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The colonization of early terrestrial ecosystems by embryophytes (= land plants) irreversibly 

changed global biogeochemical cycles (Berner & Kothavala, 2001; Berner et al., 2007; Song 

et al., 2012). However, when and how the process of plant terrestrialization took place is still 

intensely debated (Kenrick & Crane, 1997; Kenrick et al., 2012; Edwards et al., 2014; 

Edwards & Kenrick, 2015). Current knowledge suggests that the earliest land plants evolved 

from charophycean green algae (Karol et al., 2001) most probably during Early-Middle 

Ordovician times (Rubinstein et al., 2010, and references therein). They were represented by 

small non-vascular bryophyte-like organisms (Edwards & Wellman, 2001; Wellman et al., 

2003; Kenrick et al., 2012). The oldest fossil evidence from dispersed spores of presumable 

bryophytic nature is known from a Middle Ordovician locality (~ 470 Ma, Rubinstein et al., 

2010; Fig. 1) from Argentina (Gondwana palaeocontinent). The dispersed spore fossil record 

also suggests that the first radiation of vascular plants probably occurred during Late 

Ordovician times (~450 Ma, Steemans et al., 2009). However, unequivocal macrofossils of 

vascular plants appear much later, during mid-Silurian (~430 Ma, Edwards et al., 1992). This 

macrofossil evidence comes from the fossil-genus Cooksonia, an early polysporangiophyte 

(i.e., a plant with bifurcating axes and more than one sporangium), which is considered the 

earliest vascular land plant (Edwards et al., 1992; Fig. 1). Further advances in knowledge 

about the origin and early dispersion of polysporangiophytes are needed for a better 

understanding of the initial plant diversification. Unfortunately, unravelling the initial steps 

of polysporangiophyte evolution is hindered by gaps in the fossil record of the earliest plants 

as well as by limitations of inference based on molecular clocks (Kenrick et al., 2012; 

Edwards & Kenrick, 2015). 

Assessing the affinities of fragmentary fossils is frequently only tentative. Most often, 

only partial evidence for land plant nature is visible on fossils of Silurian-Devonian age. 

Nevertheless, there are numerous examples in the deep-time fossil record of organisms that 

have been interpreted as early embryophytes even though unambiguous land plant characters 

were not demonstrated. For instance, Edwards and Feehan (1980) reported on some Silurian 

terminal sporangia and dichotomous axes interpreted as Cooksonia-type plants with no 

evidence for in situ spores nor for tracheids. Wellman et al. (2003) described the first plant 
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mesofossils with in situ spores from the Ordovician (Katian) fossil record, but the 

morphology of the parent plants remains unknown. More recently, Morris et al. (2011) 

reported on numerous fragments of Lower Devonian plants with terminal sporangia and 

dichotomous axes, again lacking preserved unambiguous land plant characters. Interestingly, 

some of the plants illustrated by Morris et al. (2011, pl. VI) appear closely similar to those 

reported in Fig. 2 (see below). 

Here, we document an Ordovician (Hirnantian, ~445 Ma) putative plant macrofossil 

assemblage. The specimens come from an Upper Ordovician locality at Zbrza in the southern 

Holy Cross Mountains (HCM, central Poland, Laurussia palaeocontinent; Figs. S1-S2, see 

also Text S1). The fossils occur in mudstones of the uppermost Ordovician (Hirnantian) 

Zalesie Formation dated by trilobites, brachiopods and palynomorphs (Kielan, 1959; Temple, 

1965; Masiak et al., 2003; Trela et al., 2009). The age of the plant-bearing sediments is 

confirmed by acritarchs and chitinozoans (Text S1). Reported evidence consists of 

dichotomously branched slender axes, some with terminal discoid or ovoid structures 

interpreted as sporangia, which could represent the earliest megafossil occurrence of 

polysporangiophytes (Fig. 1). 

The plant fossils described herein are scattered among various fragments of coalified 

material. Two branching axes broken at both ends (3 mm long by 0.1 mm wide and 2 mm 

long by 0.3 mm wide, respectively; Fig. 2a,b) are attributable to the fossil-genus Hostinella 

that includes vegetative isotomously branched axes. Another specimen shows a trichotomous 

axis division (3.2 mm long by 0.3 mm wide; Fig. 2c), a feature known to occur in some late 

Silurian/Early Devonian plants (Gonez & Gerrienne, 2010a,b). The studied samples also 

yielded several probably fertile axes. A small, dichotomously branched, slender and leafless 

stem (1.5 mm long by 0.2 mm wide; Fig. 2d) bears terminal structures interpreted as 

sporangia (0.4 mm long by 0.3 mm wide; Fig. 2d). The two other fertile specimens are not 

branched. They consist of a short axis (1.1 mm long by 0.3 mm wide; Fig. 2e) ending either 

in a horizontally stretched, presumably cup-shaped, structure interpreted as a sporangium 

