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Abstract: We present here a new series of spin crossover (SCO) Fe(II) complexes based on
dipyridyl-N-alkylamine and thiocyanate ligands, with the chemical formulae [Fe(dpea)2(NCS)2]
(1) (dpea = 2,2’-dipyridyl-N-ethylamine), I-[Fe(dppa)2(NCS)2], (2) II-[Fe(dppa)2(NCS)2], and (2’)
(dppa = 2,2’-dipyridyl-N-propylamine). The three complexes displayed nearly identical discrete
molecular structures, where two chelating ligands (dpea (1) and dppa (2 and 2’)) stand in the
cis-positions, and two thiocyanato-κN ligands complete the coordination sphere in the two remaining
cis-positions. Magnetic studies as a function of temperature revealed the presence of a complete
high-spin (HS) to low-spin (LS) transition at T1/2 = 229 K for 1, while the two polymorphs
I-[Fe(dppa)2(NCS)2] (2) and II-[Fe(dppa)2(NCS)2] (2’) displayed similar magnetic behaviors with
lower transition temperatures (T1/2 = 211 K for 2; 212 K for 2’). Intermolecular contacts in the
three complexes indicated the absence of any significant interaction, in agreement with the gradual
SCO behaviors revealed by the magnetic data. The higher transition temperature observed for
complex 1 agrees well with the more pronounced linearity of the Fe–N–C angles recently evidenced
by experimental and theoretical magnetostructural studies.

Keywords: Fe(II) complex; dipyridyl-N-alkylamine ligands; high spin (HS); low spin (LS);
spin cross-over (SCO); magnetic transition

1. Introduction

The design of new coordination materials exhibiting the spin crossover (SCO) behavior is one of
the most relevant challenge in the field of switchable materials [1–15]. In such materials, the spin state
can be switched from a high-spin (HS) to a low-spin (LS) configuration through a number of external
stimuli such as temperature, pressure, magnetic field, or light irradiation, for complexes involving
transition metal ions of d4–d7 electronic configurations [3–14]. However, iron(II)-based SCO complexes,
for which the transition takes place between the paramagnetic high-spin (HS) state (t4

2ge2
g, 5T2g, S = 2)

and the diamagnetic low-spin (LS) state (t6
2ge0

g, 1A1g, S = 0) are, by far, the most studied switchable
molecular materials [1–14]. From the synthetic point of view, one of the relevant strategies to design
original SCO systems is based on the use of appropriate polydentate rigid nitrogen-based ligands and
simple anionic entities acting as terminal ligands, such as NCX (X = S, Se, BH3) anions [16–22] or the
more sophisticated ones such as cyanocarbanions exhibiting terminal or poly-bridging coordination
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modes [4,7,23–27]. The latter are able to tune the ligand field energy and some SCO characteristics
such as the transition temperature.

In the large families of polydentate molecules, the use of the polypyridine-based ligands of
different denticities, such as 2,2’-dipyridylamine (dpa) [18,19], tris(2-pyridyl)methane (tpc) [20,28,29],
and tris(2-pyridylmethyl)amine (tpma [21,23,30–33], has allowed the preparation of discrete and
extended coordination compounds exhibiting original SCO transitions, allowing to understand
more on the SCO phenomenon, such as the origin of cooperativity, the presence of complete or
incomplete transitions, and the occurrence of one-step or multi-step behaviors and photo-induced
effects. In this context, we have reported, in the last few years, a new series of dinuclear Fe(II)
complexes based on the tetradentate tmpa ligand [23] and, more recently, a dinuclear complex and a
one-dimensional coordination polymer, both based on the functionalized tris(2-pyridyl)methane
(tpc) tripodal ligands and displaying unusual FeN5S coordination spheres. By experimental
and theoretical magnetostructural studies, we have shown in both systems the crucial role of
the linearity of the N-bound terminal thiocyanato ligand in the presence of the SCO transition.
As a continuation of this research, we have pursued our investigations using the N-functionalized
2,2’-dipyridylamine (dpa) bidentate ligands (see Scheme 1). The two first Fe(II) SCO systems based
on the dpa ligands were reported by J. A. Real et al. [18,19]. The first one, [Fe(dpa)2(NCS)2],
containing two cis-thiocyanato-κN ligands, showed an incomplete SCO transition at 88 K, while the
second one, Fe(dpa)(NCS)2]2bpym (bpym = 2,2’-bipyrimidine, acting as bis-chelating ligand),
was reported as a dinuclear Fe(II) neutral complex with a very gradual SCO behavior at 245 K.
Inspired by these observations, a few years later, S. Bonnet et al. prepared a new rigid ligand,
N-(6-(6-(pyridin-2-ylamino)pyridin-2-yl)pyridin-2-yl)pyridin-2-amine (bapbpy, Scheme 1), composed
by two directly linked dpa units, likely to induce stronger intermolecular interactions. The latter
led to the new Fe(II) complex, [Fe(bapbpy)2(NCS)2], exhibiting a two-step SCO transition with an
[HS–LS–LS] intermediate phase [22].
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Scheme 1. Examples of ligands based on 2,2’-dipyridylamine (dpa), including those used in this work
(see dpea and dppa).

