
HAL Id: hal-01685444
https://hal.univ-brest.fr/hal-01685444

Submitted on 16 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling analysis of tasks constrained by TDMA:
Application to software radio protocols

Shuai Li, Frank Singhoff, Stéphane Rubini, Michel Bourdellès

To cite this version:
Shuai Li, Frank Singhoff, Stéphane Rubini, Michel Bourdellès. Scheduling analysis of tasks constrained
by TDMA: Application to software radio protocols. Journal of Systems Architecture, 2017, 76, pp.58-
75. �10.1016/j.sysarc.2016.11.003�. �hal-01685444�

https://hal.univ-brest.fr/hal-01685444
https://hal.archives-ouvertes.fr

Scheduling Analysis of Tasks Constrained by

TDMA: Application to Software Radio Protocols

Author’s version

Shuai Li+*, Frank Singhoff*, Stéphane Rubini*,

Michel Bourdellès+

*Lab-STICC UMR 6285, Université de Bretagne

Occidentale, France, {last-name}@univ-brest.fr

+Thales Communications & Security, France,

{first-name}.{last-name}@thalesgroup.com

July 20, 2017

Abstract:
The work, presented in this article, aims at performing scheduling analy-

sis of Time Division Multiple Access (TDMA) based communication systems.
Products called software radio protocols, developed at Thales Communications
& Security, are used as case-studies.

Such systems are real-time embedded systems. They are implemented by
tasks that are statically allocated on multiple processors. A task may have
an execution time, a deadline and a release time that depend on TDMA con-
figuration. The tasks also have dependencies through precedence and shared
resources. TDMA-based software radio protocols have architecture character-
istics that are not handled by scheduling analysis methods of the literature.
A consequence is that existing methods give either optimistic or pessimistic
analysis results.

We propose a task model called Dependent General Multiframe (DGMF) to
capture the specificities of such a system for scheduling analysis. The DGMF
task model describes, in particular, the different jobs of a task, and task depen-
dencies. To analyze DGMF tasks, we propose their transformation to real-time
transactions and we also propose a new schedulability test for such transactions.

The general analysis method is implemented in a tool that can be used by
software engineers and architects. Experimental results show that our proposi-

1

tions give less pessimistic schedulability results, compared to fundamental meth-
ods. The results are less pessimistic for both randomly generated systems and
real case-studies from Thales.

These results are important for engineering work, in order to limit the over-
dimensioning of resources. Through tooling, we also automated the analysis.
These are advantages for engineers in the more and more competitive market
of software radios.
Keywords: Real-time Embedded System, Scheduling Analysis, Task Depen-
dency, Software Radio Protocol, TDMA, General Multiframe, Transaction

1 Introduction

In this article, we propose a scheduling analysis method for communication
systems that use the Time Division Multiple Access (TDMA) channel access
method. Our method is applied to real industrial systems, developed at Thales
Communications & Security, called software radio protocols.

1.1 Context

Radios are communication systems. For communication to be established, some
radio protocols need to be defined and implemented. Traditionally radios are
implemented as dedicated hardware components. Trends in the last two decades
have seen the emergence of software radios [1], where more and more components
are implemented as software. This is the case for the radio protocol, which is
then called a software radio protocol.

Software radio protocols are typical real-time systems. In such systems,
activities are implemented by software tasks that are time-constrained. The
tasks may also have precedence dependencies and use shared resources. In this
article, we consider tasks that are scheduled by a partitioned Fixed Priority
(FP) preemptive scheduling policy.

The particularity of a software radio protocol real-time system is that it may
be impacted by TDMA, a common method to access the shared communication
medium between several radio stations. In TDMA [2], time is divided into
several time slots and at each time slot, a radio either transmits its data, or
receives some data. This method impacts the software of the system, because the
tasks have an execution time, deadline, and release time that depend on the time
slots. TDMA is also one reason, among others, that there are hard deadlines in
such systems. We must thus analyze the scheduling of these systems.

Scheduling analysis [3, 4] is the method used to verify that tasks will meet
their deadline, when they are scheduled on processors. Scheduling analysis can
potentially be complex, due to the dependencies between the tasks for example.
Some methods, part of scheduling analysis, are schedulability tests [5]. Such
tests assesses if all jobs, of all tasks, will meet their deadlines during execu-
tion, when the tasks are scheduled on processors by a specific scheduling policy.
Schedulability tests may compute the Worst Case Response Time (WCRT) of

2

tasks. The WCRT of a task is compared to its deadline to assess its schedula-
bility.

Schedulability tests are associated with task models that abstract the archi-
tecture of a real-time system for the analysis. There are several task models
in the literature that consider more or less dependencies between tasks, and
characteristics of the execution platform that hosts the tasks.

1.2 Overview of Contributions

As we will see, current task models and schedulability tests are not applicable to
a software radio protocol that uses TDMA to access the shared communication
medium. For example some task models may consider the impact of TDMA
on tasks, but they do not consider task dependencies. Therefore, in this article
we propose a scheduling analysis method adapted for the characteristics of real
software radio systems developed at Thales. Our analysis method is based on
several of our contributions. The next paragraphs describe our contributions
and give an overview of our approach.

Extension of the General Multiframe Task Model This article proposes
the Dependent General Multiframe (DGMF) task model, an extension of the
General Multiframe (GMF) task model [6]. A GMF task is a vector of frames
that represent the jobs of the task. The jobs may not have the same parameters,
such as deadline and execution time. The DGMF task model extends GMF with
precedence dependencies and shared resources. Contrary to GMF, the DGMF
task model can also be applicable to a multiprocessor system with partitioned
scheduling.

DGMF to Transaction The analysis method for DGMF consists in exploit-
ing another kind of model called transactions [7]. A transaction is a group of
tasks related by precedence dependency. This article proposes an algorithm to
transform DGMF tasks to transactions. The transformation solves the issue of
the semantic gap between the two models.

Extension of Schedulability Test for Transactions The transactions that
are the results of the transformation have what we call non-immediate tasks,
i.e. tasks which are not necessarily released immediately by their predecessor.
Thus this article proposes the WCDSOP+NIM test, which is an extension of the
WCDOPS+ test in [8]. Our test is used to assess schedulability of transactions
with non-immediate tasks. Thanks to WCDSOP+NIM, we are able to perform
scheduling analysis on transactions produced from DGMF models, and thus to
perform scheduling analysis on DGMF models themselves.

Available Tool The GMF, DGMF, transaction models, and their analy-
sis methods, are all implemented in Cheddar [9]. Cheddar is an open-source

3

TDMA Frame

S B B T T T T

Figure 1: TDMA Frame

scheduling analysis tool, available for both the research and industrial commu-
nities.

1.3 Article Organization

The rest of this article is divided into five sections that are organized as follows.
In Section 2, the TDMA-based software radio protocol system is presented.
This section defines the assumptions of our work. In Section 3, we discuss the
applicability of task models related to our work. In Section 4, the DGMF task
model, and its analysis method, and experiments (both simulation results and
case-study results) are exposed. Section 5 is on our WCDOPS+NIM schedula-
bility test. Again, experiments on our test are shown in the same section, with
both simulation results and case-study results. Finally, we conclude in Section
6 by discussing some future works.

2 Software Radio Protocol

In the following sections, we first present the concept of a radio protocol and
the impact of TDMA on the protocol. Afterwards the software and execution
platform of our system is presented, and we relate the architecture of the system
to two typical architecture designs. Finally, we summarize the requirements to
consider for our scheduling analysis work.

2.1 Radio Protocols Based On Time-Division Multiplex-
ing

A radio protocol is a set of rules to respect so communication can be established
between different users on a same network. A radio protocol defines the syntax
and semantics of the messages exchanged between users, but also how communi-
cation is synchronized between all users. Several protocols can cooperate within
a same radio to form the protocol stack [10].

