
HAL Id: hal-01693142
https://hal.univ-brest.fr/hal-01693142

Submitted on 25 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Remote Control of Mobile Robots to Help
Dependent People

Yvon Autret, Jean Vareille, David Espes, Valérie Marc, Philippe Le Parc

To cite this version:
Yvon Autret, Jean Vareille, David Espes, Valérie Marc, Philippe Le Parc. Towards Remote Control
of Mobile Robots to Help Dependent People . The Eleventh International Conference on Mobile
Ubiquitous Computing, Systems, Services and Technologies (UBICOMM 2017), IARIA, Nov 2017,
Barcelone, Spain. pp.129-136. �hal-01693142�

https://hal.univ-brest.fr/hal-01693142
https://hal.archives-ouvertes.fr

Towards​ ​Remote​ ​Control​ ​of​ ​Mobile​ ​Robots​ ​to​ ​Help​ ​Dependent​ ​People

Yvon​ ​Autret,​ ​Jean​ ​Vareille,​ ​David​ ​Espes,​ ​Valérie​ ​Marc​ ​and​ ​Philippe​ ​Le​ ​Parc
Université​ ​Européenne​ ​de​ ​Bretagne,​ ​Université​ ​de​ ​Brest

Laboratoire​ ​en​ ​Sciences​ ​et​ ​Techniques​ ​de​ ​l'Information​ ​(Lab-STICC​ ​UMR​ ​CNRS​ ​6285)
France

Email:​ ​{yvon.autret,​ ​jean.vareille,​ ​david.espes,​ ​valerie.marc,​ ​philippe.le-parc}@univ-brest.fr

Abstract​—In this paper, we focus on a Web-controlled mobile
robot for home monitoring, in the context of Ambient Assisted
Living. The key point is low-cost and the robot is built from
standard components. We use a few sensors to allow the robot
to estimate its position, its direction and the obstacles in front
of it. An Ultra Wide Band system is used to estimate the
position of the robot. A distant user controls the robot by using
a map in the user interface. The result is a small robot that can
be​ ​used​ ​inside​ ​or​ ​outside​ ​the​ ​house.

Keywords-Home​ ​monitoring;​ ​Web​ ​control;​ ​UWB​ ​positioning.

I. ​ ​INTRODUCTION

In 1898, Nikola Tesla demonstrated a remote-controlled
boat [1]. It was based on the radioconduction discovered by
French physicist Edouard Branly in 1890. One century later,
the emergence of the Web technology provided new
opportunities. The first Web controlled robot was developed
at the University of Western Australia by Kenneth Taylor in
1995 [2]. At the beginning of the 2000's, Web development
has​ ​led​ ​to​ ​the​ ​emergence​ ​of​ ​Service​ ​Robotics​ ​[3].

However, Web-controlled robots have rather remained
unused until now, especially for Ambient Assisted Living
(AAL) applications. A typical application consists of
helping persons with diminishing mental or physical ability
to stay at home as long as possible. When picking up the
phone becomes too difficult, a mobile robot usable as a
phone could be useful. In the same way, care helpers or
relatives cannot spend all their time with a person. Devices
that would be able to monitor what is going on in a house,
and send the information to the care helpers could be of
great interest. Cameras could be installed in every room.
Such systems exist but they are not really acceptable
because they are too intrusive. Thus, we think that a mobile
robot could be more easily accepted. The robot can look like
an animal. It can move in the house, and only one camera is
required in the house. If the camera is considered too
intrusive, it can be replaced by a lidar to analyze movements
in​ ​the​ ​house.

Such robots are easy to build at affordable cost. Some of
them are even commercially available. However, almost
nobody uses them in real-world environments, such as

AAL. The Romo example is typical [4]. The robot was
launched in 2012 by the Romotive company. It is a mobile
robot that uses a smartphone to control the motors. It can be
remotely controlled from anywhere by using the smartphone
connectivity. As soon as 2013, one Romotive co-founder
wanted to move in the direction of making a robot that could
solve real-world problems. After years of aimless decisions,
Romotive’s Website was shut down in 2016. Beyond
disputes that have led Romotive to its fall, one key point
appears. It is possible to build and sell toy robots, but
nobody knows whether it is possible to build and sell at
affordable prices, robots that can be used in the real world,
especially in an AAL environment. In this paper, we will
ask why. We will review the main criteria required to make
an​ ​AAL​ ​mobile​ ​robot​ ​truly​ ​usable.