With the same objectives, K.S. Murray et al. and P. Gamez et al. [34–50], separately designed
triazines containing one, two, or three chelating dpa units and a variety of additional groups, such as
halogen atoms, aryl groups, alkyl chains, aminoalkyl and nitriles units, as well as crown groups
(see examples in Scheme 1). These sophisticated ligands have led to a variety of SCO materials
exhibiting discrete structures generated by two chelating dpa units and two NCX (X = S, Se, BH3)
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acting as cis- or trans-terminal ligands [34–42], dinuclear complexes [43–45], or 1D coordination
polymers in which the Fe(II) metal ions are connected through the central triazine group containing
two or three dpa units (see dpyatriz ligand and some examples of its derivatives in Scheme 1) [45–50].
Magnetic investigations revealed various magnetic behaviors ranging from incomplete and gradual
transitions to abrupt complete SCO transitions. However, since such sophisticated designed ligands
did not result in significantly more cooperative SCO transitions than those obtained using simple dpa
or bapbpy ligands [18,19,22], we have examined very recently the design of new Fe(II) SCO systems
based on dpa ligands substituted by simple alkyl groups such dpma, dpea, and dppa (see Scheme 1)
or by other rigid aryl functional groups such as luminophore units.

In this context, we report in the present work, the synthesis, crystal structures,
and magnetic properties of a new series of spin crossover (SCO) Fe(II) complexes, based on
dipyridyl-N-alkylamine and thiocyanate ligands, with the chemical formulae [Fe(dpea)2(NCS)2]
(1) (dpea = 2,2’-dipyridyl-N-ethylamine), I-[Fe(dppa)2(NCS)2] (2), II-[Fe(dppa)2(NCS)2], and (2’)
(dppa = 2,2’-dipyridyl-N-propylamine).

2. Results and Discussion

2.1. Synthesis

The compound 2,2’-dipyridyl-N-ethylamine (dpea) was prepared according to the procedure
described in reference [51], while 2,2’-dipyridyl-N-propylamine (dppa) was prepared by using a slightly
modified procedure, by replacing ethyl iodide by propyl iodide (see Figures S1–S8) [51]. The complexes,
[Fe(dpea)2(NCS)2] (1), I-[Fe(dppa)2(NCS)2] (2), and II-[Fe(dppa)2(NCS)2] (2’), were prepared, as single
crystals, using the slow-diffusion procedure in a fine glass tube (3.0 mm diameter). A solution resulting
from the mixture of an aqueous solution of FeCl2·4H2O and of an ethanolic solution of dpea ligand
was carefully layered onto an aqueous solution of potassium thiocyanate in a 1:2:2 ratio. The infrared
spectra showed a strong absorption band pointed at 2049 cm−1 for 1 and at 2057 cm−1 for 2 and 2’,
which can be assigned to the asymmetric stretching vibration modes (ν(CN)) of the thiocyanato-N
coordination modes (see Figures S9–S11).

