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Abstract : 
 
Anticipating fisher behaviour is necessary for successful fisheries management. Of the different 
concepts that have been developed to understand individual fisher behaviour, random utility models 
(RUMs) have attracted considerable attention in the past three decades, and more particularly so since 
the 2000s. This study aimed at summarizing and analysing the information gathered from RUMs used 
during the last three decades around the globe. A methodology has been developed to standardize 
information across different studies and compare RUM results. The studies selected focused on fishing 
effort allocation. Six types of fisher behaviour drivers were considered: the presence of other vessels in 
the same fishing area, tradition, expected revenue, species targeting, costs, and risk-taking. Analyses 
were performed using three separate linear modelling approaches to assess the extent to which these 
different drivers impacted fisher behaviour in three fleet types: fleets fishing for demersal species using 
active gears, fleets fishing for demersal species using passive gears and fleets fishing for pelagic 
species. Fishers are attracted by higher expected revenue, tradition, species targeting and presence of 
others, but avoid choices involving large costs. Results also suggest that fishers fishing for demersal 
species using active gears are generally more influenced by past seasonal (long-term) patterns than by 
the most recent (short-term) information. Finally, the comparison of expected revenue with other fisher 
behaviour drivers highlights that demersal fishing vessels are risk-averse and that tradition and species 
targeting influence fisher decisions more than expected revenue. 
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Introduction 

There has been an increasing societal and public demand from governments, industries and non-

governmental organizations to provide sound and integrated scientific support for ecosystem-based 

management (EBM) (Arkema et al. 2006; Browman and Stergiou 2004; Fulton et al. 2014; Garcia and 

Cochrane 2005). The concept of Ecosystem Approach to Fisheries (EAF) or Ecosystem Approach to 

Fisheries Management (EAFM) was adopted to account more explicitly for the interdependence 

between human and environmental considerations, therefore to consider the environmental impacts 

of fisheries as well as the impacts of the environment on fisheries (Garcia et al. 2003; Pomeroy et al. 

2014; Ward et al. 2002). A prerequisite to the effective application of the EAFM is to better 

understand the different components of the ecosystem (Degnbol et al. 2006; Fulton et al. 2014). 

Fishers are key components of marine ecosystems: understanding and anticipating their behaviour is 

particularly important when implementing management regulations (Hilborn 2007). For example, the 

introduction of spatial closures can result in redistributions of fishing effort, with adverse and 

unforeseen knock-on effects on other ecosystem components  (Fulton et al. 2011; Hilborn 2007; 

Leslie and McLeod 2007). 

Yet, the adaptability of fishers to regulations and environmental variability has often been 

disregarded, leading to fisheries management failures (Branch et al. 2006; Daw and Gray 2005; 

Fulton et al. 2011; Hardin 1968). Different studies of stock collapses, e.g. Caspian Sea anchovy 

(Daskalov and Mamedov 2007), Californian sardine (Radovich 1982), North Sea herring (Dickey-Collas 

et al. 2010), and North Atlantic cod (Poulsen et al. 2006; Walters and Maguire 1996), suggest that 

while recruitment failures, competition with other species (Hjermann et al. 2013), and exceptional 

environmental conditions (Beaugrand et al. 2003) have caused fish stock depletion, a lack of 

understanding of fisher behaviour and their reactivity to complex management regimes is also a key 

cause of management failures (Allen and McGlade 1987; Degnbol et al. 2006; Hilborn 2007; Peterson 

2000). 
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The mechanisms of change in the behaviour of human agents have been widely studied using a range 

of approaches, one of the most dominant being discrete-choice modelling (McFadden 1974; Greene 

2003; Train 2003). Discrete-choice models building in a random utility function, also known as 

Random Utility Models (RUMs), have been applied in various disciplines including preferences of 

households and consumers (Bougherara et al. 2009; Gracia and de Magistris 2008; Zhang et al. 2009), 

school choice (Cohen-Zada and Sander 2008; Glick and Sahn 2006), or travelling options (Ettema et 

al. 2007; McFadden 1974). A founding principle of RUMs is that an agent facing multiple choices 

assigns a utility to each alternative, and then chooses that with the greatest utility.  RUMs have also 

increasingly been applied to fisheries, to analyse how fishers choose their fishing grounds (Hutton et 

al. 2004; Tidd et al. 2012; Tidd et al. 2015; Wilen et al. 2002), their target species (Marchal et al. 

2014; Pradhan and Leung 2004; Vermard et al. 2008), their fishing gear (Andersen et al. 2012; Eggert 

and Tveteras 2004), or a combination of these (Holland and Sutinen 1999; Girardin et al. 2015; 

Marchal et al. 2009). Many other fleet dynamics studies have been conducted using RUMs, see van 

Putten et al. (2012) for a qualitative review published in this journal. These studies have investigated 

the relative weights of different fisher behaviour drivers, hereby simply referred to as “drivers”, for a 

variety of countries, fishing fleets, fishing periods, and underlying model structures. The objective of 

this study is to review and compare, in a standardized fashion, the evidence drawn from RUM-based 

fleet dynamics investigations which have been conducted in the past three decades. In these studies, 

the dynamics of effort allocation are reflected by different types of discrete choices, including the 

decision to fish or not. If fishers decide to go fishing, they have to decide what type of métier (i.e., 

combination of fishing ground, fishing gear, and/or target species) to choose from. In our analysis, 

the main key drivers are highlighted, and we investigate whether any common patterns can be 

detected across case studies. Particular attention is paid to how expected revenue influences fisher 

behaviour compared to other possible drivers (e.g., traditions, target species), and also whether 

fishers are more likely to make decisions based on short-term (daily to monthly) rather than longer-

term (seasonal) information. To our knowledge, no comparison of the explanatory variables driving 
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fisher behaviour has ever been performed before. Although some authors have compared the 

outputs derived from different RUMs (Greene 2003; Greene and Hensher 2003; Koppelman and Wen 

1998; McFadden 1974; Swait and Louviere 1993; Train 2003; Wen and Koppelman 2001), these 

comparisons were performed either using a single model structure (to compare results across 

different fleets), or using a single set of input data (to compare model differences). 