A. The​ ​cost
The cost must be kept as low as possible because it will

probably be used by elderly people who often have tight
budgets. It is inconceivable to rent a satellite channel to
control the robot. In the same way, it is neither possible to
use components, such as those found in military weapons,
for example a €50000 inertial unit. From our point of view,
the cost of an AAL robot should not exceed €1000. The
price of a TV or a high-tech smartphone is also a good
estimate.

B. Performance​ ​of​ ​the​ ​network
When a command is sent to a robot through a network, if

an acknowledgment is received back in less than 200 ms,
there is no perceptible lag between the triggering of the
action and the visual result [5]. A guaranteed 200 ms
round-trip-time (RTT) allows secured remote command of
mechanical devices. In the case of AAL robots, a 300-500
ms RTT remains acceptable if the speed of the robot is low
(1 km/h). When the RTT is beyond 500 ms, the operator
feels​ ​something​ ​uncertain.

C. Security​ ​of​ ​the​ ​system
If a server is installed on or near the robot, it can cause

serious security problems in the house. A server is never
100% secure. Even if techniques, such as traffic analysis are

implemented, and if a problem is detected, who will handle
the​ ​problem?​ ​It​ ​is​ ​not​ ​the​ ​role​ ​of​ ​the​ ​robot​ ​users.

If there is a wireless connection between a server and the
robot, the radiations may cross the limit of the house and
they can be captured and modified from the outside. Data
will​ ​have​ ​to​ ​be​ ​encrypted​ ​but​ ​it​ ​may​ ​not​ ​be​ ​sufficient.

D. Security​ ​of​ ​the​ ​persons​ ​and​ ​resilience
If there is a failure, the robot may become dangerous. It

may go anywhere in the house and hurt people. In any case,
the speed of the robot must remain low. The robot should
not exceed 1 km/h to avoid frightening the inhabitants. The
resilience of the system is also very important. The robot
must be able to work despite total or partial failure of one or
more components. For example, if the network performance
decreases, the robot should automatically reduce its speed.
When a fault is detected, the robot must be able to restart,
and eventually go to a fallback position. An accurate
positioning​ ​system​ ​must​ ​be​ ​available.

E. User​ ​interface
The user interface must be designed for a

semi-autonomous robot. When only using video feedback,
controlling the robot is not easy. If images are not sent to the
distant user for a while, the robot control may quickly get
lost. The user interface must give accurate information
about the robot, its position and its environment. The
information​ ​must​ ​be​ ​redundant.

F. Positioning
Estimating the robot position is a key point. If the

estimated position is not accurate, the whole system will
collapse. The user interface will display wrong information,
and the robot will be dangerous. Most of the previous
criteria​ ​depend​ ​on​ ​the​ ​estimation​ ​of​ ​the​ ​robot​ ​position.

In this paper, Section II presents the proposed robotic

system. We will show how the previous criteria have been
taken into account. Section III presents the user interface.
The results are shown in Section IV. The paper finishes by a
conclusion​ ​and​ ​perspectives.

II. DESIGNING​ ​A​ ​HOME​ ​ROBOT​ ​FOR​ ​AN​ ​AAL​ ​ENVIRONMENT

A. The​ ​mechanical​ ​base
We use a very simple experimental mechanical base

(Figure 1). There are four wheels mounted on gear motors
and a wooden plate. An Arduino and a motor shield control
the motors two by two. The motor shield is a 2x2A. It is
based on a L298P chip. This means that the robot will slide
slightly on the floor when turning. This choice reduces the
cost but it will make the robot more difficult to locate. In the
future, it might be necessary to have independent wheel
control. The gearmotors rotate at a maximum of 84
revolutions per minute. The 120 mm wheels allow a

maximum speed of 1.9 km/h. The motor torque is 1,0 kg.cm
and the total mass of the robot can reach about 3 kg. This
mechanical base is very reliable, especially if brushless
motors​ ​are​ ​used.

