
HAL Id: hal-01713312
https://hal.univ-brest.fr/hal-01713312v1

Submitted on 26 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DAS: An Efficient NoC Router for Mixed-Criticality
Real-Time Systems

Mourad Dridi, Stéphane Rubini, Mounir Lallali, Martha Johanna Sepulveda
Florez, Frank Singhoff, Jean-Philippe Diguet

To cite this version:
Mourad Dridi, Stéphane Rubini, Mounir Lallali, Martha Johanna Sepulveda Florez, Frank Singhoff,
et al.. DAS: An Efficient NoC Router for Mixed-Criticality Real-Time Systems. 2017 IEEE
35th International Conference on Computer Design (ICCD), Nov 2017, Boston, United States.
�10.1109/ICCD.2017.42�. �hal-01713312�

https://hal.univ-brest.fr/hal-01713312v1
https://hal.archives-ouvertes.fr

DAS: An Efficient NoC Router for Mixed-Criticality Real-Time Systems
(preprint - ICCD 2017)

Mourad Dridi∗, Stéphane Rubini∗, Mounir Lallali∗, Martha Johanna Sepúlveda Flórez ‡, Frank Singhoff∗, Jean-Philippe Diguet†
∗Lab-STICC, CNRS, UMR6285, Univ. Bretagne Occidentale, 29200 Brest, France
†Lab-STICC, CNRS, UMR6285, Univ. Bretagne Sud, 56100 Lorient, France

‡ Institute for Security in Information Technology, Technical University of Munich, Germany

Abstract—Mixed-Criticality Systems (MCS) are real-time systems
characterized by two or more distinct levels of criticality. In MCS, it
is imperative that high-critical flows meet their deadlines while low-
critical flows can tolerate some delays. Sharing resources between flows
in Network-On-Chip (NoC) can lead to different unpredictable latencies
and subsequently complicate the implementation of MCS in many-core
architectures. This paper proposes a new virtual channel router designed
for MCS deployed over NoCs. The first objective of this router is
to reduce the worst-case communication latency of high-critical flows.
The second aim is to improve the network use rate and reduce the
communication latency for low-critical flows. The proposed router, called
DAS (Double Arbiter and Switching router), jointly uses Wormhole and
Store And Forward techniques for low and high-critical flows respectively.
Simulations with a cycle-accurate SystemC NoC simulator show that,
with a 15% network use rate, the communication delay of high-critical
flows is reduced by 80% while communication delay of low-critical flow
is increased by 18% compared to usual solutions based on routers with
multiple virtual channels.

I. INTRODUCTION

Many-core architectures enable multiple software components
to run at the same time on the same chip. These architectures
also include a Network-On-Chips (NoC) to provide the required
high communication bandwidth. So, the expected processing power
allows designers to deploy many computation intensive functions.
For example, in a drone application, designers will need to deploy
a classical flight control software but also computation intensive
functions such as image and video processing.

In the context of such systems, the criticality of these software
components can be different. Burns and al. [1] define the criticality
as a designation of the level of assurance against failure needed for
a system component. This kind of systems, characterized by two or
more distinct levels of criticality, is called Mixed Criticality Systems
(MCS). In MCS, hard real-time and soft real-time applications share
the same hardware platform and may exchange messages through
a common communication infrastructure. Hard real-time applications
such as longitudinal flight controller, have very stringent communica-
tion service requirements. It is imperative to meet deadlines otherwise
the whole system might fail, leading to catastrophic results, like, loss
of life or serious damage to the environment. In contrary, soft real-
time applications such as video encoder, can tolerate some missed
deadlines. So, in this paper, we will consider two criticality levels of
communication flows: high-critical flows and low-critical flows.

We focus on the implementation of MCS on many-core systems.
Network-On-Chips (NoCs) are mandatory in such architectures since
they provide scalability, modularity, and communication parallelism.

This work and Cheddar (a GPL real-time scheduling analyzer) are supported
by Brest Métropole, Ellidiss Technologies, CR de Bretagne, CG du Finistère
and Campus France PESSOA programs number 27380SA and 37932TF.

Applications with different levels of criticality exchange messages
through the communication infrastructure. Sharing resources between
flows can lead to different unpredictable latencies like direct interfer-
ences and indirect interferences [2]. Subsequently, it complicates the
integration of MCS on NoCs.