 

Materials and Methods 

Materials 

The data used for this study come from a selection of fleet dynamics studies reviewed by van Putten 

et al. (2012). These authors present an overview of different models and theories applied over the 

past three decades to explain and forecast fishing behaviour. In addition, the more recent fisheries 

science and economics literature were surveyed, to include fleet dynamics studies that were 

conducted since 2010, and hence were not considered by van Putten et al. (2012). This search for 

additional references was based on several criteria. First, the publications selected focused on fishing 

effort allocation in terms of métiers. In some studies, the decision to fish or not was also part of the 

choice set (Table 1). Only papers highlighting the factors driving fisher decision-making were 

selected. Our research was further constrained to analyses based on discrete-choice models, mainly 

RUMs (Greene 2003). Finally, only papers where the entire model output was presented (i.e., 

parameter estimates and standard deviations associated to all explanatory variables) were retained. 

Overall, 26 papers were included in our selection (Table 1). These studies relate mainly to fishing 

fleets operating in the EU, North America and Oceania, using data collected between 1976 and 2010. 

Across all 26 papers, a total of 61 case studies were available, with a variety of models being fitted to 

data available for various fishing fleets. The most commonly used RUM techniques were the 

conditional (Girardin et al. 2015; Hutton et al. 2004; Marchal et al. 2014; Vermard et al. 2008) and 

multinomial (Berman 2007; Dupont 1993; Maravelias et al. 2014; Mistiaen and Strand 2000; Prellezo 

et al. 2009) logit models, nested logit models (Andersen et al. 2012; Bucaram et al. 2013; Campbell 
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and Hand 1999; Curtis and McConnell 2004; Eales and Wilen 1986; Holland and Sutinen 1999, 

Holland and Sutinen 2000; Smith 2002; Smith and Wilen 2003; Wilen et al. 2002) and the mixed logit 

model (Eggert and Tveteras 2004; Marchal et al. 2014; Pradhan and Leung 2004; Tidd et al. 2012). 

The nested logit and the mixed logit models were often used to relax the non-IIA (independence of 

irrelevant alternative choices property) assumption associated with preference heterogeneity across 

fleets (Greene 2003; Train 2003). For the purpose of this study, the different fleets examined in the 

26 articles were grouped into three main categories: fleets fishing for demersal species using active 

gears (shrimp, demersal, otter and beam trawlers; dredgers; and demersal seiners), fleets fishing for 

demersal species using passive gears (pots; scuba diving; gill and trammel netters) and fleets fishing 

for pelagic species (tuna purse seiners; seiners; pelagic trawlers and longliners) (Table 1). 

Standardizing fisher behaviour drivers 

We first classified the explanatory variables that describe fisher behaviour in the models being 

reviewed into a small number of categories (Tables 1 and 2). The first category is their experience, 

otherwise termed habits or tradition. Tradition is usually included in the utility function as past effort 

patterns (Holland and Sutinen 1999; Tidd et al. 2012; Vermard et al. 2008). The second category is 

economic opportunity. Into this revenue category were gathered variables such as past gross 

revenue or value per unit effort. The third category consists of fishing costs, which negatively 

contribute to overall fishing profits. Fishing costs were introduced through proxies including fuel 

price and/or costs, time spent at sea or distance from harbour (Berman 2007; Bucaram et al. 2013). 

Fishers’ attitude towards risk has also been considered as driving their decisions. Fishers have often 

been categorized in two categories: risk-averse or risk-seeking (Andersen 1982; Branch et al. 2006; 

Dupont 1993; Hilborn and Ledbetter 1979; Mistiaen and Strand 2000). Risk-averse fishers would be 

expected to choose stable alternatives, while risk-seekers would select more variable options 

provided these are associated with higher expected returns. Risk-seeking behaviour, however, 

appears to be rare within fisheries and may be confounded by poorly informed decisions  (Branch et 

al. 2006). By contrast risk-aversion is considered to be more widely spread across fisheries, as fishers 
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seem to seek areas likely to generate a stable revenue (Cinar et al. 2013; Dowling et al. 2015; Dupont 

1993; Hilborn and Ledbetter 1979; Ran et al. 2011). Fisher perception of risk has usually been 

represented by the variance of past revenues, when fishing in a given area or by using a given gear 

(Holland and Sutinen 1999; Holland and Sutinen 2000; Pradhan and Leung 2004), and it has often 

been incorporated using mixed logit models (Hensher and Greene 2003; Ran et al. 2011; Tidd et al. 

2015). In addition to their own experience, fishers can gain information by scrutinizing the activity of 

other fishers, and then moving into areas where fishing vessels are most concentrated (Vignaux 

1996). On the other hand, the presence of too many vessels or other activities (maritime traffic, 

aggregate extraction, wind farms) could result in congestion (Curtis and Hicks 2000; Marchal et al. 

2014; Poos and Rijnsdorp 2007; Poos et al. 2010). The presence of other agents in fishing areas is 

usually approximated by a metric representing their activity (e.g., total fishing effort or number of 

vessels in the case of fisheries). Finally, the last group of drivers considered is species targeting, 

which gathers variables referring to price, catch, or Catch Per Unit of Effort (CPUE) for a particular 

species. Indeed, fishers may target specific species assemblages they have a market for or, on the 

contrary, avoid them as a result of management plans or quota availability.  

In addition to the categorization of fisher behaviour drivers into the six groups summarized above, 

some of these groups were also discriminated based on whether fishers use long-term (seasonal) 

information made available during the previous year, or short-term knowledge from the previous 

month, day or fishing trip (Holland and Sutinen 2000; Tidd et al. 2012). In our review, this time-scale 

differentiation has been applied to the tradition variable group, as a result of data availability. 

Standardizing model outputs 

Comparing the outcomes of 61 RUM-based studies (s) of fleet dynamics, using different data inputs, 

model structures and explanatory variables, implies several challenges. 