Figure​ ​1.​ ​The​ ​mechanical​ ​base

​ ​B.​ ​The​ ​proposed​ ​architecture
If the mobile robot is in a house and the user in a

different place, we have no choice but the Web to allow
remote control. Another solution would increase the total
cost too much. The remaining question is whether a thin
client is preferred to a fat client. We have chosen a thin
client for security reasons. A fat client would have been
more powerful but the risk of security breach would have
been higher. When using a thin client, we use a standard
Web browser and rely on its security. The Web browser
communicates with a Tomcat Web server that is fairly
secure.​ ​The​ ​HTTP(S)​ ​protocol​ ​is​ ​used.

Figure​ ​2.​ ​The​ ​proposed​ ​architecture

The architecture is shown in Figure 2. The distant user

uses a Web browser to reach an Internet Box in the house,
and next the Web server through an Ethernet cable. This
ensures that there will be no wireless problems from the
Box​ ​to​ ​the​ ​Web​ ​server.

Between the Web server and the robot we use a wireless
Ultra Wide Band network (UWB) [6]. It will give us
positioning​ ​capabilities.

The system works as follow. The Tomcat Web server is
running on a computer that can be a Raspberry PI 2 or any
other computer. A second server is running on the computer.
The Tomcat server communicates with the second server by
the mean of sockets. The second server rejects all
communications except those coming from the Tomcat

server. It is used to handle an Arduino connected to the
computer. The Arduino has to manage an UWB
communication with the robot. Thus, 128 bytes packets can
be sent from the Web server to the mobile robot. When the
robot is too far from the computer, UWB relays are
required. Depending on the environment, relays must be
added every 5 to 30 meters. UWB is managed by a Pozyx
shield. Sending one hundred bytes from an Arduino UNO to
the mobile robot and receiving a response of one hundred
bytes​ ​takes​ ​75​ ​ms​ ​when​ ​using​ ​the​ ​I2C​ ​bus​ ​on​ ​the​ ​Arduino.

C.​ ​The​ ​sensors
As defined above, a distant user could make the robot

move by using basics commands, such as forward,
backward, right or left. If video is available, a remote
control​ ​is​ ​possible.

A webcam is available on the robot. It is managed by a
Raspberry PI 2. It is a light solution to stream videos over an
IP-based network. The webcam is independant from the
robot. The Tomcat Web server catches the video and sends
it to the distant user when required. Thus, the webcam is not
directly accessible from the outside. Only the Tomcat Web
server can be accessed from the outside and security is kept
relatively high because distant users must be identified in
order​ ​to​ ​get​ ​the​ ​video​ ​images.

However, if the mobile robot is used by caregivers who
do not know the house very well, video feedback is not
sufficient because the experience shows that users are
quickly lost. Moreover, estimation of the position of
obstacles is not easy with video only. Thus, we have two
main problems, estimating the obstacle positions, and
estimating​ ​the​ ​robot​ ​position​ ​in​ ​the​ ​house.

Estimating the obstacle positions can be done by using a
laser telemeter (Lidar) [7]. Such devices are available since
several years. However their price can easily reach €2000.
We rather use a €150 Lidar-lite that can measure distances
in only one direction. To scan a 180 degree field in front of
the​ ​robot,​ ​we​ ​mount​ ​the​ ​Lidar-lite​ ​on​ ​a​ ​servo​ ​motor.

To make the robot go forward and follow a direction, we
also use a 9-axis accelerometer/magnetometer. Experiments
have shown that for our problem, a Kalman filter is
required. Without the Kalman filter, the magnetometer
produces many wrong values. Using an extended Kalman
filter does not seem to be necessary until now. We use a €30
CMPS11 tilt compensated compass module from
Robot-Electronics [8]. The module includes a processor to
compute a Kalman filter. It processes the raw values
produced by the gyroscope, the accelerometer and the
magnetometer. The compass output is pitch, roll and
heading. To give correct results, the compass must be at 30
cm above the gear motors. Only heading will be used in our
case. We will use that value to make the robot follow a
direction. The distance traveled by the robot could also be
computed from the accelerometer data, but the errors would

accumulate and the position of the robot would be incertain.
We will rather use UWB to determine the distance traveled
by​ ​the​ ​robot.