2.2. Crystal Structure Descriptions

Based on the conclusions derived from the thermal variation of the magnetic data, the crystal
structures of the [Fe(dpea)2(NCS)2] (1) complex and of the two polymorphs I-[Fe(dppa)2(NCS)2] (2)
and II-[Fe(dppa)2(NCS)2] (2’) were determined at 296 and 170 K. Complexes 1, 2, and 2’ crystallized
in the Pna21, Pccn, and space P1 space groups, respectively. The pertinent crystallographic data
and selected bond lengths and bond angles for the three complexes are depicted in Table S1 and
Table 1, respectively. The unit cell parameters of each complex (Table S1) revealed that there was no
structural phase transition within the studied temperature range (170–296 K). The following structural
descriptions of the molecular structures correspond to 296 K, and the structural modifications induced
by cooling up to 170 k will be detailed in the paragraph dealing with structural and magnetic properties
relationships. In Figure 1, the molecular structures of the complexes 1, 2, and 2’, as well as the
asymmetric units of each complex and the FeN6 coordination environment of the iron (II) ions are
depicted. Complexes 1 and 2’ display a similar asymmetric unit consisting of an iron metal ion,
two 2,2’-dipyridyl-N-alkylamine molecules (dpea for 1 and dppa for 2’), and two thiocyanate anions,
while compound 2 exhibits an asymmetric unit involving one Fe(II) ion located on a special position,
and a thiocyanate anion and a dppa molecule located on general positions. The molecular structures
of the three complexes consist of discrete [FeL2(NCS)2] (L = dpea (1), dppa (2 and 2’) neutral units,
where two chelating ligands (dpea (1), dppa (2 and 2’)) stand in the cis-positions, and two NCS− anions,
acting as thiocyanato-κN ligands, complete the coordination sphere in the two remaining cis-positions
(Figure 1). In each complex, the iron(II) metal ion exhibits a distorted FeN6 polyhedron, arising from
the coordination of the four pyridine nitrogen atoms (N3, N4, N5, N6 for 1 and 2’; N3, N4, N3(a),
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N4(a) for 2) of the two 2,2’-dipyridyl-N-alkylamine chelating ligands and from the two nitrogen atoms
(N1 and N2 for 1 and 2’; N1, N1(a) for 2) belonging to the two terminal thiocyanato-κN ligands. At room
temperature (296 K), the four Fe–Npyr distances in the 2.151–2.204 Å range, are longer than the Fe–N
distances corresponding to the terminal thiocyanato-κN ligands (2.102–2.150 Å), as observed in other
Fe(II) complexes involving rigid pyridine-based ligands and terminal thiocyanato-κN groups [20,28,29].
The bond angles, depicted in Table 1, deviate considerably from the ideal values (80.05◦ to 95.22◦),
as demonstrated by the high values of the Σ distortion parameter [52] (Σ = 45.80◦ for 1, 41.08◦ for 2
and 39.87◦ for 2’) summarized in Table 1.
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Table 1. Selected bond lengths (Å) and bond angles (◦) and the Σ distortion parameters for the
complexes 1, 2, and 2’.

Complex 1 2’ 2

T/K 296 170 296 170 296 170

Fe–N1 2.150(5) 1.971 (3) 2.123(4) 2.005(3) Fe–N1 2.137(3) 1.968(2)
Fe–N2 2.102(4) 1.968(3) 2.111(4) 2.004(3) Fe–N1 (a) 2.137(3) 1.968(2)
Fe–N3 2.151(5) 1.983(3) 2.175(3) 2.032(3) Fe–N3 2.184(3) 1.990(2)
Fe–N4 2.198(4) 1.986(3) 2.184(3) 2.017(3) Fe–N4 2.204(2) 1.989(2)
Fe–N5 2.179(4) 1.976(2) 2.174(3) 2.019(3) Fe–N4 (a) 2.204(2) 1.989(2)
Fe–N6 2.162(4) 1.978(3) 2.163(3) 2.034(3) Fe–N3 (a) 2.184(3) 1.990(2)

<d(Fe-N)> 2.157(5) 1.977(3) 2.155(4) 2.018(3) <d(Fe–N)> 2.175(3) 1.982(2)