(0.8 mm long by 1.1 mm wide; Fig. 2e) or in an ovoid/hemispherical sporangium-like body 

(1.3 mm long by 1 mm wide; Fig. 2f). Their form, size and structure seem to be close to the 

observed from Cooksonia pertoni (Fig. 2e; Lang, 1937; Edwards & Feehan, 1980) and C. 

hemisphaerica (Fig. 2f; Edwards & Rogerson, 1979; Edwards & Feehan, 1980), respectively. 
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Moreover, the specimen illustrated at Fig. 2d looks quite similar to the bifurcating axis 

showing the basal part of a sporangium described by Edwards et al. (2014, fig. 3f). 

Furthermore, within a macerated residue, we found rare trilete spores resembling the 

Ambitisporites avitus-dilutus (Steemans et al., 1996; Fig. 2g,h), a morphon interpreted as 

indicative of vascular plants (Fanning et al., 1988; Steemans et al., 2009); however the trilete 

marks of our specimens are not regularly formed, which casts doubts on their trilete spore 

nature. Interestingly, there are a variety of Ordovician spores with irregular trilete-like folds, 

such as Besselia nunaatica (Nøhr-Hansen & Koppelhus, 1988) that are well known from 

mosses and hornworts. The last important feature shown by our specimens has been found 

on an indeterminate dispersed axis. It is a small structure that we interpret as a stoma (Fig. 

3a). This probable stomatal complex (29 µm long by 21 µm wide; Fig. 3b) fits with the 

structure and morphology of those described from Silurian-Early Devonian plant fossils by 

Edwards et al. (1986, fig. 3b; 1998, figs. 2b-c, 3e-h, 10b; 2014, fig. 3b), which again suggests 

a land plant status for our specimens. 

On the other hand, the sporangia figured remind those of the sphaerocarpalean liverwort 

Naiadita lanceolata, as described in Hemsley (1989). Although Naiadita is Triassic in age, 

it is generally considered that liverworts were abundant in the Ordovician as inferred from 

the presence of their dispersed spores (i.e., cryptospores; Gray, 1985; Wellman et al., 2003). 

We also note that the illustrated stomatal apparatus (Fig. 3) is similar to that of Akdalophyton 

caradocki from the Sandbian (Late Ordovician) of Kazachstan (Snigirevskaya et al., 1992, 

pl. II.4). Akdalophyton has no tracheids, but does have what appear to be hydroids, and has 

been interpreted as a moss, with helically arranged leaves, distinct but reminiscent of the axis 

shown here in Fig. 2b. This evidence suggests that the macrofossil remains presented herein, 

like the Late Ordovician Akdalophyton, are indeed land plants, but probably non-vascular 

specimens, which is consistent with their occurrence in the early Eoembryophytic phase of 

plant evolution (Gerrienne et al., 2016, fig. 3). 

Distinguishing the earliest land plants, which are characterized by a very simple 

morphology, from other phyla occasionally showing superficial resemblances, is 

challenging. This is because (1) several types of organism (e.g. some invertebrates and 

hemicordates) produce axial fragments resembling land plant axes (see Kenrick et al., 1998, 

for further discussion), and (2) the characters that confirm the land plant status (e.g. sporangia 
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and/or stomata) are usually missing, difficult to discern or ambiguous. Importantly, our 

specimens neither show appendage-bearing ("spiny") axes nor laminated collagenous 

substance, which may be indicative of graptolite or octocoral affinities (Cairns et al., 1986; 

Kenrick et al., 1998), respectively. Instead, they are smooth and heavily coalified (which 

excludes conodont affinity; Rayner, 1986; Theron et al., 1990), and one of them possesses a 

possible stoma, which is an unambiguous character of land plants. 

The three fertile specimens illustrated at Figs. 2d-f show three different sporangial 

morphologies. This lack of morphological consistency may seem odd because assemblages 

of the earliest land plants have long been considered to show rather uniform fertile 

morphologies, with only cryptic variations (see e.g. Fanning et al., 1988). This morphological 

uniformity is however only apparent: in recent years, a great variety of sporangial shapes, 

sizes and organizations has been reported (among others: Edwards & Wellman, 2001; 

Edwards & Richardson, 2004; Edwards et al., 2014). Additionally, it should be noted that 

Ordovician-Silurian cryptospores, which are considered the earliest evidence of land plants, 

are reported from throughout the globe and display already a wide range of morphologies 

(Steemans, 1999; Wellman et al., 2003, 2013). This is further consistent with the variety of 

cryptospore producers documented to date (see Edwards et al., 2014, and references therein). 