D.​ ​Estimating​ ​the​ ​robot​ ​position
Estimating the absolute robot position is now possible,

thanks to UWB. One of the main features of UWB signals is
their potential for accurate position location and ranging.
UWB technologies are often described as the next
generation of real time location positioning systems. Due to
their fine time resolution, UWB receivers are able to
accurately estimate the time of arrival (ToA) of a
transmitted UWB signal. This implies that the distance
between an UWB transmitter and an UWB receiver can be
precisely​ ​determined.

Figure​ ​3.​ ​The​ ​positioning​ ​system

This feature of high localization accuracy makes the

UWB an attractive technology for diverse ranging and
indoor localization applications. It really allows 10-30 cm
accuracy in ranging and promises the realization of
low-power​ ​and​ ​low-cost​ ​communication​ ​systems​ ​[6].

We already have one UWB Pozyx module on the robot
to ensure communication with the Web server. Three other
modules will be added in the house to allow positioning. We
will use the trilateration technique to estimate the position of
the robot. Three Pozyx modules are positioned in the house
(Figure​ ​3).

The Arduino on the robot is connected to a Pozyx. It
computes the distance from the robot to the three other
Pozyxs. When the signal received from the reference nodes

is noisy, the system is non-linear and cannot be solved. An
estimation method has to be used. To get a satisfying
approximated position of the mobile robot, we use the
Newton-Raphson method [9]. This method attempts to find
a solution in the non-linear least squares sense. The main
idea of the Newton-Raphson algorithm is to use multiple
iterations to find a final position based on an initial guess
(for example, the center of the room), that would fit into a
specific​ ​margin​ ​of​ ​error.

The first results of our experiments show that distance
values are not constant due to multipath components.
Hence, the precision of our system is about 30-50
centimeters. Such a precision is sufficient to know where
the robot is in a room, but insufficient to pass through a door
or​ ​something​ ​narrow.

Figure​ ​4.​ ​A​ ​part​ ​of​ ​the​ ​robot​ ​(compass​ ​and​ ​webcam​ ​not​ ​shown)

After the addition of sensors and UWB positioning, the

mobile robot architecture is as follows. The robot includes
several sensors that are managed by two Arduinos
communicating through a 9600 baud serial link. The first
Arduino manages the motors, the Lidar-lite laser telemeter,
and the compass. It is able to make the robot move, stop if
there is an obstacle, and follow a direction. It communicates
with a second Arduino that estimates the robot position. The
second Arduino periodically sends the estimated position to
the first one. It can also send orders, such as stop, change
the heading, or move forward in the current direction over a
certain distance. To estimate its position, the second
Arduino computes the distance between itself and the Pozyx
modules. To compute the position, the Arduino sends the
measured distances to the distant computer that processes
the Newton-Raphson algorithm. Results are obtained faster
if​ ​the​ ​computer​ ​has​ ​efficient​ ​floating​ ​point​ ​capabilities.

A part of the obtained robot is shown in Figure 4. A
single LiPo 3s battery powers the robot. DC-DC converters
are used to power the two Arduinos. One Arduino manages
both the Lidar and the compass, another Arduino manages
the​ ​Pozyx​ ​modules.

The robot is now able to estimate its position by using
UWB Pozyxs. It is also able to communicate with a remote
server installed in the house, to detect obstacles by using a
Lidar-lite, and to follow a direction by using a compass. We
must now propose a user interface to make all those features
available​ ​to​ ​a​ ​distant​ ​user.

III. THE​ ​USER​ ​INTERFACE

A. Using​ ​a​ ​map
The main item of the user interface will be a map. We

will try to show the robot moving on the map in real time.
To build the map, we have chosen to extend an available
solution: OpenStreetMap [10]. In France, most of the
buildings, including the individual houses, are shown by
OpenStreetMap. Thus, we can use these basics plans that
show the edges of the buildings. We will superimpose a
detailed plan on the basic OpenStreetMap plan. To build the
detailed plan, we provide a tool that allows to draw on the
basic OpenStreeMap. It is implemented by using the
OpenLayers V3 (or V4) standard library [11]. Details such
as furniture or door openings can be shown. The direction of
the exterior walls relative to magnetic north is shown by
OpenStreetMap, and all other elements can be placed on the
map accordingly (Figure 5). More sophisticated solutions,
such as Lidar analysis have not been experiment yet to
automatically produce maps. Although limited, the current
solution is easy to use and makes it easy to produce a
relatively​ ​detailed​ ​plan.