Different types of NoC router architectures have been proposed
in order to minimize delays of flows and to satisfy the timing
requirements of hard and soft real-time applications. However, none
of them can handle both high and low-critical flows. Virtual Channel
(VC) routers reduce the latencies of flows and increase the network
throughput [3]. However, VC routers are not suitable for MCS.
While providing high throughput for low-critical flows, they lead
to too pessimistic Worst Case Communication Time of high-critical
flows [4].

In this paper, we introduce a new router called DAS router (Dou-
ble Arbiter and Switching router), designed to efficiently run mixed-
criticality applications on Network On-Chip. DAS router ensures the
timing constraints for high-critical flows while limiting the bandwidth
reservation for them. DAS router uses N+1 virtual channels: N VCs
are devoted to the communication of the high-critical flows and the
last VC to the low-critical flows. To enforce MCS requirements, DAS
router implements automatic mode changes, two levels of preemption,
two flow control techniques and two stages of arbitration.

In this work, we assume that high-critical flows are characterized
by small packet sizes, while low-critical flows are characterized by
larger packets. We also assume a task mapping which ensures that
less than N critical flows share a given physical link in the NoC.
The remainder of the paper is organized as follows. First, we provide
an overview of MCS and VC routers. In section III, we detail the
proposed router. Simulation results of our DAS router, compared to
those of a VC router, are presented in section IV. Section V discusses
related work. Section VI concludes the paper.

II. BACKGROUND

In order to understand the solution we propose in sections III, this
part presents the necessary background on mixed-criticality system
and on NoC routers based on virtual channels.

A. Mixed-Criticality System (MCS)

Mixed-Criticality Systems are real-time systems characterized by
two or more distinct levels of criticality. In a MCS, hard real-time
applications have very stringent communication service requirements.
It is mandatory that all packets generated by a critical flow are
delivered before or on their deadline even under the worst case
scenarios, while soft real-time applications can tolerate some delays
in the communication service. In this work, we will consider two
criticality levels of communication flows: high-critical flows and low-
critical flows.

B. Virtual Channel NoC Router

A NoC is a network of nodes that can be a processor, a memory,
a peripheral or a cluster of nodes. The router is a key component in
NoC. The parameters of the router are very important as they can
modify the performance of the network. In this sequel, we give an
overview of one particular type of router: the virtual channel router.

A virtual channel is an unidirectional logical connection between
two nodes multiplexed with other virtual channels across the physical
channel. The router is composed of input and output ports, a routing
logic, a VC allocator, a switch allocator, and a crossbar [3].

VC allocator: The VC allocator assigns an available output
channel to a new packet located in one of the input VC buffers.
The allocation involves an arbitration between all packets requesting
the same output channel. There exist several arbitration mechanisms.
Round-robin and priority-based, are examples of these mechanisms.
Round-robin arbiter gives the lowest priority to the last served request
in the next arbitration while priority-based arbiter chooses one packet
from many requests based on their priority [5].

Switch Allocator: It matches requests to output ports, and gen-
erates the required crossbar control signals. Moreover, the switching
mode determines how a packet is allocated to buffers and channels
and when it will receive service. For the Store And Forward mode
(SAF), each switch waits for the full packet to arrive in a switch
before sending it to the next router [6]. With SAF, buffer size and
communication time depend on packet size. For the Wormhole mode,
the packet is divided into a number of fixed size flits [7]. The packet
is splited into a header flit, one or several body flits and a tail flit.
The header flit stores the routing information and builds the route.
As the header flit moves ahead along the selected path, the remaining
flits follow in a pipeline way and possibly span a number of routers.

III. THE PROPOSED ROUTER: DOUBLE ARBITER AND

SWITCHING ROUTER (DAS ROUTER)

The architecture of the DAS router is shown in Fig. 1. DAS
router is composed of N + 1 virtual channels, input and output
arbitration units, a routing logic, a VC allocator, a switching allocator
and a crossbar. It combines two switching modes: on each port, the
router can use a wormhole or a Store-And-Forward (SAF) switching
techniques depending on the criticality of the packets. In the sequel,
we describe the use of N + 1 virtual channels and we explain why
we use SAF for high-critical flow and wormhole for low-critical flow.
Then, we discuss the choice of N . Finally, we present the two stages
of arbitration used in DAS router.

A. N+1 Virtual Channels

VCs 1 to N of the DAS router are dedicated to high-critical flows
and VC N+1 is used for all low-critical flows. The N virtual channels
of the high-critical flows use SAF switchings; Each is dedicated to
only one given flow. The last VC dedicated to low-critical flows, is
managed by a wormhole switching technique. VC N + 1 can so be
shared by several low-critical flows.

