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1. Introduction

Development methods for reconfigurable architec-
tures (RA) are dominated by industrial tools largely
inherited from VLSI CAD. Each new architecture is de-
livered with its own set of libraries and tools for floor-
planning, place and route. These tools are generally
addressed directly or indirectly by hardware descrip-
tion languages (HDL).

Some initiatives such as the public architecture of
Xilinx 6200, or Xilinx Jbits API have provided open
environments for circuit design. Academic research ef-
forts are resulting in generic low level tools such as
VPR]1], circuit components generators, compilers built
on the top of HDL and high level logic generators.
However, important points such as source portability,
reuse, open access to architecture resources, debugging,
are far to be reached. This prohibits a more general use
of RA, and freeze progresses in software engineering.

MADEO is a medium term project that uses the ob-
ject paradigm to provide development flexibility, porta-
bility and openness on RAs.

The project structure has three parts that interact
closely (bottom-up):

1. reconfigurable architecture model and its
associated generic tools. The representation
of practical architectures using a generic model
provides immediately operational tools[5]. Map-
ping logic description to a particular technology is
achieved using the algorithms packed into SIS[9],
or a hierarchical and parallel variant from Lemarc-
hand’s PPart[3].

With the basic functionalities provided in this
framework, circuits can be placed, routed, assem-
bled, drawn, and practically loaded on a platform.
Specific “atomic” resources can be merged with
logic, and the framework is extensible.

2. high level function compiler. With given
restrictions, this framework allows to manage
library-independent compilation to RAs. This
includes data binary presentation, and combina-
tional logic generation. An abstract intermediate
level within this framework is a graph of lookup-
tables carrying high level values, that could be in-
terpreted or translated into a logic graph. When
used in conjunction with the first framework, this
part provides a service comparable to a specific
logic function generator, or to a meta-compiler for
specific arithmetics and data.

3. System and architecture modeling. The com-
putation architecture in its static or dynamic as-
pects is described in this framework. For instance,
these are generic regular architectures with their
associated tools, processes, platform management
and system activity.

The compiler can make use of logic generation to
produce RA configurations, bind them to registers
or memories, and produce a configured applica-
tion. The ability to control placing and routing
given by the first part, and synthesis from the sec-
ond part, yet allow to build complex networks of
fine or medium grain elements.

This paper focuses on the HLL compiler support-
ing logic generation. Synthesis is based on enumerated
symbols rather than on interval of values giving the
possibility to decrease automatically the logic complex-
ity in the cases of sparse set of operands. Ideas from a
Lin, Whitcomb and Newton paper[4] have been reused
in the context of object oriented programming target-
ing specifically FPGAs. An initial work has described
a synthesis technique based on a translation from ob-
ject blocks of code to one PLA which is mapped to
FPGA look-up tables[6]. This approach was limited
by the minimization and mapping problem handled at
the logic level. The major improvement described in



this paper is that the programmer can split its descrip-
tion in procedure calls allowing the compiler to remove
a lot of the complexity by working on a graph of sym-
bol indexes. Logic production occurs at manageable
procedure calls, with a direct effect on the synthesis
time (minutes rather than hours, and synthesis suc-
ceeds). Furthermore, there is now a full set of low level
tools and models that will permit to allocate a variety
of hardware resources from the semantic level or from
compiler decisions.

The text describes the general principles used for
specification and logic production, then the transfor-
mations achieved by a compiler. An illustration is given
with the examples of a small floating point multiplier
and of a coder/decoder family for RAID systems (with
quantitative results).

2. HLL to FPGASs using network of LUTs
2.1. FPGA modeling

Reconfigurable architectures can mix different grain
of hardware resources: logic elements, operators, com-
munication lines, buses, switches, memories, proces-
SOrS. . .

FPGAs are often built with small lookup memories
(LUT) addressed by a set of signals. As seen from the
logic synthesis tools, an n-bit wide LUT is the most
general way to produce any logic function of n boolean
variables. There are known algorithms and tools for
partitioning large logic tables or networks to target a
particular LUT-based architecture.

LUTs are effectively interconnected during the con-
figuration phases to form logic. This is achieved using
various configurable devices such as programmable in-
terconnect points, switches, or shared lines. Some com-
mercial architectures also group several LUTs and reg-
isters into cells called configurable logic block (CLB).

Our model for the organization of these architec-
tures is a hierarchy of geometric patterns of hardware
resources. The model is addressed to describe con-
crete architectures via a specific grammar[5]. Given
this FPGA description, generic tools operate for tech-
nology mapping, placing and routing logic modules.
Circuits such as operators or computing networks are
described by programs realizing the geometric assem-
bly of such modules and their connection.