Fe–N1–C1 164.7(5) 171.5(3) 171.6(3) 162.2(3) Fe–N1–C1 174.8(3) 174.9(2)
Fe–N2–C2 150.7(4) 161.6(2) 155.6(4) 174.2(3) Fe–N1 (a)–C1 (a) 174.8(3) 174.9(2)
N1–Fe–N2 94.10(17) 93.36(11) 90.98(15) 89.70(12) N1–Fe–N1 (a) 91.21(17) 90.15(12)
N1–Fe–N3 94.29(18) 92.50(11) 93.75(12) 93.52(11) N1–Fe–N3 92.75(11) 91.65(8)
N1–Fe–N5 89.94(15) 89.07(10) 89.69(13) 90.02(11) N1–Fe–N4 (a) 89.63(11) 89.44(8)
N1–Fe–N6 89.42(17) 86.98(11) 90.37(12) 87.23(11) N1–Fe–N3 (a) 91.74(11) 87.92(8)
N2–Fe–N3 92.31(17) 88.22(11) 90.28(13) 88.16(11) N1 (a)–Fe–N3 91.74(11) 87.92(8)
N2–Fe–N4 87.28(16) 86.98(11) 90.26(13) 89.40(11) N1 (a)–Fe–N4 89.63(11) 89.44(8)
N2–Fe–N6 93.07(17) 91.23(11) 94.85(13) 92.33(11) N1 (a)–Fe–N3 (a) 92.76(11) 91.65(8)
N3–Fe–N4 81.24(17) 86.42(11) 80.52(11) 85.91(11) N3–Fe–N4 80.27(9) 86.21(7)
N3–Fe–N5 94.29(17) 93.83(11) 94.36(12) 93.73(10) N3-Fe-N4 (a) 95.15(9) 94.22(7)
N4–Fe–N5 89.23(13) 90.63(10) 89.54(12) 90.90(11) N4–Fe–N4 (a) 90.38(13) 91.05(10)
N4–Fe–N6 94.90(15) 94.10(11) 95.22(12) 93.34(10) N3 (a)–Fe–N4 95.15(9) 94.21(7)
N5–Fe–N6 80.05(18) 86.74(11) 80.45(12) 85.78(10) N3 (a)–Fe–N4 (a) 80.27(9) 86.21(7)

bΣ/◦ 45.80 31.24 39.87 27.66 bΣ/◦ 41.08 25.79

Symmetry transformations used to generate equivalent atoms: (a) 1/2 − x, 1/2 − y, z. bΣ is the sum of the deviation
from 90◦ of the 12 cis-angles of the FeN6 octahedron [52].

Examination of the crystal packing in the three complexes did not reveal any strong intermolecular
contacts. However, since the three complexes exhibit similar molecular structures, in particular the
two polymorphs, a short description of the crystal packing for each compound should give the main
differences between the complexes and show clearly that the two polymorphs display different crystal
packing. In order to get a global view of the intermolecular interactions, Hirshfeld surface [54] was
calculated for the three complexes, and the whole interaction map is displayed as fingerprints [55] in
Figure 2. On fingerprints, di and de represent the distance to the surface of one atom respectively inside
and outside the surface. Hirshfeld surfaces and fingerprints were drawn by using the crystalexplorer
software [56]. In a first approximation, the fingerprints looked similar for the three complexes at
room temperature. The main intermolecular interactions are thus of the same nature and consist of
hydrogen-like contacts involving the sulfur atoms (corresponding to the couple (di, de) ≈ (1.7, 1.1 Å)
on the fingerprints). The main differences between the three complexes involve H–H Van der Waals
contacts corresponding to the broad peak at (di, de) between (1.0, 1.0 Å) for 2’ to (1.2, 1.2 Å) for 2 on
the fingerprints; consequently, the crystal structure of 2’ appeared slightly more compact than the
others. At low temperature, the fingerprints looked very similar to the corresponding ones at room
temperature but with lower (di, de) couples.
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S2· · ·H10-C10 (iv) 3.677 3.028
S2· · ·H19-C19 (V) 3.702 2.873

Symmetry codes: (i) −3/2 − x, 1/2 + y, −1/2 + z for 1; 1/2 − x, y, 1/2 + z for 2; (ii) 1/2 + x, −1/2 − y, z for 1; −1/2
+ x, −1/2 + y, 1 − z for 2; 1 − x, 1 − y, 1 − z for 2’; (iii) 1 − x, 1 − y, − z; (iv) 1 + x, −1 + y, z; (v) −3/2 − x, −1/2 + y,
1/2 + z.