1) SAF for high-critical flows: High-critical flows are transmitted
with a SAF policy and the preemption is managed at the packet level.
In other words, a high-critical packet cannot be preempted by another
flow. The main drawback of this policy is the input buffer cost that
must be large enough to store the entire packet. We consider that this
cost is limited in our context, since the analysis of real-life critical
systems shows that high-critical flows are usually characterized by

small packets size (e.g. sensor and control signals). For instance, in
the ROSACE avionics benchmarks [8], it does not exceed 3 flits of
32 bits.

In a wormhole policy, a packet can be stored over multiple routers
and then can occupy several physical links at a time, and consequently
increases the potential congestion over the network. The links used
by a packet are unavailable for other packets arriving into the router,
and this additional blocking time makes difficult the computation of
the WCCT [4]. On the contrary, using a SAF policy, each packet
allocates only one link at a time and the congestion can be controlled
without a prohibitive cost considering small high-critical packets.

SAF and packet-level preemption allow us to minimize the
pessimistic degree of the computed WCCT. Moreover, by allocating
one virtual channel to each high-critical flow, we can adapt the real-
time scheduling analysis proposed in [2] to SAF policy and compute
offline the WCCT for high-critical flows. As a result, SAF switching
is intended to improve the schedulability of flows.

2) Wormhole for low-critical flows and Flit-level Preemption:
Low-critical flows are transmitted with a wormhole policy. Wormhole
is largely adopted in NoCs because it does not require large capacity
buffers and, at the same time, it minimizes the communication latency.

We need to preempt a low-critical flow as soon as possible when a
high-critical flow occurs in order to ensure predictable communication
time and minimal interference delay for the later. So, the preemption
is implemented at the flit level for the last virtual channel. In other
words, high-critical flows, which use N first virtual channels, can
preempt any low-critical flows at flit level.

3) Number of virtual channels: The number N of virtual channels
allocated to high-critical flows depends on communication require-
ments of the software tasks, but also of the mapping of these tasks.
On the one hand, for a fixed task mapping, we can choose N as
the maximum of high-critical flows sharing the same link. We note
that the higher the value of N , the larger the overhead of area for
the NoC implementation. On the other hand, for a fixed N , we
must choose a task mapping which allows us to have at most N
high-critical flows sharing the same link. This kind of problems is
similar to a Quadratic Assignment Problem (QAP) [9]. This is an
NP-Hard optimization problem and there are several heuristics that
can be used for defining such mapping as those described in [10]
or [9]. These articles present multi-criteria heuristics to optimize the
total communication volume and the number of virtual channels. This
optimization issue is orthogonal to the scope of this paper.

B. The Two Stages of Arbitration

At each cycle, in the DAS router, only one virtual channel can
advance from an input port, and only one virtual channel can be
accepted by each output port. As shown in Fig. 1(b), DAS router
implements input and output arbitration units in order to solve these
problems. In the sequel, we describe these units.

1) Input Arbitration Unit: Many virtual channels of the same
input port can ask to advance to different or the same output port
while the router can accept just one virtual channel from each input
port at each cycle. The main task of input arbitration unit is to choose
one virtual channel for each input port.

2) Output Arbitration Unit: On the other hand, many virtual
channels of different input ports can ask to advance to the same output

Fig. 1: DAS Router architecture: (a) Architecture, (b) Stages of
arbitration

port while only one virtual channel can be accepted by each output
port. The main task of output arbitration unit is to choose one virtual
channel for each output port.

Input and output arbitration units are based on two stages of
arbitration. The first stage is a round robin arbitration between the
N first virtual channels while the second stage is a priority-based
arbitration between the winner of the first stage and the last virtual
channel.

The first stage has to be fair and gives equal chance between all
the high-critical flows while, the second stage provides the flit-level
preemption to high-critical flows. So, the winner of the first stage
can preempt at flit-level the last virtual channel used by low-critical
flows.

IV. IMPLEMENTATION AND EVALUATION

We have implemented the DAS router in the cycle accurate
SystemC-TLM simulator SHOC [11]. SHOC provides all NoC com-
ponents for the simulations of MPSoCs. It supports different types of
traffic generators and consumers, and allows us to observe the traffic
in the NoC. The evaluation consists of two experiments. First, we
study the impact of resource sharing on high-critical flows in order
to check the ability of DAS router to bound communication delays.
Second, we evaluate the additional latency of low-critical flow caused
by high-critical flows resource reservation.