2.2. Programming considerations
Applications for fine grain reconfigurable architec-

tures can be specialized without compromise, and they
should be optimized in terms of space and performance.

In our view, there is an abusive advantage given to
the local performance of arithmetic units in the syn-
thesis tools and also in the specification language.

A first aspect of this advantage is the small range of
basic types coming from the capabilities of ALU/FPUs
or memory address mechanisms. Control structures
strictly oriented toward sequentiality are another as-
pect that can be criticized. As example, programming
SIMD multimedia accelerators remains procedural de-
spite all the past experience in the domain of data
parallelism. Hardware description languages have rich
descriptive capabilities, however the necessity to use li-
braries led the language designers to restrict their prim-
itives to a level similar to C.

Our aim is to produce a more flexible specification
level for the programmers with direct and efficient cou-
pling to logic. This implies allowing easy creation of
specific arithmetics representing the algorithmic needs,
letting the compilers automatically tune data width,
and modeling computations with properties similar to
object-oriented modularity.

To obtain this, specifications which are symbolic and
functional are used with separate definition of data
on which the program will operate (data are objects).
Later, sequential computations can be structured in
various ways by observing the read and write transac-
tions to memories or registers, either explicitly in the
case of architecture description, or implicitly under ar-
chitecture synthesis control. Reference [6] shows an
early work on state machine synthesis compatible with
the present method.

In this paper we will consider the case of meth-
ods without side effect, operating on a set of objects.
For sake of simplicity we will rename these methods
’functions’, and the set of objects, ’values’. Interac-
tion with external variables is not discussed in this pa-
per. The input language is Smalltalk-80, variant Visu-
alwoks, also used to build the tools and to describe the
application architectures.

The example below is the code for a family of
multipliers suitable for synthesis, provided that their
part are of limited size. The multipliers take two
operands known by their sign, exponents, and frac-
tional parts. Elementary operations are described by
additional methods (not shown), and the use of local
variables. The result is an aggregation of the variables
sign, exp and mant in a new object.

sign: signA significand: significandA
exponent: exponentA
sign: signB significand: significandB
exponent: exponentB

| sign exp mant normalize |



sign := self computeSignFor: signA and: signB.
exp := self computeExponentFor: exponentA

and: exponentB.

mant := self computeSignificandsFor: significandA
and: significandB.

normalize := self normalize: mant.

exp := exp + normalize.

mant := mant / (10 raisedTo: normalize).

This code must be complemented by types for the
six parameters. Types consists of the specification of
possible values for sign, exponent and significand. It
also defines the precision of the number, that can be
used with the same status as standard floating points
due to the object oriented language.

2.3. Execution model

The execution model used by the compiler is a high
level replication of LUT-based FPGAs. We define a
‘program’ as a function that needs to be executed on a
set of input values. Thus the notion of program groups
at once the algorithm and the data description. Our
program can be embedded in higher level computations
of various kind, implying variables or memories. Data
descriptions are inferred from these levels.

An execution is the traversal of a hierarchical net-
work of lookup tables in which values are forwarded. A
value change in the input of a table implies a possible
change in its output that in turn induces other changes
downstream. These networks reflect the effective func-
tion structure at the procedure call grain and they have
an algorithmic meaning. Among the different possibili-
ties offered for execution, there are cascaded hash table
accesses, and use of general purpose arithmetic units
where they can fit.

Translation to FPGAs can take advantage of the
staticity of the tables by exchanging values appearing
in the input and output for indexes in the enumeration
of values. Figure 1 shows fan-in and fan-out cases with
the aggregation of indexes in the input, and the next
index selection from the table.

There are some important results or observations
from this exchange:

1. data paths inside the network do not depend any-
more on data width but on the number of different
values present on the edges.

2. depending on the requirements at the higher level
using the program, it will be needed to insert
nodes in the input and output of the network to
handle the exchanges between values and indexes.
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Figure 1. Fan-in: index are aggregated to form
an address in the table. Fan-out: the same
index is presented to each table downstream.

3. a support is needed to produce the addressing
mechanism for index tables. As we are willing to
map on FPGAs, it is sufficient to consider the ta-
bles as a logic table producing the output indexes
from the aggregation of the input indexes. Such a
table can be handled by logic mapping algorithms
mentioned section 1.

4. logic synthesis capability is limited to medium
grain problems. To allow compilation to FPGAs,
algorithms must progressively decrease the num-
ber of values down to nodes that can be easily
handled by the bottom layer (SIS partitioning for
LUT-n). Today, this grain is similar to algorithms
coded for 8-bit microprocessors.

5. decreasing the number of values is the natural way
in which functions operates, since the size of a
Cartesian product on a function input values is
the maximum number of values produced in the
output.

