
HAL Id: hal-01829251
https://hal.univ-brest.fr/hal-01829251

Submitted on 14 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DoTRo: A New Dominating Tree Routing Algorithm for
Efficient and Fault-Tolerant Leader Election in WSNs

and IoT Networks
Ahcène Bounceur, Madani Bezoui, Loïc Lagadec, Reinhardt Euler,

Abdelkader Laouid, Mohammad Hammoudeh

To cite this version:
Ahcène Bounceur, Madani Bezoui, Loïc Lagadec, Reinhardt Euler, Abdelkader Laouid, et al.. DoTRo:
A New Dominating Tree Routing Algorithm for Efficient and Fault-Tolerant Leader Election in WSNs
and IoT Networks. 4th International Conference on Mobile, Secure and Programmable Networking
(MSPN 2018), Jun 2018, Paris, France. pp.42-53. �hal-01829251�

https://hal.univ-brest.fr/hal-01829251
https://hal.archives-ouvertes.fr

DoTRo: A New Dominating Tree Routing
Algorithm for Efficient and Fault-Tolerant

Leader Election in WSNs and IoT Networks󰂏

Ahcène Bounceur1,2,5, Madani Bezoui1,3, Loic Lagadec1,4, Reinhardt Euler1,2,
Laouid Abdelkader5,6, and Mohammad Hammoudeh7

1 Lab-STICC CNRS UMR 6285
2 Université de Bretagne Occidentale, Brest, France

3 Department of Mathematics, Université de Boumerdes, Boumerdes, Algeria
4 ENSTA Bretagne, Brest

5 LIMED Laboratory, Bejaia, Algeria
6 University of El-oued, Algeria

7 Manchester Metropolitan University, Manchester, UK
Ahcene.Bounceur@univ-brest.fr

Abstract. A leader node in Ad hoc networks and especially in WSNs
and IoT networks is needed in many cases, for example to generate keys
for encryption/decryption, to find a node with minimum energy or situ-
ated in an extreme part of the network. In our work, we need as a leader
the node situated on the extreme left of the network to start the process
of finding its boundary nodes. These nodes will be used to monitor any
sensitive, dangerous or non-accessible site. For this kind of applications,
algorithms must be robust and fault-tolerant since it is difficult and even
impossible to intervene if a node fails. Such a situation can be catas-
trophic in case that this node is the leader. In this paper, we present a
new algorithm called DoTRo, which is based on a tree routing protocol.
It starts from local leaders which will start the process of flooding to de-
termine a spanning tree. During this process their value will be routed. If
two spanning trees meet each other then the tree routing the best value
will continue its process while the other tree will stop it. The remaining
tree is the dominating one and its root will be the leader. This algorithm
turns out to be low energy consuming with reduction rates that can ex-
ceed 85%. It is efficient and fault-tolerant since it works in the case where
any node can fail and in the case where the network is disconnected.

Keywords: Wireless Sensor Network · IoT · Leader Election · Dis-
tributed algorithms · Dominating Tree Routing.

1 Introduction and related work

This paper comes within the context of secured sites where one needs to find
the boundary nodes of wireless sensor and IoT networks. Many algorithms exist

󰂏 This project is supported by the French National Research Agency ANR PERSEP-
TEUR - REF: ANR-14-CE24-0017.

2 A. Bounceur et al.

in the literature. A recent algorithm, called D-LPCN [1], can be used for this
purpose. This algorithm starts from the node which is on the extreme left of
the network, that we suppose to be embedded in the plane with nodes being
identified by their coordinates. To find this particular node, one can use any
Leader Election algorithm, which is a process of electing one particular node in
a network. Usually, the leader process is required to play a particular role for
coordination or control purposes. There is no solution for this problem in the
case of anonymous systems [2], i.e., systems with nodes having no identifiers. In
other words, there is no way to differentiate a process pi from another process pj .
Due to this problem, we assume in this paper that each process pi has a unique
identifier idi. Moreover, it is assumed that the identifiers can be compared with
each other.

In the literature, one can define two main families of leader election meth-
ods. The leader election for ring topologies and the leader election for arbitrary
topologies (e.g., ad hoc networks).

Regarding the first case of ring topologies, authors of [3] have presented
an algorithm for bidirectional rings, where each process has a left and a right
neighbor, and where it can send and receive messages from any neighbor. Authors
of [4] have presented an algorithm for unidirectional rings, in which the channels
are receiving messages in FIFO mode. As in [3], initially, all processes compete to
be elected as a leader, and execute consecutive rounds to that end. During each
round, at most half of the processes that are competitors remain competitors in
the next round.