The functionalities of a radio protocol may be impacted by the method used
by the radio to access the communication medium. TDMA [2] is a channel access
method, based on time-division multiplexing. It allows several radio stations to
transmit over a same communication medium. In TDMA, time is divided into
several time slots, called TDMA slots. At each slot, each radio station in the
network either transmits or receives. The sequence of slots is represented as a
TDMA frame. Figure 1 shows a typical frame.

4

Slots may be of different types. For example in Figure 1, the TDMA frame
has three types of slot: Service (S) for synchronization between stations; Bea-
con (B) for observation/signaling the network; Traffic (T) for payload trans-
mission/reception. Slots of different types do not necessarily have the same
characteristics. One of the characteristics of a slot is its duration. Therefore
slots of different types do not necessarily have the same duration. For example
in Figure 1, a B slot duration is shorter than a S and T slot duration. The
TDMA frame duration is the sum of durations of its slots. Slots can either be in
transmission (Tx), reception (Rx), or Idle mode. In a Tx slot, a radio station
can thus transmit data. When a radio station can transmit in a slot, we say
that the slot is allocated to the station. A TDMA configuration defines the
combination of slots, of different types, in a TDMA frame. A TDMA frame is
repeated after it finishes. An instance of a frame is a cycle.

When TDMA is used to access the communication medium, it impacts the
functionalities of the radio protocol and it introduces time constraints. For
example the operation to fetch data packets to be transmitted in a Tx slot
is time-constrained. The TDMA method is a particular case of the timed-
token protocol for real-time communications [11]. Indeed the same approach
of dividing time into time slots, and allocating slots to entities, is used in both
methods. Since these methods introduce time constraints, tasks that implement
the system may also have time constraints.

The next section exposes the software and execution platform architecture
of one possible implementation of a radio protocol.

2.2 Software and Execution Platform Architecture

The previous section showed how a radio protocol is designed. This section
presents one possible implementation by Thales, called a software radio pro-
tocol [1]. The implementation is described through its software and execution
platform architecture.

Traditionally functionalities of a radio protocol are implemented as dedi-
cated hardware (e.g. ASIC, FPGA). There is no concurrency to access these
computing resources. Scheduling analysis is thus not necessary. In the case of
systems developed at Thales, the majority of the functionalities of the protocol
is implemented as software running on a General Purpose Processor (GPP). The
software entities are implemented by some entities in the execution platform:
OS and hardware. Figure 2 shows an example of these entities.

Figure 2, shows several protocols (called RLC and MAC) implemented by
tasks allocated on processors. The system is a partitioned multiprocessor sys-
tem: tasks are allocated on a processor, and they do not migrate. On a proces-
sor, tasks are scheduled by a preemptive FP scheduling policy. The priorities of
tasks are assigned arbitrarily according to domain expertise.

They may have precedence dependency (e.g. communication through semaphores
signaling). They may also use shared resources. Shared resources are assumed
local [12], i.e. two tasks can use a shared resource only if they are allocated on
the same processor. Shared resources are protected by a resource access proto-

5

Periodic

Sporadic

TDMA Tick Release

Event

Task

Shared

Resource

Precedence

Dependency

Allocation

Figure 2: Architecture for Scheduling Analysis: Red CPU is a GPP handling
ciphered data, Black CPU is a GPP handling deciphered data, DSP means
Digital Signal Processor

col that prevents unbounded priority inversion for uniprocessor. Examples of
such resource access protocols are PIP and PCP [13]. Their implementation
can typically be found in execution platforms with the VxWorks OS. This OS
is present in some products developed by Thales.

Some tasks may be released sporadically. For example some tasks are typi-
cally released upon arrival of IP packets, which depends on the user application.
Other tasks are released at pre-defined times. This is the case for tasks of a
Medium Access Control (MAC) protocol [10]. In this article, activities of MAC
are divided in time due to the usage of TDMA to access the communication
medium. The releases of a task can follow a periodic pattern or a pattern de-
fined by TDMA slots. Events called TDMA ticks indicate the start of a slot
and thus the release of some tasks. Tasks that are released at the start of a slot
may also have execution times and deadlines that are constrained by the slot.

The software architecture of the system is conform to some architectures
found in the literature. Indeed, two software architectures for RTES have been
studied extensively: event-triggered [14] and time-triggered [15]. A software
radio protocol is both a time-triggered and an event-triggered system. Indeed,
some tasks are released by TDMA ticks indicating the start of a slot. Thus
certain tasks are released at pre-defined times, which is conform to the time-
triggered architecture. On the other hand, there are also tasks released by
sporadic events, for example upon arrival of IP packets. Due to precedence
dependency, a task can also be released by an event produced by a predecessor
task.

6

2.3 Requirements for Scheduling Analysis

From the description of its architecture in Section 2.2, characteristics of a soft-
ware radio protocol, useful for scheduling analysis, are summarized in Table
1. In this article, it is expected that the proposed scheduling analysis method
covers all of the characteristics in Table 1.

In the next section we study the applicability of scheduling analysis methods
of the literature, when considering the requirements exposed in this section.

3 Applicability of Related Works

In this section, we discuss problems encountered when applying existing task
models of the literature, to analyze the scheduling of a software radio protocol.

A task model is said applicable to a characteristic of the system, if it is
possible to model the characteristic, and if there exists a schedulability test for
the task model that considers the characteristic. Table 2 shows the applicability
of some task models to each characteristic. These task models come from the
literature and they are the fundamental periodic task model [3], the transaction
model [7] that expresses precedence dependent tasks, the multiframe task models
[6] that express jobs of a task as a vector, and the DAG task models [5] that
express jobs of a task as a graph.

The applicability of the task models is discussed in the following paragraphs.
Either the non-applicability of some task models on a characteristic is justified,
or the applicability of all task models on a characteristic is shown.

TDMA release Seminal schedulability tests in [3, 16] for the fundamental
periodic and sporadic task models assume a synchronous system, where tasks
are all released at a unique critical instant. Tasks constrained by TDMA are
not synchronous since they may be released at different pre-defined times.

The transaction model, that generalizes the fundamental periodic and spo-
radic task models, focuses on asynchronous releases of tasks. Tasks are said
asynchronous if there is at least one first job of a task that is not released at the
same time as the other first jobs of other tasks. In [7], Tindell analyzes asyn-
chronous tasks with the transaction model. He takes the example of a network
with a bus and messages scheduled by TDMA. His goal was not to analyze the
effect that TDMA has on the scheduling of tasks within a single system (e.g.
job execution time and release time constrained by the TDMA slot), but end-
to-end response times of message transiting in the whole network. For example
Tindell computes the response time from the sending of a message by a task, to
the transition of the message on the bus, to the reception by another task.

Some other schedulability tests for transactions in [17, 8] also consider that
there are some periodic tasks, and some tasks released immediately by their
predecessor, instead of pre-defined times. These results cannot be applied on
the targeted systems of this article.

7

Table 1: Requirements for Scheduling Analysis
Name Description

TDMA release

Tasks may be released at pre-
defined times, corresponding to
the start of TDMA slots, accord-
ing to the TDMA configuration

Periodic and sporadic release
Tasks may be released by peri-
odic and sporadic events.

Arbitrary deadline Deadlines are arbitrarily defined.

Arbitrary priority
In case of FP scheduling, priori-
ties are arbitrarily defined.

Precedence dependency
Two tasks may have a prece-
dence dependency.

Local Shared resource

Tasks may use local shared re-
sources and thus have critical
sections. Shared resources are
protected by an access protocol
that prevents deadlocks and un-
bounded priority inversion time.

Individual job parameter

Task execution time and dead-
line may be constrained by the
nature of the release event (e.g.
TDMA slot), and may be dif-
ferent from one job to the
other. Precedence dependency
and shared resource critical sec-
tions may also be different from
one job to the other.