2.3. Magnetic Properties

The susceptibility measurements were performed at 0.1 T magnetic field at variable temperatures
in the 2–300 or 2–350 K range for the three complexes. The thermal dependences of the products of
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the molar magnetic susceptibility and the temperature (χmT) are shown in Figure 3 for complex 1
and in Figure 4 for the two polymorph complexes (2 and 2’). For compound 1, the χmT product of
3.205 cm3·K·mol−1 at 300 K, slightly higher than the spin only value calculated for an isolated metal
ion with S = 2 (3.0 emu·K·mol−1), agrees well with the expected value for a magnetically isolated
Fe(II) ion in the HS state (S = 2) (Figure 3) [17–20]. Upon cooling, the χmT value decreased gradually
until approximately 250 K and then sharply decreased, reaching a value of 0.024 cm3·K·mol−1 at 2 K,
indicating the presence of a complete and gradual HS to LS transition at T1/2 = 229 K, as also revealed
by the thermoschromism (yellow at 296 K and red at 150 K) observed on single crystals (see Figure 3).
For the two polymorph complexes I-[Fe(dppa)2(NCS)2] (2) and II-[Fe(dppa)2(NCS)2] (2’), the thermal
variation of the χmT products depicted in Figure 4, showed clearly that the two polymorphs exhibited
similar magnetic behaviors. For the polymorph 2, the χmT value at 300 K (3.377 cm3·K·mol−1) was
slightly lower than the corresponding value observed for the polymorph 2’ (3.462 cm3·K·mol−1).

However, in both cases, these values are in agreement with the expected value for a magnetically
isolated Fe(II) ion in the HS state [17–20] with g factors of 2.12 and 2.15, respectively. Upon cooling,
the χmT value decreased gradually, in both cases, until approximately 260 K and then sharply decreased
reaching a value of 0.02 cm3·K·mol−1 at 2 K, indicating the presence of a complete and gradual HS
to LS transition which was accompanied, as expected, by a change of color observed for each single
crystal (See Figure 4: orange to red for 2, yellow to red for 2’). The two magnetic behaviors were similar
and agree well with the presence of complete spin cross-over transitions at almost similar transition
temperatures (T1/2 = 211 K for 2; 212 K for 2’). For the three complexes, the magnetic properties were
measured in both cooling and warming modes, but no hysteretic effects were detected.
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2.4. Magneto-Structural Relationships

On the basis of the transition temperatures derived from the magnetic studies above, the crystal
structures of 1, 2, and 2’ were determined at 170 K. Since the average value of the Fe–L distances
(Fe–N) and the distortion parameter (Σ) are highly sensitive to the Fe(II) spin state, these structural
parameters will be used in this section to assign the spin state on the Fe(II) centers. Table 1 lists the
temperature evolution of the Fe–N bond lengths and selected bond angles (N–Fe–N and Fe–N–C)
observed for each complex, as well as the values of the Σ distortion parameter. At room temperature
(296 K), the average value of the six Fe–N distances (<d(Fe-N)>: 2.157(5) Å for 1, 2.175(3) Å for 2,
and 2.155(4) Å for 2’) are in good agreement with the corresponding values observed for the HS Fe(II)
ion in a FeN6 distorted octahedral environment [6,7]. As shown in Table 1, the Fe–N bond lengths
constitute the first structural parameter at the origin of the distorted FeN6 coordination spheres in the
three complexes, since the four slightly different Fe–Npy distances (2.151–2.198 Å for 1, 2.184–2.204 Å
for 2, and 2.163–2.184 Å for 2’) are significantly longer than the two Fe–N distances corresponding
to the terminal thiocyanato ligands (2.150(5) Å and 2.102(4) Å for 1, 2.137(3) Å for 2, 2.123(4) Å and
2.111(4) Å for 2’). This metric distortion is strengthened by the values of the N–Fe–N cis-bond angles
(see Table 1) which deviate considerably from ideal values (80.05◦ to 95.22◦), as demonstrated by the
relatively high values of the Σ distortion parameter summarized in Table 1 for the three complexes,
at room temperature. The crystal structures derived at 170 K for the three compounds revealed,
as expected, significant changes since the six Fe–N distances are substantially smaller (<d(Fe-N)>:
1.977(3) Å for 1, 1.982(2) Å for 2 and 2.018(3) Å for 2’) than the corresponding values observed for
the HS state at room temperature, suggesting the presence of an LS state of the Fe(II) ion for the
three complexes, as revealed by the magnetic data. However, in contrast to the crystallographic data
observed at room temperature, the four Fe–Npy and the two Fe–N(NCS) distances did not show
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significant differences for the LS state (1.968–1.986 Å for 1, 1.968–1.990 for 2, and 2.004–2.034 for 2’),
suggesting less distorted FeN6 environments, as demonstrated by the lower Σ distortion parameters
(Table 1). It should be noted that the evolution of the Σ distortion parameter from the HS to the
LS state (∆Σ) for the three complexes was rather small (14.5◦ (1), 15.3◦ (2), and 12.2◦ (2’)) [20,52].
This may explain the absence of any photo-induced state in the three compounds. As clearly shown
by the structural characterizations, the three complexes displayed a similar discrete mononuclear
structure without significant intermolecular contacts, in agreement with gradual switching behaviors,
suggesting the absence of any significant cooperative effects. This observation allows to expect almost
similar transition temperatures for the three complexes. Effectively, the two polymorph complexes
displayed, as expected, similar transition temperatures (T1/2 = 211 K for 2; 212 K for 2’), while complex
1 exhibited a SCO transition at a higher temperature (T1/2 = 229 K). This observation led us to examine
other structural parameters within the molecular structure of the complexes, such as the Fe–N–CS
bond angles. On the basis of previous experimental and theoretical magnetostructural studies in which
some of us suggested that the bent N-bound terminal thiocyanato ligand promotes a weaker ligand
field on the Fe(II) ion than the linear configuration [20,29], the examination of the Fe–N–CS angles,
summarized in Table 1 for the three complexes, clearly showed that the linearity of the Fe–N–CS angles
is more pronounced in complex 2, exhibiting the highest transition temperature.