Regarding the second case of arbitrary topologies, in [5] and [6], two leader
election protocols have been presented for static networks. In these algorithms,
several minimum-weight spanning trees are established, which will be reduced
to only one spanning tree. Then the root will be the leader. In [7], two leader
election algorithms have been proposed for mobile ad hoc networks. The algo-
rithms assume that each connected component of the graph has exactly one
leader. They are based on a routing algorithm TORA presented in [8]. Another
algorithm is presented in [9, 10] for asynchronous mobile ad hoc networks AEFA
(Asynchronous Extrema Finding Algorithm), which is a weakly self-stabilizing
algorithm in which each node possesses some weight representing the criteria
to elect the best-node. It constructs and maintains a spanning tree using the
diffusion computation to elect a leader. The paper [11] introduces a leader elec-
tion algorithm for mobile ad hoc networks, which is based on an extrema-finding
concept that elects a unique node and, on the basis of specific characteristics,
outperforms all the other nodes in the network. Another algorithm is proposed
in [12] for the election of a leader in an asynchronous network with dynami-
cally changing communication topology. In the last decade, several clustering
and leader election algorithms has been developed and tested to address the
challenges of communication efficiency and fault tolerance in Wireless Sensor
Networks (WSN) [13, 14].

In this paper, we propose a new algorithm for arbitrary networks. This al-
gorithm starts with a given set of local minima, each of which will start as a

Title Suppressed Due to Excessive Length 3

root the process of flooding in order to determine a spanning tree on which to
route its value. If two spanning trees meet, the one routing the better value will
continue the flooding process and the other one will stop it. After a given time,
only one spanning tree will remain and its root will be the leader.

The remainder of the paper is organized as follows: Section 2 presents the
classical Minimum Finding algorithm. Section 3 introduces the Local Minima
Finding algorithm. Section 4 is dedicated to the proposed DoTRo algorithm.
The used simulator is briefly presented in Section 5 and the simulation results
are presented in Section 6. Finally, Section 7 concludes the paper.

2 The Minimum Finding Algorithm

In this section, we will present a distributed algorithm that allows to determine
a leader node representing the node with minimum or maximum value v. This
value can represent the local energy of the battery, the residual energy, the x-
coordinate in a network, etc. Let us first define in Table 1 the functions used in
the algorithms that will be presented in this paper.

Table 1. Functions of the proposed algorithms.

Function Definition

getId() returns the node identifier

delay(t) waits t milliseconds before going to the next
instruction

stop() stops the execution of the program

send(a,b)sends the message a to the sensor node hav-
ing the identifier b or in a broadcast (if b = ∗)

read() waiting for receipt of messages. This func-
tion is blocking, which means that if there
is no received message any more, it remains
blocked in this instruction

read(t) waiting for receipt of messages. If there is no
received message after tmilliseconds then the
execution will continue and go to the next
instruction

The Minimum Finding Algorithm presented in [15, 16] relies on the tree-
based broadcast algorithm. Indeed, it can also be used to find the maximum
value. The principle of this algorithm can be described as follows. First, each
node of the network assigns its local value to the variable xmin assumed to
represent the minimum value of the network (the leader). Then it will broadcast
this value and wait for other xmin values coming from its neighbors. If a received
value xmin is less than its local xmin value then this one will be updated and

4 A. Bounceur et al.

broadcasted again. This process is repeated by each node as long as a received
value is less than its local xmin value. After a certain time tmax, there will be
only one sensor node that has not received a value that is smaller than its local
xmin value. This node is the leader. The pseudo-code of this process is given by
Algorithm 1, where t0 is the time of the first execution of the algorithm, which
can correspond to the first powering-on of a sensor node, tc the current local
time of a sensor node, and tmax the maximally tolerated running time of the
algorithm from the first execution to the current time of a sensor node.

Algorithm 1 MinFind : The pseudo-code of the classical Leader Election Algo-
rithm
Input: wt, x
Output: leader
1: leader = true
2: xmin = x
3: send(xmin, *)
4: while (true) do
5: xr = read(wt)
6: if (xr == null) then
7: stop()
8: end if
9: if (xr < xmin) then
10: leader = false
11: xmin = xr

12: send(xmin, *);
13: end if
14: end while

3 The Local Minima Finding algorithm

A local minimum node, also called Local Leader, is the node which has no neigh-
bor with a value smaller than its own value. But, this value is not necessarily a
global minimum.