When zoomed in, a room of a house can be seen in full
screen. The robot position is shown by the letter “R”. The
direction of the robot is shown by the direction of the letter.
For example, if the letter is inverted on the map, the robot
goes​ ​south.

To make positioning work, we must hang three Pozyxs
on the walls. Our algorithm requires that they must be at the
same height which can be different from that of the robot. In
order to simplify configuration, the three Pozyxs must form
a right angle triangle (Figure 6). Thus, in the user interface,
there is something to indicate the position of the #1 Pozyx
(P1), the position of the #2 Pozyx (P2), the distance between
the #1 and #2 Pozyx (P1-P2), and the distance between #1
and #3 (P1-P3). The system deduces the position of the
Pozyx #3 and there is no need to indicate directly its
position. Pozyx configuration is very easy because walls of
a house are very often perpendicular. The distant user must
click twice on the map, the first click to indicate where the
#1 Pozyx will be positioned, the second one to indicate
where the #2 Pozyx will be positioned. Using a

perpendicular axis for the Newton-Raphson algorithm we
use in position estimation, can lead to problems because
zero divisions can occur. In fact, experiments have shown
that it is not a problem. If one position estimation can not be
computed, the next one almost always can be computed.
Even if the robot is stopped, the Pozyxs continuously
produce​ ​distance​ ​values.

Figure​ ​5.​ ​Example​ ​of​ ​OpenStreetMap​ ​plan​ ​with​ ​overlay

As soon as the Pozyxs are configured in the user

interface, the robot position is displayed. The user interface
shows the estimated distances between the robot and the
Pozyxs by means of three circles. Those circles were used
for debug at the beginning. We keep them in the user
interface because they show a living system. The circles
oscillate slightly continuously and the distant user can see if
the system is working or not, and if there is no network
problem. As seen above, the robot position is shown by the
letter “R”. It should be at the intersection of the three
circles.

The implementation has been done by using Javascript
[12], Ajax [13], jQuery[14] and OpenLayers V3 [11]. An
Ajax request is sent to the Tomcat Web server, the position
is computed as seen above, and the result is sent back to the
distant user, and shown on the user interface. As soon as the
result is available, another Ajax request is sent and another
position estimation expected. We have measured a round
trip time (RTT) close to 500 ms when the distant user is in
the same town as the robot. It takes about 100 ms to
compute a distance from one Pozyx to another. As there are
three distances to compute, we have a 300 ms duration. The
results must furthermore be sent to the Tomcat Web server,
and we have a RTT close to 500 ms to communicate
between​ ​the​ ​distant​ ​user​ ​and​ ​the​ ​robot.

Figure​ ​6.​ ​The​ ​user​ ​interface​ ​map

The RTT is also used on the robot. When the RTT

increases, the robot automatically reduces its speed, or
stops, or goes to a fallback position. Thus, if the robot does
not receive commands from the Tomcat Web server, it
stops.

B. Making​ ​the​ ​robot​ ​move
To make the robot move, the distant user must indicate a

destination position on the map by clicking once or more. In
Figure 6, there is an orange stroke that can be split into three
segments. To draw such a stroke, the distant user must click
three times. The last click corresponds to the desired robot
destination.

To make the robot reach that destination, the user
interface will automatically send a set of commands to the
robot. The three segments will be processed one by one, as
follows:

● Computation of the direction of the segment
(almost​ ​north​ ​for​ ​the​ ​first​ ​segment​ ​in​ ​Figure​ ​6)

● Alignment​ ​of​ ​the​ ​robot​ ​in​ ​that​ ​direction
● Computation​ ​of​ ​the​ ​segment​ ​length
● Sending a command to the robot to make it move

by​ ​the​ ​desired​ ​distance​ ​in​ ​the​ ​current​ ​direction
● Stopping the robot for two seconds to have a better

robot​ ​position​ ​estimation
● Verification of the current position of the robot and

adjustment (adjustment can be automatic or
performed​ ​by​ ​the​ ​distant​ ​user)

We finally obtain a system that allows semi-automatic
robot remote control. In addition to the map, the distant
user​ ​has​ ​a​ ​control​ ​panel​ ​to​ ​monitor​ ​the​ ​robot​ ​(Figure​ ​7).