First, a common standard score needs to be found to compare the respective effects of the different 

factors potentially influencing fisher behaviour across all models. For this, the value of the test (t 

value or z value) used to assess the significance of the RUM estimated coefficients, was selected 
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(e.g., Holland and Sutinen 1999). This is calculated as the parameter estimate value (μ) divided by 

standard deviation (σ). In the reviewed modelling studies (s), more than one explanatory variable (v) 

is generally associated to a single drivers group (g). Only the explanatory variables with a significant 

effect (p-value < 0.05) on fisher behaviour were considered. In cases where multiple significant 

variables (v) belonging to the same group of drivers existed, the variable (v*) for which the ratio 

between estimated mean (μ) and standard deviation (σ) of the coefficient was highest was assigned 

to a driver group (g) in each study (s) (Table 2). The score used for subsequent analyses may be 

formulated as equation (1): 

 

Scores,m,f,g = Maxv∈g(|μs,m,f,g,v / σ s,m,f,g,v|) = |μ s,m,f,g,v* / σ s,m,f,g,v*|     (1)  

 

Where m, f and g refer to the modelling method (conditional logit, mixed logit, multinomial logit, 

nested logit), fleet category (active demersal, passive demersal, pelagic) and any drivers group 

(revenue, vessel density, cost, risk, targeting, tradition) considered in study s, respectively. 

Analysis design 

Three analyses were performed to address three questions concerning fisher behaviour. The first 

question is whether fleet dynamics drivers consistently have the same positive (attracting) or 

negative (repulsing) effects on fishers choosing a given alternative. Second, short-term and long term 

influences on fisher behaviour were investigated. Finally, the importance of different drivers was 

estimated relative to expected revenue across the different RUM studies. The reason for choosing 

expected revenue as the reference driver is that it is investigated in all fleet dynamics studies under 

consideration (Table 1), and also since it is used in many studies to calculate welfare effects. 

Attraction or repulsion? 

We analysed the sign of the estimated coefficient value associated to each explanatory variable (v*) 

selected after calculating the score (μs,m,f,g,v* , see equation (1)). This was based on the comparison, 
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for each driver group g, of the relative proportion of negative (  
 ) and positive (  

 ) coefficient 

values of μ, estimated across all studies, using a Chi-square test (equations 2a and 2b): 

 

  
  

∑    (           ) 

∑   (           ) 
          (2a) 

  
  

∑    (       ) 

∑   (           ) 
     

          (2b) 

Where          are respectively the subsets of positive and negative values belonging to the set of 

real numbers,  , and    ( ) is the indicator function defined as: 

{
  ( )        ∈  

  ( )          
 

 

When   
  is significantly greater than 0.5 (p-value < 0.05), fishers tend on average to select options 

where explanatory variable v* of driver group g has a high value, which is hereby referred to an 

“attraction” effect. In contrast, fishers make average choices associated with a low v* value when   
  

is significantly lower than 0.5 (“repulsion” effect). 

This analysis was carried out on the full data set (Table 1), but also for each fleet (active demersal, 

passive demersal and pelagic) separately if there were enough observations to do so, resulting in the 

calculation of     
  and     

 . 

Short-term or long-term decisions? 

We analysed whether fishers are more influenced by recent, or short-term, information (i.e. from 

previous month, day, or trip) or by long-term information (i.e., from previous year). In principle, 

short-term and long-term information could be considered for all drivers groups. However, as a 

result of data availability, only tradition (past effort) was considered to compare the respective 

influence of long-term and short-term information. This analysis was carried out for passive and 

active demersal fleets only, because the effects of short-term and long-term drivers were not tested 

simultaneously in studies of pelagic fleets. 
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First, we calculated Scores,m,f,g for f ∈ {“passive fleet”,”active demersal fleet”} and for g = ”tradition” 

similar to Section 2.3. However, instead of applying the “Max” function of Equation (1) to all variables 

v belonging to g, we applied it to two subsets of g consisting of short-term drivers (g_st), or long-

term drivers (g_lt), resulting in Scores,m,f,g_st and Scores,m,f,g_lt. The relative influence for each fleet 

type, long or short-term, was then investigated by analysing the logarithm of the ratio (Ratio1s,m,f) 

between Scores,m,f,g_st and Scores,m,f,g_lt (equation 3a): 

 

Ratio1s,m,f = Ratio1s,m,f,g=tradition = Scores,m,f,g_st / Scores,m,f,g_lt     (3a) 

 

We then evaluated the overall influence of long-term versus short-term information on fisher 

decisions by analysing Ratio1 with a Generalized Linear Model (GLM), applied to the tradition driver 

group using Equation (3b) (Table 3). 

 

Log(Ratio1s,m,f) ~ Fleetf + Methodm + Ɛs,m,f with Ɛ ~ N(0,²) and ² the variance of Ɛ  (3b) 

 

Methodm represents the effect of model type, as used in study s. This factor has been added to the 

GLM to separate the potential impacts of the method from the response of the fleet type Fleetf. The 

normality hypothesis was tested with the Shapiro Wilk test and q-q plots.  

What is the relative influence of expected gross revenue and of other drivers on fisher behaviour? 

Due to varying model complexities and structures, the scores of the variables belonging to the same 

drivers group could not be compared directly across the different case studies. To make the drivers 

influence comparable across case studies, we calculated the ratios of the scores among variables 

belonging to two different groups within the same model, instead of considering the absolute score 

values. Here, the relative importance of revenue was compared to other key drivers selected in 

Section 2.2. It may be assumed that commercial fishers act as economic agents, such that their 

decisions aim to maximize their profit. As economic agents, they can be expected to seek strategies 
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that improve their gross revenue while also taking into account the expected costs of fishing and a 

number of other drivers that have also been shown to influence decision-making. However, detailed 

costs data are difficult to collect and expected profit is often approximated by gross revenue and/or 

the value per unit of effort (VPUE) (Marchal et al. 2007; Tidd et al. 2015; Vermard et al. 2008). The 

importance of the other drivers (fishing costs, attitude towards risk, habits, targeting, and density of 

other vessels) was tested relative to expected gross revenue. Two different questions were 

considered, on the one hand (i), how important are the different drivers, overall, compared to 

expected revenue and, on the other hand (ii), how the relative importance of the different drivers in 

predicting behaviour could differ across fishing fleets. Both questions were addressed using GLM 

analyses of scores ratios, using a methodology similar to that presented in Section 2.4.2. For each 

model, fleet and driver group other than revenue, we thus calculated the ratio (Ratio2s,m,f,g) of the 

score of each alternative driver over the score of revenue (Equation 4a): 