In this context, the disparity on the reproductive structures illustrated here appears less 

surprising. 

From an evolutionary viewpoint, the early land plant flora reported herein suggests that 

polysporangiophytes had already evolved by Late Ordovician times (Fig. S2, Text S1). This 

pushes back the first occurrence of polysporangiophytes for about 15 million years (Fig. 1), 

which is consistent with the age of the clade recently estimated through molecular clock 

analysis (Clarke et al., 2011; Zhong et al., 2014). In addition, some of these Late Ordovician 

putative plants (Fig. 2e,f) are very closely comparable, in size and morphology, to the earliest 

macrofossil floras described elsewhere in the world from younger (mid-upper Silurian to 

lowermost Devonian) localities (Edwards & Richardson, 2004; Raymond et al., 2006; 

Edwards et al., 2014). This fact suggests a very low evolutionary rate for the earliest 

polysporangiophytes. Then again, the presence of early polysporangiophytes in worldwide- 

distributed Silurian-Devonian localities suggests a dispersal of the earliest Gondwanan floras 

quicker than expected. 
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Current available data show a rather conflicting and incomplete picture of early plant 

terrestrialization (Kenrick et al., 2012), leaving many key questions unanswered. A major 

discrepancy in time of appearance of spores and plant macrofossils is particularly intriguing. 

Importantly, a major change in spore types in the Late Ordovician-early Silurian, leading to 

the decrease of cryptospores and increase in diversity of trilete spores, was attributed to the 

initial radiation of vascular or pre-vascular plants (Steemans et al., 2009). It has however to 

be noted that, although the fossilization potential and the evolutionary value of palynomorphs 

are clearly assessed, their attribution to source plants is most often problematic. For instance, 

trilete spores, commonly interpreted as indicative of vascular plants, are also linked to some 

living bryophytes (see e.g., Kenrick et al., 2012, and references therein). The plant remains 

presented herein most probably document the oldest macrofossils of polysporangiophytes in 

the Upper Ordovician sedimentary record. This new evidence strongly supports that the 

major floral turnover seen in the microfossil record might indeed also be interpreted in terms 

of the evolution of macrofossil floras. 
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Fig. S1. Sampling site. (a) Map of Europe with Poland and Holy Cross Mountains (HCM) 

indicated. (b) Geological map of Holy Cross Mountains. Asterisk indicates the investigated 

locality. Slightly modified from Malec et al. (2010). 

 
Fig. S2. Geological settings. (a) Section through Cambrian to Silurian sediments in the Zbrza 

Anticline (based on observations from core drills and field outcrops); location of fossil plants 

is marked with an asterisk. (b) Hirnantian mudstone with location of fossil plants marked 

with an arrow. 

 
Text S1. Geological settings and stratigraphy, sample processing and palynological analysis. 

 
 

Figure legends 

 
 

Fig. 1. Stratigraphic occurrences of the oldest fossils of land plants and spores. Bold text 

identifies the fossil assemblage described in this paper. Ages (Ma) from the International 

Chronostratigraphic Chart of the International Commission on Stratigraphy v2016/12. 

References: 1Bodzioch et al. (2003), 2Kotyk et al. (2002), 3Strother et al. (1996). Modified 

from Edwards & Kenrick (2015, fig. 1). 

 
Fig. 2. Plant remains and spores from Zbrza (Poland). (a, b) Dichotomously branched axes 

attributed to Hostinella sp. (c) Trichotomous axis. Daughter axes are indicated by an arrow 

and numbered 1-3. (d) Dichotomously branched, slender and leafless stem bearing terminal 

structures interpreted as sporangia. (e) Short axis ending in a horizontally stretched, 

presumably cup-shaped, sporangium. (f) Short axis ending in an ovoid/hemisphaerical 

sporangium. Sporangium is approximately as high as wide, and the subtending axis widens 
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just below it. (g, h) Compressed spores of cf. Ambitisporites avitus-dilutus (slide code: 

ZbrzaA). Scale bars equal 0.5 mm (a-f) and 20 µm (g,h). Light microscope photographs (a- 

f), interpretative line drawings (d-f). GIUS numbers 2-3675/1-8. 

 
Fig. 3. Probable stomatal complex from Zbrza (Poland). (a) SEM image of a stoma from an 

indeterminate axis, with elongated stomatal pore and traces of guard cells. (b) Line drawing 

showing the main structure (guard cells and stomatal pore) of stoma illustrated in (a). Scale 

bar equal 10 µm. GIUS number 2-3675/9. 
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