3. Experimental Section

3.1. Materials and Instrumentation

All the starting reagents were purchased from commercial sources (Sigma-Aldrich (Saint-Quentin
Fallavier, Isère, France), Acros (Illkirch, Bas-Rhin, France)), and Alfa Aesar (Zeppelinstraβe,
Karlsruhe, Germany)) and used without further purification. Deuterated solvents were purchased
from Sigma-Aldrich and Cambridge Isotope Laboratories. Elemental analyses were performed on a
Perkin-Elmer Elemental Analyzer. Infrared (IR) spectra were collected in the range 4000−200 cm−1

on a FT–IR BRUKER ATR VERTEX70 Spectrometer. 1H and 13C NMR spectra were recorded on
Bruker AMX-400 and AMX-75 spectrometers, and the spectra were referenced internally using residual
proton solvent resonances relative to tetramethylsilane (δ = 0 ppm). Magnetic measurements were
performed with a Quantum Design MPMS3 SQUID magnetometer in the 2–350 K temperature range.
Experimental susceptibility was corrected for the diamagnetism of the constituent atoms of the sample
by using Pascal’s tables and the diamagnetism of the sample holder.

3.2. Syntheses of the 2,2’-Dipyridyl-N-Alkylamine Ligands

2,2’-Dipyridyl-N-ethylamine (dpea) was prepared according to the procedure described in
reference [51], with a yield of 1.777 g, 77%. IR data (νcm−1): 3068 w, 3052 w, 3001 w, 2973 w, 2929 w,
2869 w, 1640 w, 1582 s, 1560 m, 1466 s, 1420 s, 1320 m, 1263 s, 1137 m, 1046 w, 984 m, 953 m, 922 w, 769 s,
736 m, 699 w, 637 w, 622 w, 573 m, 533 w, 494 w, 406 w. 1H NMR (400 MHz, CDCl3 δ (ppm): 1.30 (3H, t,
3JH–H = 6.8 Hz); 4.30 (2H, q, 3JH–H = 7.2 Hz); 6.90 (2H, t, 3JH–H = 6 Hz); 7.08 (2H, d, 3JH–H = 8.4 Hz); 7.57
(2H, t, 3JH–H = 7.2 Hz); 8.37 (2H, d, 3JH–H = 4.3 Hz). 13C NMR (75 MHz, CDCl3) δ (ppm): 13.66 (–CH3,
ethyl); 43.19 (N–CH2–, ethyl); 114.87(C=C, aromatic); 116.94 (C=C, aromatic); 137.20 (C=C, aromatic);
148.44 (N=C, aromatic); 157.37 (C=C, aromatic, quat). 2,2’-Dipyridyl-N-propylamine (dppa) was
prepared using a similar procedure as reported for 2,2’-dipyridyl-N-ethylamine (dpea), by replacing
the ethyl iodide by the propyl iodide [51]. Yield (0.935 g, 73%). IR data (ν/cm−1): 3420 br, 3068 w,
3052 w, 3007 m, 2961 m, 2872 m, 1640 w, 1582 s, 1558 s, 1529 m, 1465 s, 1419 s, 1377 s, 1321 m, 1276 s,
1236 m, 1142 m, 1106 m, 1050 m, 985 f, 957 m, 938 m, 890 s, 854 w, 768 s, 735 s, 638 w, 619 m, 605 m,
578 m, 531 m, 503 m, 466 w, 433 m. 1H NMR (400 MHz, CDCl3) δ (ppm): 0.96 (3H,t, 3JH–H = 7.6 Hz),
1.74 (3H, q, 3JH–H = 7.6 Hz, 3JH–H = 7.9 Hz); 4.18 (2H, t, 3JH–H = 8 Hz); 6.91 (2H, t, 3JH–H = 5.6 Hz); 7.06
(2H, d, 3JH–H = 8.4 Hz); 7.58 (2H, t, 3JH–H = 7.6 Hz); 8.37 (2H, d, 3JH–H = 4.4 Hz). 13C NMR (75 MHz,
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CDCl3), δ (ppm): 21.62 (CH3–CH2–); 50.12 (N–CH2–); 114.84 (C=C, aromatic); 116.91 (C=C, aromatic);
137.19 (C=C, aromatic); 148.57 (N=C, aromatic); 157.88 (C=C, aromatic, quat).