 

Ratio2s,m,f,g = Score s,m,f,g≠revenue / Score s,m,f,g=revenue       (4a) 

 

In relation to question (i), we carried out a GLM analysis of Ratio2 combining all fleet categories 

together, to separate out the effects of the modelling method and of the different driver groups 

(Groupsg) except revenue (g ≠ revenue), equation (4b): 

 

Log(Ratio2s,m,f,g) ~ Groupsg + Methodm + Ɛs,m,f,g , with Ɛ ~ N(0, ²) and ² the variance of Ɛ (4b) 

 

To address (ii), we conducted five GLM analyses of Ratio2, one for each non-revenue drivers group 

separately, to evaluate the respective effects of fleet categories and modelling methods (equation 

4c): 

 

Log(Ratio2s,m,f,g) ~ Fleetf + Methodm + Ɛs,m,f,g, with Ɛ ~ N(0, ²) and ² the variance of Ɛ  (4c) 
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The residuals from both models were tested for normality, using Shapiro Wilk test and q-q plots. 

Not all variable types were present simultaneously in each paper reviewed. Due to this lack of 

consistency in available information, the analysis of the ratio between the effect of one driver group 

and that of revenue was only performed when both were investigated in the same paper. As a result, 

the set of case studies considered varied depending on which driver was analysed (Table 3). 

 

Results 

Attraction or repulsion? 

The proportions of signs of the coefficients for each fleet and driver group are shown in figure 1. As a 

result of data availability, the chi-square analysis of the proportion of positive coefficients estimated 

for different explanatory variables could be performed only for demersal active fleets and for all 

fleets combined (Table 4). For the active demersal fleet, the analysis could be performed for all driver 

groups, except risk. For the passive demersal fleet, the analysis could only be carried out with 

expected revenues. There was not sufficient data to conduct sign analysis with the pelagic fleet 

category separately. All of the proportions tested are significantly different from 0.5 except for the 

risk-taking group (Table 4). 

For the entire fleet and the active demersal fleet specifically, the effects of vessel density, revenue, 

species targeting and tradition are mainly positive (“attraction” group), while costs have an overall 

negative effect (“repulsion” group) (Figure 1). Expected revenue also has a positive effect for passive 

demersal fleets. Risk-taking and risk-averse attitudes were found in similar proportions across the 

different studies and fleets under investigation. 

Short-term or long-term decisions? 

Each of the three models explains 45% of the variability in the data. More than half of explanatory 

power stems from the fleet type, and the remaining part by the RUM Method being applied (Table 

5). Both factors are found to have statistical influence (p<0.05). The Shapiro-test and visual 
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inspection of the Q-Q plot both suggest that residuals are normally distributed. Active demersal 

fleets seem to be more influenced by previous year knowledge and seasonal cycles than by more 

recent information. In contrast, passive demersal fleets seem to be more influenced by information 

on the most recent circumstances of the fishery. 

What is the relative influence of expected gross revenue and of other drivers on fisher behaviour? 

We first investigated the relative importance of expected revenue compared to other drivers, for all 

fleets combined (Table 6). 50% of the variability is captured by the model, most of which being 

explained by the drivers (and 1% by the RUM method used) (Table 6). The residuals are normally 

distributed. Overall, revenue seems more influential than risk-taking, but it is less important than 

species-targeting and tradition (Table 6). Revenue is given a similar weight as fishing costs and the 

density of other vessels in the prediction of choices.  

We then investigated whether fishers from different fleets respond to different drivers in the same 

way (Table 7). We obtain an adjusted R² above 50% for models 2-5, while model 1 has a lower 

adjusted R² of 31% (Table 7). Model 2’s adjusted R-square is close to 100% due to few observations. 

Therefore, the influence on fishers’ behaviour of risk-taking relative to expected revenue, as derived 

from model 2, is considered highly uncertain. The main part of the variability is explained by the fleet 

type except for model 5, and the residuals are normally distributed. The Method factor has not been 

considered in model 3, because species targeting and expected revenue are investigated 

simultaneously only in conditional logit approaches.  

To help interpret model outcomes, we show the estimated coefficients drawn from each fleet type 

within a pentagon-shaped radar plot (Figure 2). The centre of the polygon is associated to the 

revenue group, while each of its five summits is associated clockwise to one of the other driver 

groups (tradition, vessel density, risk-taking, costs, species targeting). For each non-revenue driver 

(g), the fleet effect is represented by three dots (one for each fleet type) located on the segment 

joining the pentagon’s centre to its g-specific edge. The closer a fleet’s dot to the edge, the higher 

the importance of the driver relative to revenue for the fleet being considered. Conversely, the closer 
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it is to the centre and the larger the effect of revenue relative to the non-revenue driver. Compared 

to pelagic fleets, demersal fleets are more influenced by tradition and species targeting than by 

available revenue information. This is particularly true for passive demersal fleets, for which the 

coefficient estimates associated to these two drivers are highest. However, in comparison to 

pelagics, demersal fleets are more influenced by available information on expected revenue than by 

the density of other vessels and risk-taking. No clear differentiation can be observed between the 

effects of costs relative to revenue across fleets.  

 

Discussion 

A variety of explanatory variables that often differed across case studies were collected and were 

subsequently classified into six common groups of fisher behaviour drivers (fishing costs, attitude 

towards risk, expected gross revenue, habits, targeting, and density of other vessels) (Table 2). To 

accommodate the complexity of each model and the presence of multiple explanatory variables per 

driver group, only a single explanatory variable per driver was retained in each model. Some 

assumptions were made to standardize the various inputs and outputs of RUMs, and to enable the 

comparison of outputs derived from different model structures. Still, consistent patterns emerge 

from the analyses regarding the relative influence of key drivers on fishing behaviour. 