The simulation results are established for two different NoCs.
Both are 4*4 2D-mesh and use XY routing algorithm, but the first
one is based on a traditional architecture of wormhole virtual channel
router and the second one is the router we proposed in III.

A. High-critical flow latency

In this section, we evaluate the impact of the resource sharing on
the communication delay of high-critical flows. In every evaluation,
one high-critical flow is assigned to a randomly generated source and
destination node. Then, we perform 100 simulations by increasing the
use rate of the network. For each simulation, we generate low-critical
flow sets which share some physical links with the high-critical flow.

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25

La
te

n
cy

 (
C

lo
ck

 c
yc

le
)

Measured Throughput (% of network capacity)

VC-Router(Average) VC-Router (MAX) DAS Router (Average) DAS Router (MAX)

Fig. 2: Latency of high-critical flow with 3 physical links

For this experiment, the size of high-critical flow is 2 flits while the
low-critical flow’s size is 8 flits. The release time and the period of
each flow are randomly generated.

Fig. 2 shows the latency of the high-critical flow with different
use rates of the network; The high-critical flow goes respectively
through 3 physical links from its source to its destination node. As
expected, the combination between SAF and virtual channels with
flit-level preemption reduces significantly the latency of high-critical
flows. For 15% of network use rate, the DAS router reduces by 80%
the additional latency for high-critical flow using 3 links comparing
to a VC router. Using DAS router, high-critical flows are less affected
by the sharing of resources with low-critical flows.

B. Low-critical flow latency

In this section, we evaluate the latency overhead on low-critical
flows due to high-critical flows resource reservation comparing to
virtual channel routers. For each measure in this experiment, we
generate randomly one low-critical flow crossing 4 hops. We do 100
simulations by increasing the number of high-critical flows and by
decreasing the high-critical flow’s period in order to increase the
network use rate. Then, we measure the low-critical flow latency.
The generated high-critical flow set shares the same links with the
low-critical flows. For this experiment, high-critical flow’s size is 2
flits while the low-critical flow’s size is 8 flits. The release times of
each flow are also randomly generated.

Fig. 3 shows the latency of low-critical flows with different use
rates of the network. We can see that the preemption of low-critical
flows and the system mode change used in the DAS router lead to
larger latencies for low-critical flows compared to a virtual channel
router. Notice that low-critical flows in MCS should tolerate some
additional delays without damaging the integrity of the whole system.

V. RELATED WORKS

There is a growing interest in recent years to design NoCs for
MCS. Such protocols aim to deal with the trade-off between resource
sharing and separation of different criticality levels.

Tobuschat et al. have explicitly developed a NoC to support MCS.
Their protocol, called IDAMC [12], ensures that high-critical flows

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25

La
te

n
cy

 (
cl

o
ck

 c
yc

le
s)

Measured Throughput (% of network capacity)

DAS Router(Average) DAS Router(MAX) VC-Router(Average) VC-Router(MAX)

Fig. 3: Latency of low-critical flow with 4 physical links

meet their deadlines whilst maximizing the bandwidth given to the
low-critical flow using back suction technique. WPMC [13] is another
protocol applied to wormhole virtual channels NoCs, in order to
integrate dual criticality systems. This protocol is improved in [14].
[15] presents a run-time configurable NoC which supports safety-
critical traffic and best-effort traffic. It allows prioritizing best-effort
traffic over critical traffic, while monitoring is used to change the
priority during run-time.

[12], [13] and [15] use wormhole policy with flit-level priority
preemption. All high-critical flows with the same priority share the
same virtual channel. In addition, even high-critical flows can be pre-
empted in flit-level by other highly priority flows. This configuration
leads to a pessimistic worst case communication time which will limit
the low-critical communications [4].

VI. CONCLUSION

In this paper, we propose DAS router. DAS router implements a
new router architecture intended to deploy Mixed-Criticality Systems
on NoCs. On the assumption that the critical communication traffic is
composed of small packets, Store and Forward switching is used for
high-critical flows in order to minimize the degree of pessimism on
the estimation of the worst-case communication time. At the same
time, wormhole policy remains for low-critical flows because this
policy does not require large buffers and it also minimizes the average
communication latency. The evaluation of this solution has shown
a gain of 80% on latency of the critical flows. We synthesize our
router with a 28nm SOI technology and show that the size overhead
is limited of 2.5% compared to the solution based on virtual channel
router.

Future work will include the study of mixed-criticality end-to-
end response time analysis considering delays introduced by the NoC
[16], the modeling and the verification of the protocol part of DAS-
Router using the IF Language [17].