Preemptive FP policy on uniprocessor
On a uniprocessor, tasks are
scheduled according to a preemp-
tive FP scheduling policy.

Partitioned multiprocessor

A task is allocated on a proces-
sor and does not migrate. Tasks
on different processors may com-
municate.

8

Table 2: Applicability of Task Models to Software Radio Protocol: Abbrevi-
ations are P/S = Periodic/Sporadic, TR = Transactions, GMF = Multiframe
Task Models, DAG = DAG Task Models; N = No, Y = Yes

P/S TR GMF DAG
TDMA release N N Y Y
Periodic and sporadic release Y Y Y Y
Arbitrary deadline N Y N Y
Arbitrary priority Y Y Y Y
Precedence dependency N Y N N
Local shared resource Y Y N N
Individual job parameter N N Y Y
Preemptive FP policy on uniprocessor Y Y Y Y
Partitioned multiprocessor N Y N N

Finally some works have been done on systems that are both event-triggered
and time-triggered, like a software radio protocol. In [18], the authors work
on an automotive system respecting the design of both architectures. Their
work does not focus on task scheduling, but network scheduling. Indeed, their
objective is to optimize the TDMA slot duration, when a bus is accessed by
several processors through the TDMA channel access method.

Periodic and sporadic release All task models support tasks released by a
periodic or a sporadic event [3, 7, 6, 19].

Arbitrary deadline Some of the schedulability tests for the periodic and
sporadic task models assume Di ≤ Ti [3, 16]. Thus the deadline is constrained.

Schedulability tests [6, 20] for GMF assume that the l-MAD property or the
Frame Separation property hold. The l-MAD property constrains the deadline
of a frame to be less than, or equal to, the deadline of the next frame. The
Frame Separation property constrains the deadline of a frame to be less than
the release of the next frame. These properties thus constrain the deadline of
frames and thus tasks.

Arbitrary priority There exists at least one schedulability test for each task
model that supports this characteristic [16, 21, 20, 5].

Precedence dependency Analysis of the periodic and sporadic task models
did not fully handle precedence dependencies, until they were generalized by
the transaction model [21].

Some works [22, 23, 7, 24] propose a method to schedule precedence de-
pendent periodic or sporadic tasks. These methods either constrain the fixed
priorities of tasks, or their deadlines, or they are proposed for a Earliest-Deadline
First (EDF) policy with dynamic priorities instead of fixed one. Therefore they

9

are not applicable due to the arbitrary priorities, arbitrary deadlines, and FP
scheduling policy of a software radio protocol.

Other works [25] also focus on periodic tasks with precedence dependencies
that are not specified for every job, but every 2, 3, ..., n jobs. These works are
not applicable to a software radio protocol, because precedence dependencies,
among task jobs, do not follow this kind of pattern.

The multiframe task models assume independent tasks [6]. The DAG task
models support precedence dependencies between jobs of a task. They do not
explicitly handle precedence dependencies between the tasks themselves. For
example the authors in [26] assume independent DAG tasks.

Local shared resource Like precedence dependencies, shared resources are
not supported by the classical multiframe task models and DAG task models,
since they assume independent tasks [6, 26]. In [27] the authors propose an
optimal shared resource access protocol for GMF tasks but the protocol is not
implemented in the OS of Thales products.

Individual job parameter The modeling of jobs with different parameters
is only supported by the multiframe and DAG task models [6, 5, 26], among
those present in Table 2.

Preemptive FP policy on uniprocessor All task models have schedulabil-
ity tests for the preemptive FP scheduling policy [3, 7, 6, 26].

Partitioned multiprocessor The periodic, sporadic task models, and the
multiframe task models have schedulability tests for uniprocessor systems [3,
6]. The DAG task models has tests for uniprocessor systems [5], or global
multiprocessor systems [26], i.e. where tasks may migrate to other processors.
Again, these task models are not applicable to our system.

In conclusion, the results of Table 2 show that none of the task models sup-
port all characteristics of the software radio protocol to analyze. The following
two sections expose our contributions to solve this problem: the DGMF task
model, its transformation to a transaction model, and our extended schedula-
bility test for transactions.

4 Dependent General Multiframe

To analyze the schedulability of a TDMA-based software radio protocol, this
article proposes the Dependent General Multiframe (DGMF) task model. The
following sections first define this task model. Then its analysis method is
proposed. Finally some experimental results and evaluation are exposed.

10

4.1 DGMF, an Extension of GMF

Jobs with individual parameters is frequent in the multimedia domain. For
example a video decoder task of a multimedia system has a sequence of images
to decode. The parameters of a job of the task are constrained by the type
of the image to decode. The described task behavior also occurs in software
radio protocols. Indeed a job of a task, released by TDMA slots, may also have
parameters constrained by the slot. The job parameters are thus constrained
by the sequence of slots of the TDMA frame.

A task model motivated by the described behavior is the GMF task model.
As a reminder, a GMF task is an ordered vector of frames representing its
jobs. Each frame can have a different execution time, deadline, and minimum
separation time from the frame’s release to the next frame’s release. Among
task models that propose to model individual job parameters, GMF is sufficient
for the modeling of a sequence of task jobs, constrained by a sequence of TDMA
slots. On the other hand, GMF is limited to uniprocessor systems, without task
dependencies, and with constrained deadlines. The GMF task model is thus
extended to propose a task model called DGMF.

The DGMF task model extends the GMF model with task dependencies. It
is also applicable to partitioned multiprocessor systems. The following sections
first define the DGMF task model and its properties. Then an example is shown.
Finally the applicability of GMF analysis method on DGMF is discussed.

4.1.1 DGMF Definitions and Properties

A DGMF task Gi is a vector composed of Ni frames F ji , with 1 ≤ j ≤ Ni. Each
frame is a job of the same task Gi. Frames have some parameters inherited
from GMF:

• Eji is the Worst Case Execution Time (WCET) of F ji .

• Dj
i is the relative deadline of F ji .

• P ji is min-separation of F ji , defined as the minimum time separating the

release of F ji and the release of F j+1
i .

A DGMF task also has a GMF period [6] inherited from the original task
model. For DGMF task Gi with Ni frames, the GMF period Pi of Gi is:

Pi =

Ni∑
j=1

P ji (1)

Frames also have some parameters and notations specific to the DGMF task
model:

• [U]ji is a set of (R,S,B) tuples denoting shared resource critical sections.

F ji asks for access to resource R after it has run S time units of its exe-
cution time, and then locks the resource during the next S time units of
its execution time.

11

• [F qp]ji is a set of predecessor frames, i.e. frames from any other DGMF tasks

that must complete execution before F ji can be released. A predecessor

frame is denoted by F qp . Frame F qp can only be in [F qp]ji if Gi and Gp have

the same GMF period. When a frame F yx precedes F ji , the precedence

dependency is denoted F yx → F ji . We have ∀F qp ∈ [F qp]ji , F
q
p → F ji . F qp

are not the only frames that precede F ji . For example, any frame that

precedes a F qp ∈ [F qp]ji , also precedes F ji . For j > 1, we have F j−1
i → F ji .

• proc(F ji) is the processor on which F ji is allocated on. Critical section

(R,S,B) can be in [U]ji and [U]yx, with F ji 6= F yx , only if proc(F ji) =
proc(F yx).

• prio(F ji) is the fixed priority of F ji (for FP scheduling).

• rji is the first release time of F ji . For the first frame F 1
i , parameter r1

i is

arbitrary. For the next frames, we have rji = r1
i +

j−1∑
h=1

Phi .