Attraction or repulsion? 

As a result of data availability, the analysis of the sign of the drivers’ effects focused only on the 

entire data set for all fleets and on the active demersal fleet considered separately. The drivers could 

be categorized into “attraction” and “repulsion” groups. As shown in several studies (Holland and 

Sutinen 1999; Marchal et al. 2009; Pradhan and Leung 2004; Vermard et al. 2008), fishers tend to 

make decisions that are in accordance with their habits and from which they expect a greater 

revenue. Our results bear out these conclusions. 

Risk-taking is generally approximated by the influence of variability of past revenues on individual 

behaviour (Curtis and McConnell 2004; Larson et al. 1999). Fishers are generally seen to prefer 
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minimizing risk by looking for alternatives with a more stable expected revenue (Hilborn and 

Ledbetter 1979; Andersen 1982; Bockstael and Opaluch 1983; Dupont 1993). However, there may be 

instances where fishers will visit volatile areas and operate uncertain métiers (Mistiaen and Strand 

2000). In particular, when harvested stocks are abundant and in good condition, some skippers could 

be inclined to select more risky options with the hope of earning outstanding returns (van Putten et 

al. 2013). In this study, fishers’ attitudes towards risk (risk-averse or risk-taking) could not be fully 

evidenced due to data limitations. Still, there is evidence that the behaviour of fishers operating in 

pelagic fleets may be more risk-prone than that observed in demersal fleets (Campbell and Hand 

1999; Mistiaen and Strand 2000), possibly due to the large natural variability of the resources they 

harvest and the nature of the environment in which they operate (e.g., it may be less risky to deploy 

fishing gear in the water column than on unknown and potentially rocky grounds). 

In fisheries, both resource and spatial competitions occur (Gillis 2003; Marchal et al. 2006; Salthaug 

et Aanes 2003; Samples 1989). In particular, fishers compete locally for the resource when, in the 

context of  stock depletion, the harvest of one fleet or boat affects the amount of fish left for others 

(Gillis and Peterman 1998; Rijnsdorp et al. 2000). Spatial competition (or congestion) occurs when 

vessel crowding reduces fishing efficiency (Gillis 2003; Pet-Soede et al. 2001; Poos and Rijnsdorp 

2007; Samples 1989). However, in the papers that were reviewed, the density of other vessels was 

generally seen by fishers as a source of information rather than a case for spatial competition (e.g., 

Vignaux 1996). This concurs with the suggestion by Campbell and Hand (1999) that it is common for 

vessels to share information with others or to track other vessels, notably using the AIS (Automatic 

Identification System) on-board. The few cases where vessel density had a repulsing (congestion or 

competition) effect occurred when competing activities were included, such as maritime traffic, 

aggregate extraction (Marchal et al. 2014) or other fleet types (Hilborn and Ledbetter 1979; Marchal 

et al. 2014). 
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Is fisher behaviour more influenced by seasonal or immediate knowledge? 

As already mentioned, our results confirm that fishers have a tendency to follow past exploitation 

patterns (Bockstael and Opaluch 1983; Holland and Sutinen 1999). The active demersal fleets seem 

to favour seasonal over immediate information. By contrast, the passive demersal fleets adhere to 

their most recent, rather than to their previous year fishing effort distribution. This might reflect 

that, compared to active demersal fleets, passive demersal fleets are often composed of small 

polyvalent multi-gear vessels, with a more limited choice-set and a more variable year-to-year fishing 

activity. 

Which drivers for which fleets? 

The relative importance of fisher behaviour drivers differs substantially between demersal and 

pelagic fleets, even if the conclusions drawn from our analyses should be treated with caution due to 

the limited amount of fleet dynamics studies having investigated pelagic fisheries. 

As expected (Wilson 1990), tradition appeared to be one of the main drivers of fisher behaviour. 

Before elaborating on this finding, it is perhaps necessary to stress that in this and other fleet 

dynamics studies, “tradition” really means “repeating past behaviour”. This could reflect fishers’ 

knowledge and previous experience, or have a cultural connotation, when fishers persistently visit 

the same fishing grounds because everyone in their community they belong to has always done so, 

or evidence some economic anticipation, when changing habits comes at a cost in terms of buying a 

new vessel, new equipment on-board, or new gears (Holland and Sutinen 2000; Marchal et al. 2014; 

Valcic 2009; van Putten et al. 2012). However, what is referred to as tradition in fleet dynamics 

studies also captures the effects of other drivers, which are poorly observable. As highlighted in the 

review of van Putten et al. (2012), the large explanatory power of tradition could thus be linked to a 

substantial overlap of this group of drivers with expected revenue. Fishers rarely discover new fishing 

grounds and fish on fishing grounds which have proven profitable for long periods of time. More 

generally, the proxies used to reflect tradition and the way they are implemented in fisheries RUM 

studies, often make it difficult to discriminate between pure habit (state dependence) and 
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preference heterogeneity (variation across individuals in the utility that they expect from choosing a 

particular option) (Smith 2005). State dependence means that past experience does have a genuine 

influence on fishers’ behaviour. Preference heterogeneity, however, implies that past experience 

seems to affect behaviour only since it is a proxy for temporally persistent, but unobservable, 

variables. 

 Despite these caveats, our findings suggest contrasted response patterns across the fleets being 

investigated, which bear out general fisheries understanding. Thus, compared to active fleets, 

passive fleets seem to be relatively more influenced by tradition. This observation might be due to 

vessels rigged with passive gears being generally small and therefore constrained to fish on a more 

limited spatial extent (closer to the coast) compared to active fleets. Also, passive vessels may be 

deployed at a particular time of the year or tide, and in a particular locality to target migrating 

species (e.g. gill nets). Based on the results of this study, pelagic fleets appear to be less driven by 

traditions than active or passive demersal fleets. This might be because pelagic fleets tend to target 

patchy and migratory fish, which have a more variable distribution and require exploring greater 

areas than those covered by demersal fleets. 