3.3. Preparation of the Fe(II) Complexes [Fe(dpea)2(NCS)2] (1) and [Fe(dppa)2(NCS)2] Polymorphs (2 and 2’)

[Fe(dpea)2(NCS)2] (1). Single crystals of 1 were prepared using a slow diffusion procedure, in a
fine glass tube (3.0 mm diameter): a solution of potassium thiocyanate (12.63 mg, 0.13 mmol) in 1.0 mL
of H2O was placed in the fine glass tube. A second solution (2 mL), containing a mixture of an aqueous
solution (1.0 mL) of FeCl2.4H2O (13 mg, 0.065 mmol) and an ethanolic solution (1.0 mL) of dpea
ligand (25.9 mg, 0.13 mmol), was then carefully added. After three days, yellow prismatic crystals of
1 were formed by slow diffusion at room temperature. CHN analysis: calculated for C26H26FeN8S2

(1): C, 54.7; N, 19.6; H, 4.6. Found: C, 54.9; N, 19.9; H, 4.6. IR data (ν/cm−1): 3108 w, 3079 w, 3031 w,
2980 w, 2939 w, 2861 w, 2087 sh, 2049 s, 1595 s, 1573 s, 1489 w, 1461 s, 1435 s, 1335 s, 1294 m, 1233 m,
1164 m, 1073 m, 1056 m, 1012 m, 910 w, 773 s, 749 s, 642 w, 629 w, 572 m, 507 m, 478 m, 449 m, 421 s.
[Fe(dppa)2(NCS)2] polymorphs (2 and 2’). Using a similar procedure as that described above for 1,
but replacing dpea with dppa (27.7 mg, 0.13 mmol), two single-crystal phases 2 (orange prisms) and 2’
(yellow prisms) formed after two weeks. CHN analysis: calculated for C26H26FeN8S2 (2): C, 56.2; N,
18.7; H, 5.0. Found: C, 56.4; N, 19.1; H, 4.9. IR data (ν/cm−1) polymorph I (2): 3073 w, 3032 w, 2974 w,
2866 w, 2086 w, 2057 s, 1638 m, 1595 m, 1489 s, 1464 m, 1455 m, 1431 s, 1344 s, 1305 m, 1278 m, 1234 m,
1167 m, 1138 m, 1112 w, 1079 w, 1060 m, 1032 m, 1009 m, 965 w, 941 w, 914 w, 870 w, 819 s, 786 s, 775 s,
747 m, 643 m, 631 m, 602 m, 526 m, 505 m, 482 w, 472 w, 441 m, 421 m. CHN analysis: calculated for
C26H26FeN8S2 (2’): C, 56.2; N, 18.7; H, 5.0. Found: C, 56.5; N, 19.0; H, 4.9. IR data (ν/cm−1) polymorph
II (2’): 3073 w, 3032 w, 2965 w, 2867 w, 2170 w, 2152 w, 2089 w, 2057 s, 1638 m, 1596 m, 1490 s, 1465 m,
1456 m, 1431 s, 1344 s, 1306 m, 1280 m, 1235 m, 1167 m, 1138 m, 1112 w, 1080 w, 1059 m, 1010 m, 964 w,
941 w, 903 w, 786 s, 775 s, 746 s, 747 m, 642 m, 631 m, 603 m, 528 m, 482 w, 472 w, 441 m, 422 m.

