accurately estimate the time of arrival (ToA) of a
transmitted UWB signal. This implies that the distance
between an UWB transmitter and an UWB receiver can be
precisely determined.

Figure 4. The positioning system

This feature of high localization accuracy makes the

UWB an attractive technology for diverse ranging and
indoor localization applications. It really allows 10-30 cm
accuracy in ranging and promises the realization of
low-power and low-cost communication systems [10].

The Arduino on the robot is connected to a Pozyx [11].
It computes the distance from the robot to the three other
Pozyxs (Figure 4). When the signal received from the
reference nodes is noisy, the system is non-linear and cannot
be solved. An estimation method has to be used. To get a
satisfying approximated position of the mobile robot, we use
the Newton-Raphson method [12]. This method attempts to
find a solution in the non-linear least squares sense. The
main idea of the Newton-Raphson algorithm is to use
multiple iterations to find a final position based on an initial
guess (for example, the center of the room), that would fit
into a specific margin of error.

Figure 5. A part of the robot (compass and webcam not shown)

The first results of our experiments show that distance

values are not consistent due to multipath components.
Hence, the precision of our system is about 30-50
centimeters. Such a precision is sufficient to know where
the robot is in a room, but insufficient to pass through a door
or a narrow passageway.

After the addition of sensors and UWB positioning, the
mobile robot architecture is as follows. The robot includes
several sensors that are managed by two Arduinos
communicating through a 9600 baud serial link. The first
Arduino manages the motors, the Lidar-lite laser telemeter,
and the compass. It is able to make the robot move, stop if
there is an obstacle, and follow a direction. It communicates
with a second Arduino that estimates the robot position. The
second Arduino periodically sends the estimated position to
the first one. It can also send orders, such as stop, change
the heading, or move forward in the current direction over a
certain distance. To estimate its position, the second
Arduino computes the distance between itself and the Pozyx
modules. To compute the position, the Arduino sends the
measured distances to the distant computer that processes
the Newton-Raphson algorithm. Results are obtained faster
if the computer has efficient floating point capabilities.

A part of the obtained robot is shown in Figure 5. A
single LiPo 3s battery powers the robot. DC-DC converters
are used to power the two Arduinos.

The robot is now able to estimate its position by using
UWB Pozyxs. It is also able to communicate with a remote

server installed in the house, to detect obstacles by using a
Lidar-lite, and to follow a direction by using a compass. We
must now propose a user interface to make all those features
available to a distant user.

III. THE USER INTERFACE

A. Using a map
The main item of the user interface is a map. We show

the robot moving on the map in real time. To build the map,
we have chosen to extend an available solution:
OpenStreetMap [13]. In France, most of the buildings,
including the individual houses, are shown by
OpenStreetMap. Thus, we can use these basics plans that
show the edges of the buildings. We superimpose a detailed
plan on the basic OpenStreetMap plan. To build the detailed
plan, we provide a tool that allows to draw on the basic
OpenStreeMap. It is implemented by using the OpenLayers
V3 (or V4) standard library [14]. Details such as furniture or
door openings can be shown. The direction of the exterior
walls relative to magnetic north is shown by
OpenStreetMap, and all other elements can be placed on the
map accordingly (Figure 6). More sophisticated solutions,
such as Lidar analysis have not been experimented yet to
automatically produce maps. Although limited, the current
solution is easy to use and makes it easy to produce a
relatively detailed plan.

When zoomed in, a room of a house can be seen in full
screen. The robot position is shown by the letter “R”. The
direction of the robot is shown by the direction of the letter.

For example, if the letter is inverted on the map, the robot
goes south.

To make positioning work, we must hang three Pozyxs
on the walls. Our algorithm requires that they must be at the
same height which can be different from that of the robot. In
order to simplify configuration, the three Pozyxs must form
a right angled triangle (Figure 7). Thus, in the user interface,
there is something to indicate the position of the #1 Pozyx
(P1), the position of the #2 Pozyx (P2), the distance between
the #1 and #2 Pozyx (P1-P2), and the distance between #1
and #3 (P1-P3). The system deduces the position of the
Pozyx #3 and there is no need to indicate directly its
position. Pozyx configuration is very easy because walls of
a house are very often perpendicular. The distant user must
click twice on the map, the first click to indicate where the
#1 Pozyx will be positioned, the second one to indicate
where the #2 Pozyx will be positioned. Using a
perpendicular axis for the Newton-Raphson algorithm we
use in position estimation, can lead to problems because
divisions by zero can occur. In fact, experiments have
shown that it is not a problem. If one position estimation can
not be computed, the next one almost always can be
computed. Even if the robot is stopped, the Pozyxs
continuously produce distance values.