The importance of species-targeting as a major driver of fisher behaviour, compared to overall 

revenue, bears out evidence from earlier studies (Marchal et al. 2009; Vermard et al. 2008). Indeed, 

some fishers are subject to individually granted single-species landing restrictions (e.g., Total 

Allowable Catches) and also need to land species for which there is a market demand. Those two 

constraints may explain why demersal fleets target species for which they have quota and a market 

channel, rather than fish assemblages of a possibly greater value but which they would not be able to 

sell or even retain on-board. Compared to demersal fleets, pelagic fleets are generally more selective 

and usually target few species. Therefore, the species targeting effect for pelagic fleets is probably 

confounded with that of expected revenue, while it is substantially higher in the case of demersal 

fleets. 
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Compared to demersal fleets, pelagics seem more influenced by risk-taking and information drawn 

from density of other vessels, relatively to expected revenue. Pelagic fleets target fish subject to 

large spatial fluctuations and spatial patchiness (shoaling). So, the greater consideration of risk-taking 

in pelagic fleet may be an important component of their harvesting success, although that could have 

been alleviated in recent years with the increasing use of GPS-tracked FADs and of support vessels, 

planes or helicopters. Moreover, the information gathered from other fishers allows them to reduce 

their searching area and make fishing operations more profitable (Vignaux 1996). In contrast, the 

species targeted by demersal fleets are generally less variable and distributed in a less patchy 

fashion, such that fleets may be able to rely to a greater extent on habitual fishing and expected 

revenue. However, this result should be treated cautiously, given the small number of studies 

focused on pelagic fleets. 

Where to from here? 

As shown in van Putten et al. (2012) and in this study, RUMs and discrete-choice models have 

attracted considerable attention and have indeed proved useful in forecasting fleet dynamics in the 

short term. Some studies have attempted to couple such models with conceptual ecological models, 

to forecast long term ecosystem and fisheries futures (Marchal et al. 2013; Girardin 2015). However, 

RUMs are relatively simple linear and data-driven models, and as such are not expected to capture all 

the complexity of the various processes engaged in fishers’ decision-making, especially when this 

involves contexts beyond historical observation, which limits their capacity to provide long-term 

forecasts. RUMs may thus not be well suited when there are major regulatory or environmental 

changes, and more particularly so when habit variables are strong predictors of fishers’ behaviour, 

hence bringing in an excessive amount of inertia in the system. More conceptual approaches to fleet 

dynamics modelling building on, e.g., Ideal Free Distribution theory (Rijnsdorp et al. 2000; Gillis 

2003), optimal foraging theory (Dorn 2001; Rijnsdorp et al. 2011), game theory (Trisak 2005), vessel 

trajectory analyses (Bertrand et al. 2005; Marchal et al. 2007; Vermard et al. 2010), or Individual-

Based Modelling (Little et al. 2009; Batsleer et al. 2013), could be considered in that context. A 
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follow-up to our study could then be to review, for a variety of case studies, the extent to which 

coupling conceptual fleet dynamics models with existing ecosystem models (see Plaganyi (2007) for a 

review) could improve their long-term forecasting capacities. 

 

Conclusion 

In this review, a methodology was proposed to summarize, standardize and compare quantitative 

information collected in the past three decades on fisher behaviour. Only studies applying discrete-

choice modelling were investigated to highlight the main drivers of fisher behaviour. As expected, 

the main behavioural driver affecting fishing decisions is tradition, with a particular influence of 

seasonal patterns in the case of active demersal fleets. However, species targeting may be as 

influential as tradition in the decision-making process. It is important to note that the relative 

strength of tradition variables in explaining fishers’ behaviour is partly due to difficulties in specifying 

expected revenue or profit accurately for individual fishers, particularly when there is a lot of 

information available to them. More research should thus be dedicated to a better quantification of 

expected revenue/profit and information flow (Abbot and Wilen 2011). Finally, including a larger 

number of pelagic and passive fleet case studies would be necessary to provide a more complete 

picture of the decision-making drivers for both types of fleets. The results also point to a need to 

better understand the reasons for which specific drivers seem to play less important roles than 

would have been expected in particular fisheries. Such an understanding might also contribute to 

improving the quality of information on fleet dynamics that can be used in evaluating alternative 

management strategies for fisheries policy. 
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Tables 

Table 1: References included in the analysis with a descriptive of their case study. Fleets selections 
and drivers groups used in studies are displayed. The number of case studies investigated from each 
reference is displayed. 61 case studies in total have been considered across all 26 references. 

Reference 
Ref. 

# 
Area Period Method Fleet 

Fleet 
categories 

Dependent  
variable 

Drivers 
group 

No. of 
studies 

(Andersen et 
al., 2012) 

1 
Danish North 

Sea 
1997-
2005 

Nested logit 
Gill netters 

>12m 
Passive 
dem. 

Fishing area, 
target 

species 

Revenue, 
Information, 

Risk, 
Tradition 

1 

(Berman, 2007) 2 
Bering Sea 

USA 
1998 

Multinomial 
logit, Poisson 

Demersal 
trawlers 

Active dem. Fishing area 
Revenue, 

Costs 
4 

(Bucaram et al., 
2013) 

3 Galapagos 
2002-
2008 

Nested logit 
Lobster 
fishery 

Passive 
dem. 

Fishing or 
not, fishing 

area  

Revenue, 
Costs 

3 

(Campbell and 
Hand, 1999) 

4 
Western 

Pacific USA 
1988-
1995 

Nested logit 
Tuna Purse 

seiners 
Pelagic Fishing area 

Revenue, 
Tradition, 

Costs 
1 

(Curtis and 
McConnell, 

2004) 
5 Hawaii USA 1997 Nested logit 

Pelagic 
longliners 

Pelagic 
Fishing area, 

target 
species 

Revenue, 
Information, 

Tradition 
1 

(Dupont, 1993) 6 
Canadian 

British 
Columbia 

1982 
Multinomial 

logit 

Seiners, 
gillnetters, 
longliners 

Passive 
dem; 

Pelagic 
Fishing area 

Revenue, 
Risk 

4 

(Eales and 
Wilen, 1986) 

7 
California 

USA 
1976 

Nested logit, 
Logit 

Shrimp 
trawlers 

Active dem. Fishing area 
Revenue, 

Costs 
2 

(Eggert and 
Tveteras, 2004) 

8 
Swedish 

west coast 
1995 Mixed logit 

Demersal 
trawlers 

Active dem. Gear type 
Revenue, 

Risk, 
Tradition 

1 

(Holland and 
Sutinen, 1999, 

2000) 
9; 10 

New England 
USA 

1990-
1993 

Nested logit 
Otter 

trawlers 
Active dem. 