The Local Minima Finding (LMF) Algorithm uses the same principle as
the previously presented MinFind algorithm to determine if a node is a local
minimum or not, with the exception that each node will send its coordinates
only once, and after reception of messages from all its neighbors, it decides if it
is a local minimum or not in case it has received a smaller value than its own.
The algorithm of finding local minima is given as follows:

Title Suppressed Due to Excessive Length 5

Algorithm 2 LMF : The pseudo-code of the Local Minima Finding Algorithm

Input: wt, v
Output: local min
1: local min = true;
2: xmin = v;
3: send(xmin, *);
4: while (((x = read(wt)) ∕= null) and local min) do
5: if (x < xmin) then
6: local min = false;
7: end if
8: end while

4 The proposed DoTRo algorithm

4.1 The DoTRo algorithm

The DoTRo algorithm is is based on a tree routing protocol. It starts from local
leaders which will run, as a root, the process of flooding [19] to determine a
spanning tree. During this process the value of the leader (root) will be routed.
If two spanning trees meet each other then the tree routing the best value will
continue its process while the other one will stop it. Based on the example of
Figure 1, we present in the following the main steps of the DoTRo algorithm,
where we assume that the leader is the node having the maximum value:

1. Step 1: For the network of Figure 1(a) we run the LMF algorithm (cf. Al-
gorithm 2) to determine the local minima. The obtained result is shown by
Figure 1(b) where we have two local minima: 1 and 4 because they are the
only nodes that don’t have any neighbor with a value smaller than their own
value.

2. Step 2: Each local minimum will start the flooding process to route the
leader value (local minimum) over the tree (cf. Figure 1(c)).

3. Step 3: If two trees meet, as is the case of the center node in Figure 1(c), the
red tree chooses the center node with value 1 and the blue tree will choose
the same center node with value 4. Since 1 is less than 4, the center branch
of the blue tree will stop the flooding process, whereas the other branch will
continue, and the center branch of the red tree will continue the flooding
process. The obtained result is shown by Figure 1(d). Figures 1(e) and (g)
show another meeting and Figures 1(f) and (h) show the result of the DoTRo
algorithm after this meeting.

4. Step 4: Each local minimum will wait for a given time, assumed to be suffi-
cient to finish the process of flooding. If after this time there is no received
message anymore, the corresponding local minimum will become the leader.

4.2 The DoTRo pseudo-code

The pseudo-code of the DoTRo algorithm is given by Algorithm 3. It is composed
of three main parts that are: 1) the initialization part (lines 1 to 4) where each

6 A. Bounceur et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. DoTRo algorithm illustration.

Title Suppressed Due to Excessive Length 7

node is considered as a leader (line 4), 2) the LMF algorithm (line 5 and from
line 8 to line 18) and 3) the flooding process (from line 21 to line 30). The second
part is explained above and in the third part, each node will wait for a message
representing the value of the local minimum routed during the flooding process.
If the received value is less than its own value then it will route it to continue
the flooding process, and it will be considered as a non-leader node. Otherwise,
the node will do nothing, which will stop the process of flooding.

Algorithm 3 DoTRo: The pseudo-code of the DoTRo algorithm

Input: x, wt1, wt2
Output: leader
1: id = getId()
2: xmin = x
3: step = 1
4: leader = true
5: send(x, *)
6: while (true) do
7: if (step == 1) then
8: rx = read(wt1)
9: if (rx == null) then
10: step = 2
11: if (leader == true) then
12: send(x, *)
13: end if
14: else
15: if (rx < x) then
16: leader = false
17: end if
18: end if
19: end if
20: if (step == 2) then
21: rx = read(wt2)
22: if (rx == null) then
23: stop()
24: else
25: if (rx < xmin) then
26: leader = false
27: xmin = rx
28: send(rx, *)
29: end if
30: end if
31: end if
32: end while

8 A. Bounceur et al.

5 CupCarbon simulator and SenScript

The simulation of networks is an essential tool for testing protocols and their
prior-performance deployment. Indeed, such an establishment may be costly and
challenging, especially when a large number of nodes are to be distributed at
a large scale. This is why the simulation of networks is essential. CupCarbon
is a Smart City and Internet of Things Wireless Sensor Network (SCI-WSN)
simulator. Its objective is to design, visualize, debug and validate distributed
algorithms for monitoring, tracking, collecting environmental data, etc., and to
create environmental scenarios such as fires, gas, mobiles, and generally within
educational and scientific projects. It can help to visually explain the basic con-
cepts of sensor networks and how they work; it may also support scientists to
test their wireless topologies, protocols, etc. (cf. Figure 2).