24 Type system

Language types appear to the programmers as an-
notations for checking code consistency and binding to
architecture resources. The type system we are using
does not restrict to this kind of binding. It is only in-
tended to specify any possible set of values appearing



in the program input or inside the computation net-
work. In the object environment, it is supported by a
set of classes supporting operations.

Implicit or explicit collections of values are denoted
by intervals or sets. Class-based classes are associated
either to classes having a finite number of instances
(booleans, bytes, small integers), or to user defined
new functionalities, including arithmetics. Unions are
resulting from operations on the two previous types.

3. Compiler flow
3.1. Flat expressions

Let us consider a program where the number of val-
ues appearing in the input of each function call is com-
patible with an efficient logic synthesis (partitioning for
LUT-n). Each node being directly synthesized, we have
a flat expression in opposition with hierarchical expres-
sions that will need to build new compilation contexts
for some function calls.

As a Smalltalk development environment is used,
there is an obvious interest to use the same syntax for
'programs’ targeting FPGAs. An immediate benefit is
the reuse of the standard compiler front-end.

function values

. optimizations
index net.

syntax tree

logic net

L circuit
. 10 timizations
logic net J Ld

optimizations

Figure 2. Compiler flow

1. Building the value network

The first compilation stage consists in building an
acyclic flat graph which nodes are lookup tables
based on values and which edges allow to pass val-
ues downstream.

As stated, the syntax tree is produced by the stan-
dard compiler. The directed acyclic graph (DAG)
is built by analyzing the syntax tree and variable
use. Local variable references are eliminated. At
this stage nodes are still holding function calls re-
ceiving edges from the function parameter list, or
other nodes.

To replace these nodes by lookup tables, the values
are propagated progressively from the function pa-

rameter list. A graph traversal is achieved mostly
breadth-first, building a table for each ready node.

During this transformation care must be taken of
dependent variables in fan-out to fan-in subnets.
As h(f(z,y),g(x,2)) has a smaller output than
h(f(z,y),9(t,2)), a number of inputs in the fan-
in node and upstream are not useful and can be

deleted.

Another focus of interest is the special meaning of
some nodes such as the conditional instructions.
For these cases the input values in the true and
false branches must reject the values selected or
discarded by the conditional expression.

2. High level optimization and building the in-
dex network

After this first stage we have a situation similar to
a compiler having a language semantic knowledge
because the tables have inferred equivalent prop-
erties from message execution. It is time to apply
usual high level optimizations such as elimination
of constant nodes and dead code or subexpression
factorization. This imply backward and forward
processing on the DAG.

The next transformation is the translation of the
DAG by deducing index based tables from associ-
ations of value tables. This is achieved by gener-
ating index for values. Care must be taken of class
based types to preserve their special encoding.

3. LUT based optimizations and architecture
mapping
Index path optimizations involves the detection
of subnets with particular topologies. As an ex-
ample, linear cascade of tables can be grouped in
a single table. For logic translation, each index-
based table is given to logic synthesis tools to
produce an equivalent binary description. At this
stage we must take into account the size of LUT
memories in the target architecture. The result is
a two level hierarchical logic description which is
a binary equivalent for the high level program.

The last stage is to place and route the logic graph
using the generic tools in the RA framework, pro-
ducing a hardware module.

3.2. Hierarchical aspects

In section 3.1 the program was supposed to be di-
rectly synthesizable at each function call. We are now
considering the more general case where calls must be
developed to reach this condition.



The logic needed to implement a particular function
call depends on the expressed algorithm, the number of
parameters, the number of possible values for param-
eters and the original encoding of values in the higher
level environment. A valuable property of an algorithm
is its ability to quickly decrease the number of values
present on graph edges. This gradual decrease comes
from function calls that are processed in the same way
as their root function, for every node showing an ex-
cessive complexity related to synthesis.

When the compiler reaches such a condition, it cre-
ates a new compilation context and process recursively
the call. The context will return a logic description
that will be installed as part of the current level pro-
duction.

The general form of a logic description associated to
a compiled program is a hierarchical description that
can be partially flattened for further logic optimization,
and partially placed under control of a floor planner.

A more speculative compiler built-in function is type
partitioning. When a data set appears to be too much
large, the compiler decides to partition the type in or-
der to reach a synthesizable grain. Automatic type
division by the compiler should be considered only as
a quick approximation, since the function algorithms
are normally written to manage synthesis complexity
at high level.

A similar situation is the knowledge of a "best encod-
ing’ for values. As an example, the order of elements in
a Galois field has an influence on the logic complexity
of basic operators. If these operations are dominant
in the code, rules must be attached to the compiler to
prevent new type generation in node outputs.