Figure 6. Example of OpenStreetMap plan with overlay

As soon as the Pozyxs are configured in the user

interface, the robot position is displayed. The user interface
shows the estimated distances between the robot and the
Pozyxs by means of three circles. Those circles were used
for debug at the beginning. We keep them in the user
interface because they show a living system. The circles
oscillate slightly continuously and the distant user can see if

the system is working or not, and if there is no network
problem. As seen above, the robot position is shown by the
letter “R”. It should be at the intersection of the three
circles.

The implementation has been done by using Javascript
[15], Ajax [16], jQuery[17] and OpenLayers V3 [14]. An
Ajax request is sent to the Tomcat Web server, the position
is computed as seen above, and the result is sent back to the
distant user, and shown on the user interface. As soon as the
result is available, another Ajax request is sent and another
position estimation expected. We have measured a round
trip time (RTT) close to 500 ms when the distant user is in
the same town as the robot. It takes about 100 ms to
compute a distance from one Pozyx to another. As there are
three distances to compute, we have a 300 ms duration. The
results must furthermore be sent to the Tomcat Web server,
and we have a RTT close to 500 ms to communicate
between the distant user and the robot.

Figure 7. The user interface map

The RTT is also used on the robot. When the RTT

increases, the robot automatically reduces its speed, or
stops, or goes to a fallback position. Thus, if the robot does
not receive commands from the Tomcat Web server, it
stops.

B. Making the robot move
To make the robot move, the distant user must indicate a

destination position on the map by clicking once or more. In
Figure 7, there is an orange stroke that can be split into three
segments. To draw such a stroke, the distant user must click
three times. The last click corresponds to the desired robot
destination.

Figure 8. Elements of the user interface

To make the robot reach that destination, the user

interface will automatically send a set of commands to the
robot. The three segments will be processed one by one, as
follows:

● Computation of the direction of the segment
(almost north for the first segment in Figure 7)

● Alignment of the robot in that direction
● Computation of the segment length
● Sending a command to the robot to make it move

by the desired distance in the current direction
● Stopping the robot for two seconds to have a better

robot position estimation
● Verification of the current position of the robot and

adjustment (adjustment can be automatic or
performed by the distant user)

We finally obtain a system that allows semi-automatic
robot remote control. In addition to the map, the distant
user has a control panel to monitor the robot (Figure 8).

The current user interface is experimental. It shows the
distances measured from the Pozyxs (P1R, P2R, and P3R),
the Round Trip Time (417 ms in Figure 8), the position of
the robot on the orthogonal axis defined by P1, P2 and P3
(1.32 m from P1 on the X-axis defined by P1-P2, 0.29 m
from P1 on the Y-axis defined by P1-P3).

The user interface also shows the heading of the robot in
degrees (8 degrees, almost north, in Figure 8), and also the
unused pitch and roll values. The distance from the closest
obstacle to the robot is also shown (0.97 m in Figure 8).
There is also a set of buttons to define a new robot
destination and make the robot move.

In the next section, we will show the results and review
the criteria exposed in the introduction.

IV. RESULTS

A. The total cost
In the introduction, we said that the total cost should not

exceed €500. The mechanical base costs about €100, the
Lidar-lite about €150 [18], the compass about €30 [9], and
the webcam about €100 including Raspberry PI 2 (Figure
9). We reach a maximum €500 total cost, Pozyx excluded.

One Pozyx is about €150 [11] and we need at least five.
However, we think that it is not a problem. The very first
Pozyxs were sold by the end of 2015 and the price will
probably fall. The Decawave DW1000 chip used on the
Pozyx module costs about one euro. The DWM1000
version that includes an antenna is now sold per unit for
€30. We can expect UWB boards to be much cheaper in the
near future. If a €50 UWB board was available, the cost
criteria would be almost met. In fact that already exists.

Figure 9. The experimental robot

B. Performance of the external network
We have been testing Web performance for a decade.

Tests have been done from Brest (France) to Auckland
(New-Zealand). It is the longest distance possible in the
world. Results are shown in Figure 10.

The top diagram shows the measures taken in 2005
overs two weeks (horizontal axis in Figure 10). We have
measured the Round Trip Time (RTT) between two
computers, one located at the University of Brest (France)

the other at the University of Auckland (NZ). We have
obtained values from 495 to 1093 ms (vertical axis in top
diagram in Figure 10). The average RTT is 768 ms. Exactly
ten years later, the average RTT is 415 ms and most values
are close to this average (bottom diagram in Figure 10). The
minimum was 295 ms. The measures were performed
between one Wi-Fi connected computer, located in a hotel
in Auckland (NZ), and another computer located at the
University of Brest (France).

This means that the Web can be used for remote control
all over the world. However, we still have numerous RTT
values greater than 500 ms. A RTT prediction system would
be of great interest.

In fact, the problem comes from the UWB devices. The
positioning process is very slow because communication
between a Pozyx and an Arduino UNO is slow. One reason
seems to be the use of the I2C Arduino bus. The Decawave
chip on the Pozyx board uses the SPI bus (Serial Peripheral
Interface Bus). The SPI bus must be converted to an I2C
bus. Faster Arduinos or equivalent could improve
communications. Direct connections to the Decawave chip
by using the SPI bus could also produce improvements.
That remains to be tested.