Gear, target 
species, 

Fishing area 

Revenue, 
Information, 

Risk, 
Tradition, 

Costs 

2 

(Hutton et al., 
2004) 

11 
English 

North Sea 
1999-
2000 

Conditional 
logit 

Beam 
trawlers 

Active dem. Fishing area 
Revenue, 
Tradition 

1 

(Larson et al., 
1999) 

12 
Bering Sea, 

Aleutian 
Islands USA 

1991-
1992 

Logit 
Demersal 
trawlers 

Active dem. 
Gear, target 

species 

Revenue, 
Information, 

Risk 
1 

(Maravelias et 
al., 2014) 

13 
Eastern 

Mediterrane
an 

2000-
2004 

Multinomial 
logit 

Purse 
seiners 

Pelagic Fishing area 
Revenue, 

Information, 
Tradition 

1 

(Mistiaen and 
Strand, 2000) 

14 
Gulf and East 

Coast USA 
1996 

Multinomial 
logit 

Pelagic 
longliners 

Pelagic Fishing area 
Revenue, 

Risk 
1 

(Pradhan and 
Leung, 2004) 

15 Hawaii 
1991-
1998 

Mixed logit 
Pelagic 

longliners 
Pelagic 

Gear, target 
species 

Revenue, 
Risk, 

Tradition 
1 

(Prellezo et al., 

2009) 
16 

VI,VII,VIII 

ICES areas 

Spain 

1996-

2002 

Multinomial 

logit 

Demersal 

trawlers 
Active dem. 

Fishing area 

Revenue, 

Risk, 

Tradition, 

Costs 

1 

(Smith and 
Wilen, 2003) 

17 
Northern 
California 

USA 

1988-
1997 

Nested logit 
Urchin 
fishery 

Passive 
dem. 

Fishing or 
not, fishing 

area 

Revenue, 
Costs 

1 

(Smith, 2002) 18 
Northern 
California 

USA 

1988-
1997 

Nested logit 
Urchin 
fishery 

Passive 
dem. 

Fishing or 
not, fishing 

area  

Revenue, 
Risk, Costs 

1 

(Tidd et al., 
2012) 

19 
English 

North Sea 
1997-
2007 

Mixed logit 
Beam 

trawlers 
Active dem. Fishing area 

Revenue, 
Tradition, 

Costs 
9 

(Valcic, 2009) 20 Oregon USA 
1999-
2002 

Heteroscedastic 
Extreme Value 

Demersal 
trawlers 

Active dem. Fishing area 
Revenue, 
Tradition, 

Costs 
1 

(Girardin et al., 
2015) 

21 
Eastern 
English 
Channel 

2007-
2008 

Conditional 
logit 

Demersal 
trawlers, 
dredgers, 

Passive 
dem.; 

Active dem. 

Gear, target 
species, 

fishing area 

Revenue, 
Information, 

Tradition, 
12 
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France netters Targeting 

(Tidd et al., 
2015) 

22 
Eastern 
English 

Channel UK 

2005-
2010 

Mixed logit Dredgers Active dem. Fishing area 

Revenue, 
Information, 

Tradition, 
Costs 

1 

(Marchal et al., 
2014) 

23 

Eastern 
English 
Channel 

Netherland 

2002-
2010 

Mixed logit 
Demersal 

seiners 
Active dem. Fishing area 

Revenue, 
Information, 

Tradition, 
Costs 

1 

(Marchal et al., 
2014) 

24 

German 
Bight, North 

Sea 
Netherland 

2008-
2010 

Conditional 
logit 

Beam 
trawlers 

Active dem. 
Gear, target 

species , 
fishing area 

Revenue, 
Information, 

Tradition, 
Targeting 

8 

(Vermard et al., 
2008) 

25 
Bay of Biscay 

France 
2000-
2004 

Conditional 
logit 

Pelagic 
trawlers 

Pelagic 
Gear, target 

species, 
season 

Revenue, 
Tradition, 
Targeting 

1 

(Wilen et al., 
2002) 

26 
Northern 
California 

USA 

1988-
1997 

Nested logit 
Urchin 
fishery 

Passive 
dem. 

Fishing or 
not, fishing 

area 

Revenue, 
Costs 

1 

Total 26        61 

 

Table 2: Details of the different explanatory variables within each drivers group used in the studies 

shown in Table 1. The number of models associated with each drivers group is displayed. The 

reference numbers are those given in Table 1. 

Drivers 
group 

Explanatory variables Ref. # 
No. of 
studies 

Vessel 
density 

Total effort previous days or month ; Total number of trip or vessel ; Total effort of other fleets ; 
maritime traffic 

1 ; 5 ; 9 ; 10 ; 12 ; 
13 ; 21-24 

28 

Revenue 
Expected VPUE ratio, profit, catch, quasirent, revenue ; Average catch value, CPUE, VPUE or RPUE the 

previous days, month or year ; Total catch previous month ; Fish stock index 
1-26 61 

Cost 
Distance from home harbor, departing harbor, landing harbor or from effort gravity center ; Distance 

between two tows ; Fuel cost or fuel cost time distance 

1-4 ; 7 ; 9 ; 10 ; 
16-20 ; 22 ; 23 ; 

26 
29 

Risk 
Variance or Standard deviation (SD) of expected profit, turnover, revenue or RPUE ; Expected revenue 
quadratic function ; Coefficient of variation (CV) of RPUE the past month or CV of catch value per day 

the previous year   

1 ; 6 ; 8-10 ; 12 ; 
14-16 ; 18 

13 

Targeting %CPUE per target species the previous trips or month 21 ; 24 ; 25 21 

Tradition 
%Effort in each choice the previous month ; number of previous trip with the same choice ; same choice 
the previous trips, days, month or year ; no trip the past month ; Effort allocation the previous month or 

year 

1 ; 4 ; 5 ; 8-11 ; 13 
; 15 ; 16 ; 19-25 

43 

 

Table 3: Cases studies considered per analyses. The reference numbers are the one from Table 1. 