4. Examples
4.1. Floating point multiplier

Here we comment synthesis of the multiplier de-
scribed in section 2.2. This operator is designed and
checked in the high level environment, as a normal
method used in numeric algorithms. By adding types,
we allow the compiler to produce a logic circuit equiv-
alent to the software behavior.

The DAG is built and the lookup tables associated
with each node are computed. Depending on the local
complexity, an additional development of a call can be
executed.

A range of multipliers up to 12 bits x 12 bits
have been synthesized in times not exceeding 5 min-
utes (1Ghz PIII). All these multipliers have been post-
optimized using standard algorithms from SIS. This is
achieved in a maximum delay of 1h 30 minutes with a

logic reduction of 25% for 500 luts of 4 variables. We
think that post-optimization can be executed more ef-
ficiently by local algorithms rather than flattening the
circuit (work in progress).

Remember that this multiplier can be optimized
when it is used in expressions involving constants or
set of values.

4.2. Results for RAID corrector

A first example on which the basic approach has
been applied successfully is a generator for a family
of Reed-Solomon decoders for a RAID system. These
decoders are basically linear system solver used with
Galois field arithmetic to reserve the reversibility. The
generator produces corrector for each possible failures.
A corrector is a large mathematical expression that can
be computed on different kind of numbers. By present-
ing data types and expressions to the compiler, we are
able to produce a synthesizable program as long as the
elementary operations in GF are synthesizable. Our
compiler has processed automatically each of the pos-
sible decoders, some of them being placed and routed
on abstract FPGAs similar to Xilinx architectures to
provide area and delay characteristics.

The high level part of the development has been
achieved in the order of two days based on Plank’s
tutorial[8]. The application is interesting for FPGA im-
plementation since each possible disk failure can have
its specific configuration correction circuit.

The RAID system has n data disk and p redundancy
disks. A valid example is n = 8,p = 2, and a particular
decoder takes its input in the 10 disk array producing
the output for a particular disk.

The table 1 shows the average numbers of nodes ob-
tained for all the possible decoders associated to fail-
ures with n = 4,p = 3. Upper part of the table is
related to high level value optimizations. The lower
part are optimizations obtained after encoding (values
exchanged for indexes). There is an important gain on
the number of nodes and critical path, due to the large
number of constant coefficients produced by the solver.

To give an idea of the hardware resources involved in
a decoder, an instance with n = 8 and p = 2 involving
90 operations on a 15 stage critical path has been re-
duced to a 14 operation network with an 8 stage critical
path after operator fusion. This decoder was translated
to a 31 LUT-4 network with a 15 LUT-4 critical path,
and a 79 LUT-2 network with a 19 LUT-2 critical path.
In the first case the area is 72 LUT-4, in the second case
121 LUT-2. Notice that the area is mostly conditioned
by the number of I/Os in the rectangular shape.

The only specific information given to the compiler



was the inference rule on types for GF16 numbers. This
was necessary to keep a known optimality of encoding
during the index network generation. Beside this, the
compiler has handled the whole work efficiently up to
place and route for two different FPGA architectures
(see figure 3). It is difficult to compare the efficiency
of these circuits with other works since most of these
works focus on operator complexity|[7] rather than on
whole program optimization, as it is the case there.

stage operators | critical path
initial expression | 85.08 11.24
constant folding | 11.68 7.65
factorization 10.41 7.65

no-op removal 7.42 5.75
operator fusion 4.5 3.62

Table 1. Average numbers of nodes and criti-
cal path stages for all 4:3 RAID decoders
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Figure 3. Decoder 8+2 on a Lut-4 architecture

5. Work status and perspectives

Section 1 has presented our project in three parts.
RA modeling tools are operational, with a practical
implementation on xc6200 and current modeling for
the Virtex. There are also investigations on designing
and tuning new FPGA architectures with our tools.

The compiler described in this paper is in progress.
Procedure call translation is working, but optimiza-

tion for tests (if), variable dependencies, and class-
based type inference are not fully implemented. At
the higher level, we are experimenting the compiler on
regular architectures. The link with system synthesis
can be found in a previous work where a whole ap-
plication code has been synthesized for an embedded
system featuring a smart vision sensor. Code produc-
tion (C, communications and microcode) was achieved
using class-based types|[2].

We would like to point out that logic synthesis is not
exclusive of architecture synthesis, the type system al-
lowing to detect sparse data path or, at the opposite,
opportunities to reuse general purpose operators. Our
main conclusion is that this method gives the possi-
bility to create specific logic based on clear algorithm
expression. These algorithms are handling the logic
exactly needed in the situation, leading to short devel-
opment times and efficient hardware.
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