3.4. X-ray Crystallography

Crystallographic studies of compounds 1, 2 and 2’ were performed at 296 and 170 K.
The crystallographic data were collected on an Oxford Diffraction Xcalibur CCD diffractometer with
Mo Kα radiation. For data collections, except for complex 2’, similar single crystals were used at both
temperatures: 0.20 × 0.18 × 0.13 mm3 (1); 0.38 × 0.30 × 0.23 mm3 (2); 0.14 × 0.12 × 0.10 mm3 for 2’ at
296 K and 0.25 × 0.23 × 0.16 mm3 for 2’ at 170 K. All the data collections were performed using 1◦

ω-scans with different exposure times (50 s and 40 s per frame for 1 at 296 and 170 K, respectively;
10 s per frame for 2 at 296 and 170 K; 50 s and 13 s per frame for 2’ at 296 and 170 K, respectively).
The unit cell determinations and data reductions were performed using the CrysAlis program suite
on the full set of data [58]. The crystal structures were solved by direct methods and successive
Fourier difference syntheses with the Sir97 program [59] and refined on F2 by weighted anisotropic
full-matrix least-square methods using the SHELXL97 program [60]. All non-hydrogen atoms were
refined anisotropically, while the hydrogen atoms were calculated and therefore included as isotropic
fixed contributors to Fc. Crystallographic data including refinement parameters, bond lengths and
bond angles, are given in Table S1 and Table 1, respectively.

4. Conclusions

We prepared a new series of spin crossover (SCO) Fe(II) materials based on
dipyridyl-N-alkylamine and thiocyanate ligands, with the chemical formulae [Fe(dpea)2(NCS)2]
(1) (dpea = 2,2’-dipyridyl-N-ethylamine), I-[Fe(dppa)2(NCS)2] (2), and II-[Fe(dppa)2(NCS)2] (2’)
(dppa = 2,2’-dipyridyl-N-propylamine). All were structurally characterised by single-crystal X-ray
diffraction at room temperature (296 K) and at 170 K and by magnetic studies as a function of
temperature. Even if they displayed different crystallographic structures, as reflected by their
different crystal packing, the three Fe(II) neutral complexes, exhibited almost similar molecular
structures, which can be described as discrete mononuclear complexes of the general chemical formula
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[FeL2(NCS)2], where two L chelating ligands (L = dpea (1), dppa (2 and 2’)) stand in the cis-positions,
and the two thiocyanato-κN ligands complete the octahedral environment of the Fe(II) metal ions in
the two remaining cis-positions. For complex 1, the thermal variation of the χmT product showed
a complete gradual HS–LS spin crossover transition at T1/2 = 229 K, while the two polymorphs
I-[Fe(dppa)2(NCS)2] (2) and II-[Fe(dppa)2(NCS)2] (2’) displayed similar magnetic behaviors at lower
transition temperatures (T1/2 = 211 K for 2; 212 K for 2’), which is in good agreement with the strong
structural changes of the FeN6 coordination spheres derived from the structural characterizations
at room temperature and at 170 K. A careful examination of the intermolecular contacts in the
three complexes did not reveal any significant intermolecular interaction, suggesting the absence of
significant cooperative effects which agrees well the gradual behaviors shown by the magnetic data.
However, complex 1 showed a transition temperature (229 K) clearly different from those observed for
the two polymorph complexes (T1/2 = 211 K for 2; 212 K for 2’). Such difference was ascribed to the
more pronounced linearity of the Fe–N–CS angles observed for the two polymorphs 2 and 2’.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/8/11/401/s1.
Crystallographic data for the structure reported in this paper were deposited in the Cambridge Crystallographic
Data Centre as supplementary publication Nos. CCDC 1866637 (170 K) and 1866638 (296 K) for 1; 1866639 (170 K)
and 1866640 (296 K) for 2; 1866641 (170 K) and 1866642 (296 K) for 2’. A copy of the data can be obtained free
of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: +44-1223-336-033; E-Mail:
deposit@ccdc.cam.ac.uk).
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