Frames are released cyclically [6]. Furthermore, the first frame to be released
by a DGMF task Gi is always the first frame in its vector, denoted by F 1

i .
Parameter ri denotes the release time of Gi and we have ri = r1

i .
A DGMF tasks set may have several properties. Let use define the Unique

Predecessor property and the Cycle Separation property.

Property 1 (Unique Predecessor). Let F ji be a frame of a task Gi, in a DGMF

tasks set. Let [F qp]ji be the set of predecessor frames of F ji . F j−1
i is the previous

frame of F ji in the vector of Gi, with j > 1. The set of predecessor frames of

F ji is the set [F qp]ji and F j−1
i (with j > 1).

A DGMF tasks set is said to respect the Unique Predecessor property if, for
all frames F ji , there is at most one frame F yx , in a reduced set of predecessors

of F ji , with a global deadline (i.e. ryx +Dy
x) greater than or equal to the release

time of F ji . The reduced set of predecessors, of F ji , are predecessors that do not

precede another predecessor of F ji .
To formally define the Unique Predecessor property, the set of predecessor

frames of F ji is denoted by pred(F ji) such that:

pred(F ji) =

{
[F qp]ji ∪ {F

j−1
i } with j > 1

[F qp]ji otherwise.
(2)

Formally the Unique Predecessor property is then defined as follows:

∃≤1F
y
x ∈ pred(F ji)′, ryx + dyx ≥ max(max

Fh
l ∈pred(F j

i)
(rhl + Ehl), rji) (3)

where ∃≤1 means ”there exists at most one”, and the set pred(F ji)′ is defined
as:

pred(F ji)′ = pred(F ji) \ {F yx ∈ pred(F ji) | ∃F lk ∈ pred(F ji), F yx → F lk} (4)

12

Table 3: DGMF Task Set
Eji Dj

i P ji [U]ji [F qp]ji prio(F ji) proc(F ji)

G1; r1 = 0
F 1

1 1 4 1 F 1
2 1 cpu1

F 2
1 1 3 1 1 cpu2
F 3

1 1 2 6 1 cpu1
F 4

1 1 4 4 F 2
2 1 cpu1

F 5
1 4 8 8 (R, 1, 3) F 3

2 1 cpu1
G2; r2 = 0
F 1

2 1 4 8 2 cpu1
F 2

2 1 4 4 2 cpu1
F 3

2 1 4 4 2 cpu1
F 4

2 2 4 4 (R, 0, 1) 2 cpu1
G3; r3 = 4
F 1

3 1 2 2 F 1
4 1 cpu1

F 2
3 1 2 18 F 2

4 1 cpu1
G4; r4 = 4
F 1

4 1 2 2 2 cpu1
F 2

4 1 2 18 2 cpu1

Property 2 (Cycle Separation). A DGMF task Gi is said to respect the Cycle
Separation property if:

DNi
i ≤ ri + Pi (5)

The Unique Predecessor and Cycle Separation properties simplify the anal-
ysis method of DGMF so both properties are assumed for a DGMF tasks set.
Experiments, presented later in this article, will show that they have no impact
on the ability to model a real software radio protocol, developed at Thales, with
DGMF.

To illustrate the task model defined in this section, the next section shows an
example with some DGMF tasks, the parameters of their frames, and a possible
schedule of the tasks set.

4.1.2 DGMF Example

Consider the DGMF tasks set in Table 3, modeling tasks constrained by a
TDMA frame. Frames of G1 and G3 have a priority of 1. Frames of G2 and
G4 have a priority of 2. All frames are allocated on cpu1 except F 2

1 , which is
allocated on cpu2. Frames F 5

1 and F 4
2 use a shared resource R.

Figure 3 shows an example of a schedule produced by the tasks set, over 20
time units. In the figure, the TDMA frame has 1 S slot, 2 B slots, and 3 T slots.
Task G2 is released at S and T slots. G2 releases G1 upon completion. G4 is
released at B slots. G4 releases G3 upon completion. Release time parameter
ri allows us to specify at which slot a task is released for the first time. For

13

example task G4 is released at time 4, which is the start time of the first B
slot. Notice that precedence dependencies are respected and F 2

4 is blocked by
F 5

1 during 1 time unit, due to a shared resource.

4.1.3 Applicability of GMF Analysis Methods on DGMF

Schedulability tests exist for GMF tasks. In this section a test is reminded and
its applicability to DGMF is discussed.

In [20] a response time based schedulability test for GMF tasks is proposed.
This test assumes that tasks are independent and run on a uniprocessor system
with a FP preemptive scheduling policy. Furthermore the authors also assume
that the Frame Separation property holds: the relative deadline of a frame is
less than or equal to its min-separation. Obviously this test cannot be applied
to DGMF tasks for the following reasons:

• DGMF tasks have task dependencies

• DGMF frames may be allocated on different processors.

The next section proposes a scheduling analysis method for DGMF by ex-
ploiting the transaction model.

4.2 DGMF Scheduling Analysis Using Transactions

In the previous section it was shown that GMF analysis methods cannot be
applied to DGMF tasks because of task dependencies and the partitioned mul-
tiprocessor nature of the system. Two choices are then available to solve this
issue:

• Extend GMF schedulability tests

• Transform to another model where schedulability tests exist

The second approach is chosen in this article: DGMF tasks scheduling anal-
ysis will be performed by transforming them to transactions. The transaction
model is chosen for the following reasons:

• Task dependencies (precedence and shared resource) can be expressed.

• Partitioned multiprocessor systems are considered.

• A independent GMF to transaction transformation is proposed in [28] for
uniprocessor systems.

The transformation faces the issue of the difference in semantic between
the two models. Indeed, transactions represent tasks related by collectively
performed functionalities and timing attributes [7], not individual jobs of a
task. The multiframe task models, on the other hand, express individual job
parameters.

14

0 5 10 15 20

G
1

F
1
1

0 5 10 15 20

G
2

F
2
1

0 5 10 15 20

G
3

F
3
1

0 5 10 15 20

G
4

F
4
1

F
2
2

F
2
3

F
2
4

F
1
4

F
1
5

S B B T T T

TDMA Frame

F
3
2

F
4
2

0 5 10 15 20

F
1
2

F
1
3

Figure 3: Example of Schedule of DGMF Tasks: Up arrows are frame releases;
Down arrows are frame relative deadlines; Dashed arrows are precedence de-
pendencies; Curved arrows are shared resource critical sections where R is used;
Crossed frame executes on a different processor

15

In the next sections, the transaction model is first reminded. Then the
transformation algorithm in [28] is extended for DGMF tasks. Afterwards the
DGMF tasks set in Section 4.1.2 is transformed to a transactions set. Finally
schedulability tests for transactions are discussed to choose one suitable for
transactions resulting from DGMF transformation.

4.2.1 Transaction Definitions

According to [29], ”a transaction is a group of related tasks (related either
through some collectively performed function, or through some shared timing
attributes whereby it is convenient to collect these tasks into a single entity)”.
In [21], transactions are used to model groups of tasks related by precedence
dependency. Let us see some definitions and notations for the transaction model,
taken from [29, 7, 21, 17, 8].

A transaction is denoted by Γi and its tasks are denoted by τij . A transaction
is released by a periodic event that occurs every Ti. A particular instance of a
transaction is called a job. A job of a task in a transaction corresponds to a job
of the transaction. If the event that releases the pth job of Γi occurs at t0, then
the pth jobs of its tasks are released after or at t0. The release time of the first
job of Γi is denoted by ri. A task τij has the following parameters:

• Cij is the WCET.

• Cbij is the Best Case Execution Time (BCET).

• Oij is the offset, a minimum time that must elapse after the release of the
job of Γi before τij is released [21]. Otherwise said τij is released at least
Oij units of time after t0. Value rij = ri+Oij is the absolute release time
of the first job of τij .

• dij is the relative deadline. Value Oij + dij is the global deadline [17] of
τij . Value ri +Oij + dij is the absolute deadline of the first job of τij .