C. Security of the system
The security of the system is that of a distant user

communicating with a remote Tomcat Web server through
the encrypted HTTP protocol.

D. Security of the persons and resilience
The robot is able to detect any problem on the network

and stop if required. Its low speed should make it safe for
people. Experiments have shown the positioning system is
accurate in the range between 30 and 50 cm. Perfect
positioning is not available but it seems sufficient in a
current AAL environment. The main remaining problem is
door crossing. A better use of the Lidar could be the
solution.

E. User interface
On the user interface, we can follow the robot on a map.

As first experiments have shown that the Pozyx positioning
system seems to be reliable, we have a control system based
on standard components, such as OpenStreetMap. The time
required to configure the system and make it work is very
short.

F. Positioning
Even if the 30-50 cm obtained precision does not allow

to make the robot go everywhere in house, it allows the
robot to follow predefined paths. These paths must only be
carefully chosen because the Pozyx signal may be easily

Figure 10. Web performance 2005-2015

stopped. The signal is very weak (about -40 dBm) and has
shown to be very sensitive to metal obstacles, even if they
are small.

V. CONCLUSION

The aim of this paper was to present a mobile home
robot that could be helpful for old and/or dependent persons,
and easily used by caregivers or relatives. Proposing a low
cost solution, using high tech components, promoting
simplicity were some of the key ideas that conducted this
project.

This has been achieved by the use of a positioning
system based on UWB Pozyx modules. Combined to a map
in the user interface, it seems to be a promising technique.

However, the cost of the UWB components remains
high, and the inaccuracy significantly exceeds 1 or 2cm.
Even if the cost of an UWB component is now less than
€20, it can be estimated that at least four UWB components
will be required in each room. A better use of the Lidar,
combined with a small number of UWB components, should
be experimented to decrease the cost, and increase the ease
of installation.

REFERENCES
[1] Y. Autret, J. Vareille, D. Espes, V. Marc and P. Le Parc,

“Towards Remote Control of Mobile Robots to Help
Dependent People,” The Eleventh International Conference
on Mobile Ubiquitous Computing Systems Services and
Technologies, Nov. 2017, Barcelona, Spain, UBICOMM
2017, pp. 129-136.

[2] Nikola Tesla. [Online]. Available from:
https://en.wikipedia.org/wiki/Nikola_Tesla 2017.07.03

[3] K. Taylor and J. Trevelyan, “A telerobot on the world wide
web,” 1995 National Conference of the Australian Robot
Association, 1995 July 5-7.

[4] “Robots With Their Heads in the Clouds,“ IEEE Spectrum,
March 2011.

[5] K. Caine, S. Sabanovic and M. Carter, “The effect of
monitoring by cameras and robots on the privacy enhancing
behaviors of older adults,” 7th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), IEEE, Mar.
2012, pp. 343-350.

[6] Lidar. [Online]. Available from:
https://en.wikipedia.org/wiki/Lidar 2018.07.03

[7] Why Romotive shut down. [Online]. Available from:
http://www.simplebotics.com/2016/02/the-rise-and-fall-of-rob
ot-startup-romotive.html 2018.07.03

[8] F. De Natale and S. Pupolin, “Multimedia Communications,“
Springer Science & Business Media, 2012.

[9] CMPS11 - Tilt Compensated Compass Module. [Online].
Available from:
https://www.robot-electronics.co.uk/htm/cmps11doc.htm
2018.07.03

[10] U. Mengali, “Receiver architectures and ranging algorithms
for UWB sensor networks,” 2012. [Online]. Available from:
http://www.iet.unipi.it/dottinformazione/Formazione/OffForm
2011/Mengali/SoloTesto.html 2018.07.03

[11] Pozyx. [Online]. Available from: https://www.pozyx.io
2018.07.03

[12] D. Espes, A. Daher, Y. Autret, E. Radoi, and P. Le Parc,
“Ultra-wideband positioning for assistance robots for
elderly,” 10th IASTED (SPPRA 2013), Feb. 2013, Austria.

[13] OpenStreetMap. [Online]. Available from:
https://en.wikipedia.org/wiki/OpenStreetMap 2018.07.03

[14] OpenLayers. [Online]. Available from: https://openlayers.org
2018.07.03

[15] Javascript. [Online]. Available from:
https://en.wikipedia.org/wiki/JavaScript 2018.07.03

[16] Ajax. [Online]. Available from:
https://en.wikipedia.org/wiki/Ajax_(programming)
2018.07.03

[17] jQuery. [Online]. Available from: http://jquery.com
2018.07.03

[18] LIDAR-Lite V3. [Online]. Available from:
https://www.sparkfun.com/products/14032 2018.07.03