Fig. 2. CupCarbon User Interface.

Networks can be designed and prototyped by an ergonomic and easy to use
interface using the OpenStreetMap (OSM) framework to deploy sensors directly
on the map. It includes a script called SenScript, which allows to program and
configure each sensor node individually. The energy consumption can be calcu-
lated and displayed as a function of the simulated time. This allows to clarify the
structure, feasibility and realistic implementation of a network before its real de-
ployment. CupCarbon offers the possibility to simulate algorithms and scenarios
in several steps. For example, there could be a step for determining the nodes of
interest, followed by a step related to the nature of the communication between
these nodes to perform a given task such as the detection of an event, and finally,
a step describing the nature of the routing to the base station in case that an
event is detected [17, 18]. SenScript is the script used to program sensor nodes
of the CupCarbon simulator. It is a script where variables are not declared, but
can be initialized. For string variables, it is not necessary to use the quotes. A

Title Suppressed Due to Excessive Length 9

variable is used by its name (e.g., x), and its value is determined by $ (e.g.,
$x). Algorithm 4 shows an example of a SenScript code. The command atget
id cid of line 1 allows to assign to variable cid the identifier of the current node.
The command loop allows to start the loop section, where all the code situated
after will be executed infinitely. The command textbfwait will allow to wait for
a received message. This command is blocking and the next code will not be
executed until a message is received. The command read of line 4 will assign
the received message in the buffer to x. In the line 5, we test if the received
message (an identifier) is less than the value of the current identifier cid. If is
the case, the line 6 will be executed, and the node will be marked (mark 1),
otherwise (line 7), the line 8 will be execute, where the current sensor will be
unmarked (mark 0).

Algorithm 4 SenScript example

1: atget id cid
2: loop
3: wait
4: read x
5: if($x < $cid)
6: mark 1
7: else
8: mark 0
9: end

6 Simulation results

To compare our algorithm with the classical MinFind algorithm, we have gen-
erated 9 networks in a rectangular area of (z × z)m2, where z is varied from
200 to 1000 with n randomly generated nodes. The value of n is fixed so that
the density of the nodes in each network remains the same. We have fixed it
to 10 nodes/hm2 (hm: hectometer), i.e., 10 nodes in an area of 100m × 100m.
Note, that we consider symmetric communications between nodes.

We have considered two cases. In the first case (case 1), each node generates
a value representing its x-coordinate. In the second case (case 2), the consid-
ered value represents a random value. For each network, we have calculated the
number of transmitted and received messages (exchanged messages) in order to
compare their energy consumption which is directly related to this metric. We
have obtained the graph of Figure 3. In both cases, we have executed the al-
gorithm MinFind [15]. The obtained results are shown by the black curves of
Figure 3 labeled as MinFind1 (case 1) and MinFind2 (case 2) and the red curve
for DoTRo1 (case 1) and the blue curve for DoTRo2 (case 2). As we can see, the
DoTRo algorithm is less energy consuming than the MinFind algorithm. This
is confirmed by Figure 4 which shows the reduction rate between the MinFind

10 A. Bounceur et al.

algorithms for both cases defined above. In the case where the leader represents
the smallest x-coordinate value, we can see that the reduction rate reaches 83%
for a network with 1000 nodes and it is growing for larger networks. This kind of
leader is needed in the case of the D-LPCN algorithm [1] which starts from the
node situated on the extreme left. In the case of other kinds of leaders (random,
id, etc.) the proposed algorithm can reach a reduction rate of 30%. Altogether,
we can conclude that the proposed algorithm is less energy consuming than the
classical algorithm MinFind.

Fig. 3. Simulation results.

Fig. 4. Reduction rate.