• Jij is the maximum jitter, i.e. τij is released in [t0 +Oij ; t0 +Oij + Jij].

• Bij is the Worst Case Blocking Time (WCBT) [13] due to shared resources.

• prio(τij) is the fixed priority.

• proc(τij) is the processor on which τij is allocated on.

• Rwij is the global WCRT, which is the WCRT relative to the release of the
transaction [21]. A global response time is the response time of a task
plus its offset. As a reminder, a response time of a task is relative to its
release, in this case its offset.

• Rbij is the global Best Case Response Time (BCRT), which is the BCRT
relative to the release of the transaction [21].

16

Tasks may use shared resources in critical sections. A critical section is
denoted by (τ,R, S,B) where τ is the task using the resource R. Task τ asks
for R at S of its execution time, and locks it during the next B units of time of
its execution time.

Tasks in a transaction are related by precedence dependencies [17]. A prece-
dence dependency between two tasks is denoted by τip ≺ τij . As a reminder, the
precedence dependency means that a job p of τip must complete before a job p
of τij can be released. τip (resp. τij) is called the predecessor (resp. successor)
of τij (resp. τip). According to the precedence dependencies that may exist be-
tween tasks, transactions are of different type. This article handles tree-shaped
transactions.

Definition 1 (Tree-Shaped Transaction [8]). A tree-shaped transaction Γi has
a root task, denoted by τi1, which leads to the releases of all other tasks, upon
completion. A task τij, of a tree-shaped transaction, is said to have at most one
immediate predecessor (denoted by pred(τij)) that releases it upon completion.
A task τij may have several immediate successors (denoted by succ(τij)) that it
releases upon completion. The root task τi1 has no predecessor.

4.2.2 DGMF To Transaction

The DGMF to transaction transformation aims at expressing parameters and
dependencies in the DGMF task model as ones in the transaction model. The
transformation has three major steps:

• Step 1: Transform independent DGMF to transaction, i.e. consider
DGMF tasks as independent and transform them to transactions.

• Step 2: Express shared resource critical sections, i.e. model critical sec-
tions in the resulting transaction set and compute WCBTs.

• Step 3: Express precedence dependencies, i.e. model precedence depen-
dencies in the transaction model.

In the following sections, each step is explained in detail.

Independent DGMF to Transaction Step 1 consists in transforming each
DGMF task to a transaction by considering DGMF tasks as independent. Al-
gorithm 4.2.2.1 shows the original algorithm proposed in [28] that is extended
for DGMF tasks.

The idea behind the algorithm is to transform frames F ji of a DGMF task
Gi into tasks τij of a transaction Γi. Parameters in the transaction model,
like WCET (Cij), relative deadline (dij) and priority (prio(τij)), are computed

from parameters Eji , D
j
i and prio(F ji) from the DGMF model. To transform

the min-separation of a frame in the DGMF model, offsets (Oij) are used in
the transaction model. The offset of a task τij is computed by summing the

Phi of frames Fhi preceding F ji in the vector of Gi. In the extension of the

17

transformation, the release time ri of a DGMF task Gi is transformed into the
release time ri of a transaction Γi.

Algorithm 4.2.2.1 Independent DGMF to Transaction
1: for each DGMF task Gi do
2: Create transaction Γi

3:

4: Ti ←
Ni∑
j=1

P j
i

5: Γi.ri ← Gi.ri
6:
7: for each F j

i in Gi do
8: Create task τij in Γi

9:
10: Cij ← Ej

i

11: dij ← Dj
i

12: Jij ← 0
13: Bij ← 0

14: prio(τij)← prio(F j
i)

15: proc(τij)← proc(F j
i)

16: if j = 1 then
17: Oij ← 0
18: else

19: Oij ←
j−1∑
h=1

Ph
i

20: end if
21: end for
22: end for

Express Shared Resource Critical Sections In Step 2, the goal is to
express critical sections of tasks τij and then to compute their Bij . Step 2 is
thus divided into 2 sub-steps:

• Step 2.A: Express critical sections

• Step 2.B: Compute worst case blocking times

In Step 2.A, if a critical section is defined for a frame, then the task,
corresponding to the frame after transformation, must also have the critical
section. If there is a critical section (R,S,B) in [U]ji , then a critical section
(τij , R, S,B) must be specified in the transaction set resulting from Step 1.

In Step 2.B, the goal is to compute Bij of a task τij , assuming Bij of a
task is bounded [13, 12]. Bij is computed by considering all shared resource
R accessed by τij . Then all other tasks τxy that may access R are considered
too. Since some other tasks τxy actually represent jobs of a same DGMF task,
not all tasks τxy accessing R must be accounted for the computation of Bij .
Otherwise, it may lead to a pessimistic WCBT.

Consider a task τxy that shares a resourceR with task τij . Let (τxy, R, S,Bmax)
denote the longest critical section of τxy. Let SG(τxy, τij) denote the function
that returns true if τxy and τij result from frames that are part of a same DGMF
task. Let βij,R be the set of tasks considered for the computation of Bij for a
given R. For a given R, set βij,R contains a task τxy if:

18

proc(τxy) = proc(τij)∧ (6)

¬SG(τxy, τij)∧ (7)

¬∃(τkl, R, S′, B′) | (SG(τkl, τij) ∧B′ > Bmax) (8)

The three conditions have the following meaning:

1. Condition 1 (Equation 6) means that τxy must be on the same processor
as τij .

2. Condition 2 (Equation 7) means that both tasks must not come from
frames which are part of a same DGMF task.

3. Finally, for condition 3 (Equation 8) let us suppose that τxy results from a
frame in a DGMF task Gx. For a given R, τxy is only considered if it has
the longest critical section of R, among all tasks (with critical sections of
R) that result from frames which are part of Gx.

Proof of Step 2.B. Frames represent jobs of a same DGMF task. Tasks result-
ing from frames of a same DGMF cannot block each other since jobs of a same
DGMF task cannot block each other. Furthermore, tasks resulting from frames
of a same DGMF task, cannot all block another task, as if they are individual
tasks, since they represent jobs of a same DGMF task.

Equations for the computation of Bij are then adapted with the new set
βij,R. The equation in [13] to compute the WCBT with PIP becomes:

Bij =
∑
R

max
τxy∈βij,R

(Critical section duration of τxy) (9)

where R denotes a shared resource.
The equation in [13] to compute the WCBT with PCP becomes:

Bij = max
τxy∈βij,R,R

(Dxy,R | prio(τxy) < prio(τij), C(R) ≤ prio(τij)) (10)

where R denotes a shared resource, C(R) the ceiling priority [13] of R, and Dxy,R

the duration of the longest critical section of task τxy using shared resource R.

Express Precedence Dependencies The goal of Step 3 is to model prece-
dence dependencies in the transactions set, with respect to how they are modeled
in the transaction model with offsets. Step 3 is divided into three sub-steps:

• Step 3.A: Express precedence dependency, i.e. precedence dependencies
between frames are expressed as precedence dependencies between tasks.

19

• Step 3.B: Model precedence dependency in the transaction model, i.e.
precedence dependencies between tasks are modeled with offsets according
to [21]. Precedence dependent tasks must also be in a same transaction.

• Step 3.C: Reduce precedence dependencies, i.e. simplify the transactions
set by reducing number of precedence dependencies.

Two kinds of precedence dependency are defined in the DGMF model: intra-
dependency and inter-dependency. A intra-dependency is a precedence depen-
dency that is implicitly expressed between frames of a same DGMF task. Indeed,
frames of a DGMF task execute in the order defined by the vector. An inter-
dependency is a precedence dependency between frames belonging to different
DGMF tasks.