Figure​ ​7.​ ​Elements​ ​of​ ​the​ ​user​ ​interface

The current user interface is experimental. It shows the

distances measured from the Pozyxs (P1R, P2R, and P3R),
the Round Trip Time (417 ms in Figure 7), the position of
the robot on the orthogonal axis defined by P1, P2 and P3
(1.32 m from P1 on the X-axis defined by P1-P2, 0.29 m
from​ ​P1​ ​on​ ​the​ ​Y-axis​ ​defined​ ​by​ ​P1-P3).

The user interface also shows the heading of the robot in
degrees (8 degrees, almost north, in Figure 7), and also the
unused pitch and roll values. The distance from the closest
obstacle to the robot is also shown (0.97 m in Figure 7).
There is also a set of buttons to define a new robot
destination​ ​and​ ​make​ ​the​ ​robot​ ​move.

In the next section, we will show the results and review
the​ ​criteria​ ​exposed​ ​in​ ​the​ ​introduction.

IV. RESULTS

A. The​ ​total​ ​cost
In the introduction, we said that the total cost should not

exceed €1000. If there were no Pozyx, the total cost would
be lower. The mechanical base costs about €100, the
Lidar-lite about €200 [15], the compass about €30 [8], and
the webcam about €100 including Raspberry PI 2 (Figure
8). We must still add the price of a computer that supports
the Tomcat web server (from €50 to €500 depending on the
model). We reach a maximum €900 total cost, Pozyx
excluded.

One Pozyx is about €150 [16] and we need at least five.
However, we think that it is not a problem. The very first
Pozyxs were sold by the end of 2015 and the price will
probably fall. The Decawave DW1000 chip used on the
Pozyx module costs about one euro. The DWM1000 version
that includes an antenna is now sold per unit for €30. We
can expect UWB boards much cheaper in the near future. If
a €50 UWB board was available, the cost criteria would be
met.

Figure​ ​8.​ ​The​ ​experimental​ ​robot

B. Performance​ ​of​ ​the​ ​external​ ​network
We have been testing Web performance for a decade.

Tests have been done from Brest (France) to Auckland
(New-Zealand). It is the longest distance possible in the
world.​ ​Results​ ​are​ ​shown​ ​in​ ​Figure​ ​9.

Figure​ ​9.​ ​Web​ ​performance​ ​2005-2015

The top diagram shows the measures taken in 2005

overs two weeks (horizontal axis in Figure 9). We have
measured the Round Trip Time (RTT) between two
computers, one located at the University of Brest (France)
the other at the University of Auckland (NZ). We have
obtained values from 495 to 1093 ms (vertical axis in top
diagram in Figure 9). The average RTT is 768 ms. Exactly
ten years later, the average RTT is 415 ms and most values
are close to this average (bottom diagram in Figure 9). The
minimum was 295 ms. The measures were performed
between one Wi-Fi connected computer, located in a hotel
in Auckland (NZ), and another computer located at the
University​ ​of​ ​Brest​ ​(France).

This means that the Web can be used for remote control
all over the world. However, we still have numerous RTT
values greater than 500 ms. A RTT prediction system would
be​ ​of​ ​great​ ​interest.

In fact, the problem comes from the local UWB
network. The positioning process is very slow because
communication between a Pozyx and an Arduino UNO is
slow. One reason seems to be the use of the I2C Arduino
bus. The Decawave chip on the Pozyx board uses the SPI
bus (Serial Peripheral Interface Bus). The SPI bus must be
converted to an I2C bus. Faster Arduinos or equivalent
could improve communications. Direct connections to the
Decawave chip by using the SPI bus could also produce
improvements.​ ​That​ ​remains​ ​to​ ​be​ ​tested.

C. Security​ ​of​ ​the​ ​system
The security of the system is that of a distant user

communicating with a remote Tomcat Web server through
the​ ​encrypted​ ​HTTPS​ ​protocol.

The weakness is again in the local UWB network. Future
studies​ ​will​ ​focus​ ​on​ ​the​ ​security​ ​of​ ​the​ ​local​ ​UWB​ ​network.