Title Suppressed Due to Excessive Length 11

7 Conclusion

We have presented a new algorithm called DoTRo (Dominating Tree Routing)
which starts from the local minima found using the LMF algorithm. Then each
local minimum starts as a root the process of flooding in order to determine the
spanning tree while routing its value over it. If two spanning trees meet, the
one routing the better value will continue the flooding process and the other
one will stop it. After a given time, only one spanning tree will remain and its
root will be the leader. The obtained results show that the proposed algorithm
is less energy consuming with rates that can exceed 85% when searching the
minimum x-coordinate and 30% when searching the minimum random value.
Another advantage of the proposed algorithm is that it is fault tolerant since
it starts even when there are failing nodes and it also finds the leader of each
connected component of the network.

References

1. Saoudi, M., Lalem, F., Bounceur, A., Euler, R., Kechadi, M. T., Laouid, A., Madani,
B., and Sevaux, M., D-LPCN: A Distributed Least Polar-angle Connected Node Al-
gorithm for Finding the Boundary of a Wireless Sensor Network, Ad Hoc Networks,
Elsevier, Volume 56, 1 March 2017, Pages 56-71.

2. M. Raynal. Distributed algorithms for message-passing systems, volume 500.
Springer, 2013.

3. D. S. Hirschberg and J. B. Sinclair. Decentralized extrema finding in circular con-
figuration of processors. Communications of the ACM, 23(11):627-628, 1980.

4. D. Dolev, M. Klawe, and M. Rodeh. An O(n log n) unidirectional distributed algo-
rithm for extrema finding in a circle. Journal of Algorithms, 3(3):245-260. 1982.

5. R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for
minimum-weight spanning trees. ACM Transactions on Programming Languages
and systems (TOPLAS), 5(1):66-77, 1983.

6. D. Peleg. Time-optimal leader election in general networks. Journal of parallel and
distributed computing, 8(1):96-99, 1990.

7. N. Malpani, J. L. Welch, and N. Vaidya. Leader election algorithms for mobile ad hoc
networks. In Proceedings of the 4th international workshop on Discrete algorithms
and methods for mobile computing and communications, pages 96-103. ACM, 2000.

8. V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for
mobile wireless networks. In the Proceedings of the Sixteenth Annual Joint Confer-
ence of the IEEE Computer and Communications Societies. Driving the Information
Revolution., volume 3, pages 1405-1413. 1997.

9. S. Vasudevan, B. DeCleene, N. Immerman, J. Kurose, and D. Towsley. Leader elec-
tion algorithms for wireless ad hoc networks. In the Proceedings of the IEEE DARPA
Information Survivability Conference and Exposition, 2003. Volume 1, pages 261-
272, 2003.

10. S. Vasudevan, J. Kurose, and D. Towsley. Design and analysis of a leader elec-
tion algorithm for mobile ad hoc networks. In the Proceedings of the 12th IEEE
International Conference on Network Protocols. ICNP 2004, pages 350-360. 2004.

11. A. Boukerche and K. Abrougui. An efficient leader election protocol for mobile
networks. In Proceedings of the ACM international conference on Wireless commu-
nications and mobile computing, pages 1129-1134, 2006.

12 A. Bounceur et al.

12. R. Ingram, P. Shields, J. E. Walter, and J. L. Welch. An asynchronous leader elec-
tion algorithm for dynamic networks. In IEEE International Symposium on Parallel
& Distributed Processing, IPDPS’09, pages 1-12, 2009.

13. M. Hammoudeh, Modelling clustering of sensor networks with synchronised hy-
peredge replacement, International Conference on Graph Transformation, Springer,
Berlin, Heidelberg, 490-492, 2008.

14. M. Hammoudeh and T. Alsbou’i, Building programming abstractions for wireless
sensor networks using watershed segmentation, Smart Spaces and Next Generation
Wired/Wireless Networking, Springer, Berlin, Heidelberg, 587-597, 2011.

15. Santoro, N., Design and analysis of distributed algorithms, Vol. 56, John Wiley &
Sons, 2007.

16. N. A. Lynch, Distributed algorithms, Morgan Kaufmann, 1996.
17. CupCarbon simulator, http://www.cupcarbon.com
18. Mehdi, K., Lounis, M., Bounceur, A., and Kechadi, T. CupCarbon: A Multi-Agent

and Discrete Event Wireless Sensor Network Design and Simulation Tool, In IEEE
7th International Conference on Simulation Tools and Techniques (SIMUTools’14),
Lisbon, Portugal, 2014.

19. Tanenbaum, Andrew S.; Wetherall, David J. (2010-03-23). Computer Networks
(5th ed.). Pearson Education. p. 368-370.