An intra-dependency in the DGMF set is expressed in the transaction set
by a precedence dependency between tasks, representing successive frames, if
they are part of a same transaction Γi with Ni tasks, resulting from Step
1: ∀j < Ni, τij ≺ τi(j+1). This also ensures that these tasks are part of the
same precedence dependency graph, which is important for determining if the
transaction is linear, tree-shaped or graph-shaped.

Inter dependencies must also be expressed in the transactions set resulting
from Step 1. If a frame F qp , corresponding to task τ qp , is in the set of prede-

cessor frames [F qp]ji of frame F ji , corresponding to task τij , then a precedence
dependency τpq ≺ τij is expressed.

Proof of Step 3.A. By definition frames of Gi are released in the order defined
by the vector of Gi so F ji precedes F j+1

i (j < Ni). Task τij (resp. τi(j+1)) is

the result of the transformation of F ji (resp. F j+1
i), thus by construction we

must have τij ≺ τi(j+1). The same proof is given for τpq ≺ τij , resulting from

the transformation of F qp ∈ [F qp]ji .

In the transaction model, precedence dependencies should be modeled with
offsets. This is done in Step 3.B with three algorithms: Task Release Time
Modification; Transaction Merge; and Transaction Release Time Modification.

The release time rij of each task τij , in the transactions set, is modified
according to precedence dependencies. This enforces that the release time of τij
is later or equal to the latest completion time (rpq +Cpq) of a predecessor τpq of
τij . Task release times are changed by modifying offsets because rij = ri +Oij ,
where ri is the release time of Γi. The release time modification algorithm is
shown in Algorithm 4.2.2.2. Since the release time of τpq may also be modified
by this algorithm, release time modifications are made until no more of them
occur. Note that when the offset Oij of τij is increased, its relative deadline
(dij) is shortened and then compared to its WCET (Cij) to verify if the deadline
is missed.

Proof of Algorithm 4.2.2.2. Let us assume τpq ≺ τij . The earliest release time of
τij is rij . According to [22], τpq ≺ τij ⇒ rpq+Cpq ≤ rij is true. The implication
is false if ¬(rpq + Cpq ≤ rij), otherwise said rpq + Cpq > rij . Therefore if we

20

Algorithm 4.2.2.2 Task Release Time Modification
1: repeat
2: NoChanges ← true
3:
4: for each τpq ≺ τij do
5: if rpq + Cpq > rij then
6: NoChanges ← false
7:
8: diff ← rpq + Cpq − rij
9: Oij ← Oij+ diff

10: dij ← dij− diff
11: rij ← ri +Oij

12:
13: if dij < Cij then
14: STOP (Deadline Missed)
15: end if
16: end if
17: end for
18: until NoChanges

have τpq ≺ τij then we cannot have rpq + Cpq > rij . Thus, for all τpq ≺ τij ,
release time rij must be modified to satisfy rpq + Cpq ≤ rij , if τpq ≺ τij and
rpq + Cpq > rij . Since rij = ri + Oij , the offset Oij is increased to increase
rij . Relative deadline dij is relative to Oij , thus dij must be decreased by the
amount Oij is increased.

Up until now, the transformation algorithm produces separate transactions
even if they contain tasks that have precedence dependencies with other tasks
from other transactions. This is not compliant to the modeling of precedence
dependencies in [21]. Indeed two tasks with a precedence dependency should
be in the same transaction and they should be delayed from the same event
that releases the transaction. Two transactions are thus merged into one single
transaction if there exists a task in the first transaction that has a precedence
dependency with a task in the other transaction:

∃τpq, τij | (Γi 6= Γp) ∧ (τpq ≺ τij ∨ τij ≺ τpq) (11)

Merging two transactions consist in obtaining a final single transaction, con-
taining the tasks of both. Algorithm 4.2.2.3 merges transactions two by two
until there is no more transaction to merge.

Algorithm 4.2.2.3 Transaction Merge
1: for each τpq ≺ τij do
2: if Γp 6= Γi then
3: for each task τij in Γi do
4: Assign τij to Γp

5: end for
6: end if
7: end for

Proof of Algorithm 4.2.2.3. As a reminder, tasks of a transaction are related
by precedence dependencies and a task in a transaction is released after the
periodic event that releases the transaction. Let us consider two tasks τij and

21

τpq, with τpq ≺ τij . Task τij (resp. τpq) is originally a frame F ji (resp. F qp). We

have F qp ∈ [F qp]ji ⇒ Pi = Pp. Gi (resp. Gp) is transformed into Γi (resp. Γp)
with period Ti (resp. Tp). We then have Ti = Pi = Pp = Tp. Thus τij and
τpq are released after periodic events of period Ti = Tp. Since τpq ≺ τij , τij is
released after τpq. Thus τij is released after the periodic event after which τpq is
released. Therefore τij and τpq are released after the same periodic event, that
releases transaction Γp. Both tasks then belong to Γp.

After merging two transactions into Γm, the offsetOjm of a task τ jm (originally
denoted by τ jo and belonging to Γo) is still relative to the release time ro of
Γo, no matter the precedence dependencies. In Γm, each offset must thus be
set relatively to rm, the release time of Γm. Release time rm is computed
beforehand. This is done in Algorithm 4.2.2.4.

Algorithm 4.2.2.4 Transaction Release Time Modification
1: for each merged transaction Γm do
2: rm ← +∞
3: for each τj

m in Γm, originally in Γo do

4: rm ← min(rm, ro +Oj
m)

5: end for
6: for each τj

m in Γm, originally in Γo do

7: Oj
m ← ro +Oj

m − rm
8: end for
9: end for

Proof of Algorithm 4.2.2.4. Let Γm be a merged transaction. Tasks in Γm were
originally in Γo. The event that releases Γm occurs at rm, which must be
the earliest release time rjm of a task τ jm in Γm, otherwise the definition of a
transaction is contradicted. A task τ jm should be released at rjm = ro + Ojm.
Once rm is computed, when task offsets have not been modified yet, it is possible
to have ro + Ojm 6= rm + Ojm. If we assign rjm ← rm + Ojm then τ jm may not
be released at ro + Ojm. This contradicts the fact that τ jm should be released
at rjm = ro + Ojm. Therefore Ojm must be shortened to be relative to rm:
Ojm ← ro + Ojm − rm. Since rm = min

τj
m∈Γm

(ro + Ojm), the minimum value of

ro+Ojm−rm is 0 and thus the assignment Ojm ← ro+Ojm−rm will never assign
a negative value to Ojm.

Algorithm 4.2.2.4 starts by finding the earliest (minimum) task release time
in a merged transaction Γm (as a reminder, Ojm is still relative to ro at this
moment). The earliest task release time becomes rm. The offset Ojm of each
task τ jm is then modified to be relative to rm. Note that when transactions
are merged and all of them have at least one task released at time t = 0,
Algorithm 4.2.2.4 produces the same merged transaction. This is the case for the
transaction resulting from the transformation of the DGMF tasks set example
(Section 4.1.2), which was used to model tasks constrained by a TDMA frame.

In Step 3.C, the transactions set can be simplified by reducing the number of
precedence dependencies expressed in Step 3.A. This could not be done in Step

22

3.A, before Step 3.B, because we did not yet know the latest completion time
of a task’s predecessors. Now that offsets have been modified, some precedence
dependencies can be reduced. Reducing precedence dependencies has the effect
of reducing the number of immediate predecessors/successors of a task.

Algorithm 4.2.2.5 iterates through tasks with more than 1 predecessor. For
a specific task τij , the algorithm reduces predecessors τiq that have a global
deadline (i.e. Oiq+diq) smaller than the offset Oij of τij . This is the first prece-
dence dependency reduction. The algorithm also reduces redundant precedence
dependencies, similar to a graph reduction algorithm [30]. A precedence de-
pendency is said redundant if it is already expressed by some other precedence
dependency. Redundancy is due to the transitivity of precedence dependency.
For example, if τiq ≺ τij and τ ′iq ≺ τij were expressed previously, and we have
τiq ≺ τ ′iq due to some other expressed precedence dependencies and the transi-
tivity of precedence dependency, then τiq ≺ τij is reduced.

