Non-negative Observation-based Decomposition of Operators

Manuel Lopez Radcenco 1, 2 Ronan Fablet 2, 1 Abdeldjalil Aïssa-El-Bey 2, 3
1 Lab-STICC_IMTA_CID_TOMS
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
3 Lab-STICC_IMTA_CACS_COM
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
Abstract : The problem of observation-based characterization of operators, closely related to the well-studied problem of blind source separation, remains nonetheless considerably less studied. Inspired by the recent success of non-negative and sparse blind source separation, we aim at extending constrained blind source separation models to the data-driven characterization of operators. We introduce a novel non-negative decomposition model for linear operators and investigate different parameter estimation algorithms. We study and compare the proposed algorithms in terms of identification and reconstruction performance in a variety of experimental settings, in order to gain insight into the robustness and limitations of the proposed algorithms. We further discuss the main contribution of our approach compared with state-of-the-art methods for the analysis and decomposition of operators.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01891692
Contributeur : Manuel López Radcenco <>
Soumis le : mardi 9 octobre 2018 - 19:08:39
Dernière modification le : vendredi 12 octobre 2018 - 01:17:27

Fichier

lopez_radcenco_et_al_tsp_2018_...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01891692, version 1

Citation

Manuel Lopez Radcenco, Ronan Fablet, Abdeldjalil Aïssa-El-Bey. Non-negative Observation-based Decomposition of Operators. 2018. 〈hal-01891692〉

Partager

Métriques

Consultations de la notice

43

Téléchargements de fichiers

20