VII. ACKNOWLEDGMENTS

This work and Cheddar1 (a GPL real-time scheduling analyzer)
are supported by Brest Métropole, Ellidiss Technologies, CR de
Bretagne, CG du Finistère and Campus France PESSOA programs
number 27380SA and 37932TF.

1http://beru.univ-brest.fr/∼singhoff/cheddar/

REFERENCES

[1] A. Burns and R. Davis, “Mixed criticality systems-a review, 9th ed.”
Department of Computer Science, University of York, Tech. Rep., Jan
2017, http://www-users.cs.york.ac.uk/burns/review.pdf.

[2] Z. Shi and A. Burns, “Real time communication analysis for on-chip
networks with wormhole switching,” in Proceedings of the Second
ACM/IEEE International Symposium on Networks-on-Chip (NOCS),
Nov 2008, pp. 161–170.

[3] N. Kavaldjiev, G. J. M. Smit, and P. G. J. nsen, “A virtual channel
router for on-chip networks,” in IEEE International SOC Conference,
2004. Proceedings., Sept 2004, pp. 289–293.

[4] L. S. Indrusiak, A. Burns, and B. Nikoli, “Analysis of buffering effects
on hard real-time priority-preemptive wormhole networks,” Tech. Rep.
arXiv:1606.02942, Jun 2016, https://arxiv.org/abs/1606.02942.

[5] K. Jain, S. K. Singh, A. Majumder, and A. J. Mondai, “Problems
encountered in various arbitration techniques used in noc router: A sur-
vey,” in 2015 International Conference on Electronic Design, Computer
Networks Automated Verification (EDCAV), Jan 2015, pp. 62–67.

[6] K. Jetly, “Experimental comparison of store-and-forward and wormhole
NoC routers for FPGAs,” Ph.D. dissertation, University of Windsor, Nov
2013.

[7] Z. Shi, “Real-time communication services for networks on chip,” Ph.D.
dissertation, University of York, Nov 2009.

[8] C. Pagetti, D. Saussié, R. Gratia, E. Noulard, and P. Siron, “The
ROSACE case study: from simulink specification to multi/many-core
execution,” in Proceedings of the 20th International Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
April 2014, pp. 309–318.

[9] M. A. Al Faruque and J. Henkel, “Minimizing virtual channel buffer
for routers in on-chip communication architectures,” in Proceedings of
the Design Automation and Test Europe Conference (DATE), Mar 2008,
pp. 1238–1243.

[10] M. A. Al Faruque and J. Henkel, “Transaction specific virtual channel
allocation in QoS supported on-chip communication,” in Proceedings
of the IEEE International Conf on Application-specific Systems, Archi-
tectures and Processors (ASAP), July 2007, pp. 48–53.

[11] M. Sepúlveda, M. Strum, and W. Chau, “Performance impact of QoSS
(quality-of-security-service) inclusion for NoC-based systems,” in 17th
IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), Oct 2009, pp. 12–14.

[12] S. Tobuschat, P. Axer, and R. Ernst, “IDAMC: A NoC for mixed
criticality systems,” in 19th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA). IEEE, 2013,
pp. 149–156.

[13] A. Burns, J. Harbin, and L. S. Indrusiak, “A wormhole NoC protocol
for mixed criticality systems,” in Real-Time Systems Symposium (RTSS).
IEEE, Dec 2014.

[14] L. S. Indrusiak, J. Harbin, and A. Burns, “Average and worst-case
latency improvements in mixed-criticality wormhole networks-on-chip,”
in Proceedings of the 27th Euromicro Conference on Real-Time Systems
(ECRTS), July 2015, pp. 47–56.

[15] S. Tobuschat and R. Ernst, “Efficient latency guarantees for mixed-
criticality networks-on-chip,” in Real-Time and Embedded Technology
and Applications Symposium (RTAS), 18-21 April 2017, pp. 43–49.

[16] M. Dridi, S. Rubini, F. Singhoff, and J.-P. Diguet, “DTFM: a flexible
model for schedulability analysis of real-time applications on noc-
based architectures,” in 4th IEEE International Workshop on Real-
Time Computing and Distributed systems in Emerging Applications
(REACTION), Nov 2016, pp. 43–49.

[17] M. Dridi, M. Lallali, S. Rubini, M. Sepúlveda, F. Singhoff, and J.-P.
Diguet, “Modeling and validation of a mixed-criticality noc router using
the if language,” in 10th International Workshop on Network on Chip
Architectures (NoCArc), Oct 2017.