Algorithm 4.2.2.5 Reduce Precedence Dependencies
1: for each task τij with multiple predecessors do
2: for each τiq ≺ τij do
3: if Oiq + diq < Oij

4: or ∃τ ′iq | τ
′
iq ≺ τij ∧ τiq ≺ τ

′
iq then

5: Remove τiq ≺ τij
6: end if
7: if τij has only one predecessor then
8: break
9: end if

10: end for
11: end for

Proof of Algorithm 4.2.2.5. Let us assume τiq ≺ τij and Oiq + diq < Oij . By
definition t0 + Oij is the earliest release time of a job of τij , corresponding
to the job of Γi released at t0. For the job of Γi released at t0, the absolute
deadline of a corresponding job of τiq is t0 + Oiq + diq. The job of τiq must
finish before t0 +Oiq +diq and τij is released at earliest after t0 +Oiq +diq since
Oiq+diq < Oij . Thus the precedence dependency constraint τiq ≺ τij is already
encoded in the relative deadline diq of τiq. Tasks in a transaction are related by
precedence dependency so τij must have at least one predecessor.

The next section shows an example of a DGMF to transaction transforma-
tion.

4.2.3 Transformation Example

The DGMF tasks set in Section 4.1.2 is transformed into a transaction Γ1 of
period T1 = 20. Tasks of transaction Γ1 are defined with parameters shown
in Table 4. PCP [13] is assumed for computation of Bij . Tasks are allocated
on cpu1 except τ12, which is allocated on cpu2. Figure 4 shows the precedence
dependency graph of tasks. An example of a schedule over 20 time units is
shown in Figure 5. Notice that the schedule of tasks in Figure 5 is the same as
the schedule of frames in Figure 3.

23

Table 4: Transaction from DGMF Transformation
Cij Oij dij Jij Bij prio(τij) proc(τij)

τ11 1 1 3 0 0 1 cpu1
τ12 1 2 2 0 0 1 cpu2
τ13 1 3 1 0 0 1 cpu1
τ14 1 9 3 0 0 1 cpu1
τ15 4 13 7 0 0 1 cpu1
τ21 1 1 4 0 0 2 cpu1
τ22 1 8 4 0 0 2 cpu1
τ23 1 12 4 0 0 2 cpu1
τ24 2 16 4 0 3 2 cpu1
τ31 1 5 1 0 0 1 cpu1
τ32 1 7 1 0 0 1 cpu1
τ41 1 4 2 0 0 2 cpu1
τ42 1 6 2 0 0 2 cpu1
Tick 0 0 +∞ 0 0 0 cpu3
Critical Sections
(τ13 R, 1, 3), (τ24 R, 0, 1)

𝑇𝑖𝑐𝑘

𝜏11 𝜏14 𝜏15

𝜏21 𝜏22 𝜏23 𝜏24

𝜏31 𝜏32

𝜏41 𝜏42

𝜏12 𝜏13

Figure 4: Tasks Precedence Dependency Graph

24

0 5 10 15 20

S B B T T T

TDMA Frame

1

0 5 10 15 20

Figure 5: Transaction from DGMF Tasks Transformation: Curved arrows are
shared resource critical sections; Tasks execute on same processor except the
crossed task

Task Tick represents a ghost root task (defined below) to simplify the anal-
ysis, as proposed by [8]. In the specific example, Tick can represent the first
TDMA tick that starts the whole TDMA frame. Therefore the ghost root task
ensures that all tasks, constrained by the TDMA frame, are part of the same
precedence dependency graph. For completeness, parameters of Tick are also
given in Table 4. Conform to its definition, Tick is allocated alone on a proces-
sor (cpu3). It has an execution time of 0, and offset of 0, an infinity deadline, no
jitter, a blocking time of 0, and its priority does not matter since it is allocated
alone on cpu3.

Definition 2 (Ghost Root Task). A ghost task is allocated alone on a processor
and is modeled only for the purpose of the analysis. It has a BCET and WCET
of 0, an offset of 0, an infinity deadline, no jitter, a WCBT of 0, and its priority
does not matter since it is allocated alone on a processor. In a transaction, a
ghost root task is a ghost task that precedes all other tasks, and does not have
any predecessor.

The next section determines the characteristics of the transaction given by
the transformation example presented in this section, and in the general case.
A suitable schedulability test is also discussed.

4.2.4 Assessing Schedulability of Resulting Transactions

The task parameters in Table 4, the precedence dependency graph in Figure 4,
and the schedule in Figure 5 show that the transaction presented in the last
section has the following characteristics:

• Tree-shaped

• Tasks may be non-immediate as defined below.

25

Definition 3 (Non-Immediateness). A task τix and its immediate successor task
τiy are said to be non-immediate tasks if τix = pred(τiy)∧Oiy > Oix+Cbix. Task
τix is called a non-immediate predecessor and τiy a non-immediate successor.

A non-immediate task is thus one that is not necessarily immediately released
by its predecessor. It is released at an earliest time t if the predecessor completes
before or at t, but immediately by the predecessor if the predecessor completes
after t.

In the general case, tree-shaped transactions with non-immediate tasks are
the results of the DGMF to transaction transformation, if the DGMF tasks set
has the Unique Predecessor property:

Theorem 1. A DGMF tasks set with the Unique Predecessor property (Property
1) is transformed into a transaction set without tasks that have more than one
predecessor.

Proof. Let a DGMF tasks set have the Unique Predecessor property. A frame
F ji with inter and intra-dependencies is transformed into a task τij with several
immediate predecessors. Task τij has several immediate predecessors that cor-

respond to predecessor frames of F ji . Let τiy be an immediate predecessor of
τij .

Algorithm 4.2.2.5 removes the precedence dependency τiy ≺ τij , if it is re-
dundant, i.e. if τiy does not result from a frame in the reduced set of predecessors

(see Property 1) of F ji . From now, let us consider that redundant precedence
dependencies have been removed. Otherwise said, only frames of the reduced
set of predecessors of F ji are considered, as well as tasks that result from them.

At most one predecessor frame F yx of F ji can have a global deadline (i.e.

ryx + Dy
x) greater than the release time rji of F ji . By construction, at most one

immediate predecessor τiy of τij (resulting from F yx and assigned to the same
transaction as τij) can have a global deadline greater than the offset of τij (i.e.
Oiy + diy ≥ Oij). Algorithm 4.2.2.5 removes a precedence dependency τiy ≺ τij
if Oij > Oiy + diy. Since there is at most one immediate predecessor τiy of τij
that has Oiy +diy ≥ Oij , all other immediate predecessors will be reduced until
task τij has at most one immediate predecessor.

This proves that tree-shaped transactions result from transformation of DGMF
tasks respecting the Unique Predecessor property. The transformation example
in Section 4.2.3 showed that there is at least one case where there are non-
immediate tasks in the transactions set resulting from the transformation.

To assess schedulability of transactions that are the result of the transfor-
mation, a schedulability test applicable to tree-shaped transactions with non-
immediate tasks must be applied. This section (Section 4) does not focus on
proposing a schedulability test for tree-shaped transactions with non-immediate
tasks. The test will be the subject of Section 5.

Furthermore, without knowledge that the tasks represent frames initially, the
schedulability test considers that it is possible for job k of a task τi1 representing
the first frame of a DGMF task Gi, to interfere with job k − 1 of a task τiNi

26

representing the last frame of the same DGMF task Gi. In practice, this is not
possible because job k of τi1 executes after job τiNi because frames represent
jobs of a DGMF task. If the Cycle Separation property is met, then job k of τi1
will only interfere job k − 1 of τiNi

if τiNi
misses its deadline. This is why the

Cycle Separation property is assumed.
The following section shows some experiments that evaluate the DGMF

modeling and the transformation of DGMF tasks to transactions.