Analyses Models Reference number 

Ratio 
Short / Long 

Term 
Equation 3b (Tradition only) 1; 9; 10; 19; 21 ;22 ;23; 24 

Ratio 
Score g / Score 

Revenue 

Equation 4b 1-12; 15; 17-26 

Equation 4c (Concentration) 1; 5; 9; 10; 21; 23; 24 

Equation 4c (Costs) 1-4; 7; 9; 10; 17-19; 22; 23; 26 

Equation 4c (Targeting) 21; 24; 25 

Equation 4c (Tradition) 1; 4; 8-11; 15; 19,21-25 

Equation 4c (Risk) 1; 6; 8; 9; 10; 15 
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Table 4: Chi square statistic testing, for each fleet, whether the proportion of studies where the 
effect of a given driver group has a positive effect on fishers’ behaviour is significantly different from 
the proportion of studies where that effect is negative (pvalue: * <0.05). “-“ indicates combinations 
for which the analysis could not be conducted. 

Variable 
Vessel 
density 

revenue cost  Risk Targeting Tradition 

Entire fleet 4.17 * 47.61* 14.44 * 0.82 21 * 30.86 * 

Active dem. 6.37 * 29.43 * 9 * - 17 * 30.12 * 

Passive 
dem. 

- 8.33 * - - - - 

 

Table 5: GLM analysis results for the comparison of long-term and short-term scores calculated for 
the tradition driver group (p-value: * <0.05). The fleet and model effects are shown with standard 
deviations in bracket. 

Models 
Effect of short-term 

vs. long-term 
information 

nb. Obs  30 

Active demersal -0.79 * (0.18) 

Passive demersal 0.69 (0.38) 

Mixed logit 0.84 * (0.26) 

Nested logit 0.54 (0.40) 

    

R² adjusted 0.45 

Explained variability 
Fleet 0.32 * 

Method 0.21 * 

Shapiro-Wilk test W (p-value) 0.95 (0.26) 
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Table 6: Relative importance of revenue compared to other drivers of fishers’ behaviour. Results of 
GLM analysis of score ratios as a function of variable group types and RUM methods (p-value: * 
<0.05). 

Variables Factor levels Estimates 
Standard 
Deviation 

Explained 
variability 

Score 
ratio 

Vessel density/Revenue -0.12 0.36 

0.48 * 

Costs/ Revenue 0.50 0.30 

Risk taking/ Revenue -1.14 * 0.39 

Targeting/ Revenue 1.54 * 0.41 

Tradition/ Revenue 1.17 * 0.32 

Methods 

Conditional logit -0.33 0.35 

0.01 
Mixed Logit -0.35 0.34 

Multinomial Logit -0.43 0.47 

Nested Logit -0.06 0.33 

R² adjusted 0.50 

  Shapiro-Wilk test: W (p-value) 0.99 (0.31) 

   

Table 7: Relative importance of revenue compared to other drivers of fishers’ behaviour, for each 
fleet type. One model has been performed for each score ratio type. Results of GLM analysis of score 
ratios as a function of fleet types and RUM methods (p-value: * <0.05). The fleet and model effects 
are shown with standard deviations in bracket. 

Models 
Costs / 

Revenue 
Risk/ Revenue 

Targeting/ 
Revenue 

Tradition/ 
Revenue 

Vessel density/ 
Revenue 

model # 1 2 3 4 5 

nb. Obs. 23 9 18 36 20 

Active_dem 1.19 (0.64) -2.44 * (0.31) 1.21 * (0.17) 0.87 * (0.19) -0.38 * (0.13) 

Passive_dem 1.30 (1.00) -2.11 * (0.43) 1.57 * (0.36) 1.80 * (0.40) -0.40 (0.23) 

Pelagic -0.41 (1.44) -0.08 (0.45) 0.15 (0.62) -0.14 (0.48) 0.97 (0.53) 

Logit -0.72 (1.29) - - - 1.72 * (0.46) 

Mixed logit -1.35 (0.79) -0.34 (0.41) - -0.15 (0.29) 0.85 * (0.34) 

Nested logit -0.77 (0.91) 2.06 * (0.37) - -0.10 (0.44) -0.0001 (0.28) 

Multinomial logit -0.66 (1.02) -0.70 (0.45) - - -  

            

R² adjusted 0.31 0.99 0.79 0.63 0.52 

Explained 
variability 

Fleet 0.18 0.66 * 0.83 * 0.63 * 0.23 * 

Method 0.13 0.32 * - 0.08 0.42 * 

Shapiro-
Wilk test 

W (p-
value) 

0.98 (0.91) 0.96 (0.74) 0.98 (0.93) 0.97 (0.54) 0.96 (0.47) 
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Figures captions 

Figure 1: Observed proportion of positive coefficients relative to the different RUM explanatory 
variables (in grey) compared to the negative ones (in black), for each variable group. Those 
proportions are shown for the entire fishery and each fleet group separately. The total number of 
observations is indicated with a white colour. 

Figure 2: Comparison across fleets of the importance of different (non-revenue) fishers’ behaviour 
driver relative to expected revenue. Each axis represents estimates of the effect of one driver 
compared to that of revenue. Any point inside the black dotted pentagon line indicates a fleet’s 
preference for a driver group relative to expected revenue. Active demersal fleets are shown in red, 
passive demersal fleets in blue and pelagic fleets in green. Significant values with p-value<0.05 are 
represented others are set to zero. 
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