D. Security​ ​of​ ​the​ ​persons​ ​and​ ​resilience
The robot is able to detect any problem on the network

and stop if required. Its low speed should make it safe for
people. Experiments have shown the positioning system is
accurate in the range between 30 and 50 cm. Perfect
positioning is not available but it seems sufficient in a
current AAL environment. The main remaining problem is
door crossing. A better use of the Lidar could be the
solution.

Moreover, we have no automatic charging dock yet. This
is another key point that needs to be addressed. We assume
that​ ​reliable​ ​standard​ ​charging​ ​docks​ ​will​ ​be​ ​available​ ​soon.

E. User​ ​interface
On the user interface, we can follow the robot on a map.

As first experiments have shown that the Pozyx positioning
system seems to be reliable, we have a control system based
on standard components, such as OpenStreetMap. The time
required to configure the system and make it work is very
short.

F. Positioning
Even if the 30-50 cm obtained precision does not allow

to make the robot go everywhere in house, it allows the
robot to follow predefined paths. These paths must only be
carefully chosen because the Pozyx signal may be easily
stopped. The signal is very weak (about -40 dBm) and has
shown to be very sensitive to metal obstacles, even if they
are​ ​small.

V. CONCLUSION

The aim of this paper was to present a mobile home
robot that could be helpful for old and/or dependent persons,
and easily used by caregivers or relatives. Proposing a low
cost solution, using high tech components, promoting
simplicity were some of the key ideas that conducted this
project.

This has been achieved by the use of a positioning
system based on UWB Pozyx modules. Combined to a map
in​ ​the​ ​user​ ​interface,​ ​it​ ​seems​ ​to​ ​be​ ​a​ ​promising​ ​technique.

However, several key points must be improved. Our
knowledge of the security of such a system is very weak and
must be improved. The accuracy of the positioning system
must​ ​be​ ​also​ ​be​ ​improved​ ​to​ ​allow​ ​at​ ​least​ ​door​ ​crossing.

REFERENCES
[1] Nikola Tesla. [Online]. Available from:

https://en.wikipedia.org/wiki/Nikola_Tesla​ ​2017.07.03
[2] K. Taylor and J. Trevelyan, “A telerobot on the world wide

web,” 1995 National Conference of the Australian Robot
Association,​ ​1995​ ​July​ ​5-7.

[3] “Robots With Their Heads in the Clouds,“ IEEE Spectrum,
March​ ​2011.

[4] Why Romotive shut down. [Online]. Available from:
http://www.simplebotics.com/2016/02/the-rise-and-fall-of-rob
ot-startup-romotive.html​ ​2017.07.03

[5] F. De Natale and S. Pupolin, “Multimedia Communications,“
Springer​ ​Science​ ​&​ ​Business​ ​Media,​ ​2012.

[6] U. Mengali, “Receiver architectures and ranging algorithms
for UWB sensor networks,” 2012. [Online]. Available from:
http://www.iet.unipi.it/dottinformazione/Formazione/OffForm
2011/Mengali/SoloTesto.html​ ​2017.07.03

[7] Lidar. [Online]. Available from:
https://en.wikipedia.org/wiki/Lidar​ ​2017.07.03

[8] CMPS11 - Tilt Compensated Compass Module. [Online].
Available from:
https://www.robot-electronics.co.uk/htm/cmps11doc.htm
2017.07.03

[9] D. Espes, A. Daher, Y. Autret, E. Radoi, and P. Le Parc,
“Ultra-wideband positioning for assistance robots for
elderly,”​ ​10th​ ​IASTED​ ​(SPPRA​ ​2013),​ ​Feb.​ ​2013,​ ​Austria.

[10] OpenStreetMap. [Online]. Available from:
https://en.wikipedia.org/wiki/OpenStreetMap​ ​2017.07.03

[11] OpenLayers. [Online]. Available from: https://openlayers.org
2017.07.03

[12] Javascript. [Online]. Available from:
https://en.wikipedia.org/wiki/JavaScript​ ​2017.07.03

[13] Ajax. [Online]. Available from:
https://en.wikipedia.org/wiki/Ajax_(programming)
2017.07.03

[14] jQuery. [Online]. Available from: http://jquery.com
2017.07.03

[15] LIDAR-Lite V3. [Online]. Available from:
https://www.sparkfun.com/products/14032​ ​2017.07.03

[16] Pozyx. [Online]. Available from: https://www.pozyx.io
2017.07.03