4.3 Experiment and Evaluation

The DGMF scheduling analysis method is implemented in the Cheddar schedul-
ing analysis tool. Therefore the DGMF and GMF task models, transaction
model, transformation of DGMF tasks to transactions, and some schedulability
tests for transactions are implemented in this tool 1.

In this section, three aspects of the DGMF to transaction transformation
are evaluated through experiments. The following sections first evaluates the
transformation correctness, then the transformation time performance, and fi-
nally the DGMF modeling and transformation scalability, when it is applied to
a real case-study.

4.3.1 Transformation Correctness

The transformation correctness is evaluated by scheduling simulation performed
on randomly generated system architecture models. Cheddar provides a module
that is able to generate random architecture models. The generator is updated
so DGMF tasks can be produced.

The generator respects some parameters defined by the user. The user may
define the number of entities in the model, i.e. processors, DGMF tasks, frames,
shared resources, critical sections, and precedence dependencies. The user may
also define the scheduling policy, the number of DGMF tasks with the same
GMF period (called ”synced DGMF tasks”), and the GMF period for such
tasks. The generator avoids inconsistencies in the model (e.g. DGMF tasks
with no frames). It also produces precedence dependencies in a way that avoids
deadlocks during the scheduling simulation.

By using an architecture generator of Cheddar, DGMF task sets are ran-
domly generated. The varying generator parameters are: 2 to 5 DGMF tasks,
as many frames as tasks and up to 10 for each number of tasks, 1 to 3 shared
resources, as many critical sections as frames, as many precedence dependen-
cies as frames, a GMF Period between 10 to 50, and 50% of DGMF tasks with
the same GMF Period. From these parameters, 540 DGMF architecture mod-
els are generated. Each of them is transformed to an architecture model with
transactions.

1All sources available at http://beru.univ-brest.fr/svn/CHEDDAR/trunk/src/; Exam-
ples of use available at http://beru.univ-brest.fr/svn/CHEDDAR/trunk/project_examples/
dgmf_sim/ and http://beru.univ-brest.fr/svn/CHEDDAR/trunk/project_examples/

wcdops+_nimp/

27

http://beru.univ-brest.fr/svn/CHEDDAR/trunk/src/
http://beru.univ-brest.fr/svn/CHEDDAR/trunk/project_examples/dgmf_sim/
http://beru.univ-brest.fr/svn/CHEDDAR/trunk/project_examples/dgmf_sim/
http://beru.univ-brest.fr/svn/CHEDDAR/trunk/project_examples/wcdops+_nimp/
http://beru.univ-brest.fr/svn/CHEDDAR/trunk/project_examples/wcdops+_nimp/

The number of tasks, critical sections, and precedence dependencies in the
transaction models are equal to the number of frames, critical sections, and
precedence dependencies in the DGMF models. The number of output trans-
actions is less than the number of input DGMF tasks, since some transactions
are merged into a same one, during the transformation.

Both DGMF and transaction models are then simulated in the feasibility
interval proposed in [31]. Schedules are then compared. Each DGMF schedule
is strictly similar to the corresponding transaction schedule. Along with the
proofs in Section 4.2.2, this experiment enforces the transformation correctness
and its implementation correctness in Cheddar.

4.3.2 Transformation Time Performance

In the Cheddar implementation, the time complexity of the transformation al-
gorithm depends on two parameters: nF the number of frames, and nD the
number of task dependencies (both precedence and shared resource). The com-
plexity of the transformation is O(n2

D+nF). When nF is the varying parameter,
the complexity of the algorithm should be O(nF). When nD is the varying pa-
rameter, the complexity of the algorithm should be O(n2

D) due to Algorithm
4.2.2.2, which has the same complexity as the algorithm in [22]. The experiment
in this section checks that the duration of the transformation, implemented in
Cheddar, is consistent with these time complexities. Measurements presented
below are taken on a Intel Core i5 @ 2.40 GHz processor.

Figure 6 shows the transformation duration by the number of frames. The
number of precedence dependencies is set to 0 (i.e. no intra-dependencies either).
Figure 6 shows that the duration is polynomial when the number of frames
varies. One can think that this result is inconsistent with the time complexity
of the algorithm, which should be O(nF) when nF is the varying parameter. In
practice, the implementation in Cheddar introduces a loop to verify that a task
is not already present in the system’s tasks set. Thus the time complexity of
the implementation is O(n2

F).
Figure 7 shows the transformation duration by the number of precedence de-

pendencies. The number of frames is set to 1000, the number of DGMF tasks to
100, and the number of shared resources to 0. In the Cheddar implementation it
does not matter which dependency parameter (precedence or shared resource)
varies to verify the impact of nD. Indeed, all dependencies are iterated through
once and precedence dependency has more impact on the transformation dura-
tion. Since there are 1000 frames and 100 DGMF tasks, the minimum number
of precedence dependencies starts at 900, due to intra-dependencies.

The transformation duration should be polynomial when the number of
precedence dependencies vary but this can not be noticed in Figure 7 due to
the scale of the figure. Indeed, there is already a high minimum number of
precedence dependencies starting at 900. The local minimum of the polynomial
curve is at 0, like in Figure 6. The curve is a polynomial curve and the re-
sult is consistent with the complexity, which is O(n2

D) when nD is the varying
parameter.

28

0 200 400 600 800 1000

Frames

0

20

40

60

80

100

120

T
im

e
 (

m
s
)

Figure 6: Transformation Duration by Number of Frames

1000 1100 1200

Precedence Dependencies

110

120

130

140

150

160

T
im

e
 (

m
s
)

Figure 7: Transformation Duration by Number of Precedence Dependencies

29

Overall a system with no dependency, 1000 frames, and 100 DGMF tasks,
takes about 120 ms to be transformed on the computer used for the experiment.
A system with 1100 precedence dependencies, 1000 frames, and 100 DGMF
tasks, takes less than 160 ms to be transformed. The transformation duration
is acceptable for Thales. Indeed, a typical Thales system has 10 tasks and a
TDMA frame of 14 slots (1 S, 5 B, 8 T). There would be a maximum of 140
frames (14× 10), and 256 precedence dependencies (10× 14− 10 + 9× 14) if all
tasks are part of a same precedence dependency graph, where a task releases at
most one task, and a first task is released at each slot.

4.3.3 Case-Study Modeling with DGMF

The scalability of the DGMF task model, and its transformation to transaction,
is assessed by applying DGMF for the modeling of a real software radio protocol
developed at Thales. The case-study is implemented with 8 POSIX threads [32]
on a processor called GPP1, and 4 threads on a processor called GPP2. The
threads are scheduled by the SCHED FIFO scheduler of Linux (preemptive FP
policy). The threads have precedence dependencies, whether they are on the
same processor or not. For example threads on GPP1 may make blocking calls
to functions handled by threads on GPP2. When a thread makes a blocking
call to a function, it has to wait for the return of the function, before continuing
execution. There is one thread on GPP2 dedicated to each thread on GPP1
that may make a blocking call.

The TDMA frame of the case-study has 1 S slot, 5 B slots, and 8 T slots.
The threads are released at different slots. The release logic is a thread dedicated
to reception is released at a Rx slot, while a thread dedicated to transmission
is released so its deadline coincides with the start of a Tx slot.

In total, there are 36 jobs from 8 threads on GPP1, and 4 threads on GPP2.
The threads, their precedence dependencies, and the time parameters of their
jobs are illustrated in Figure 8.

The case-study is modeled with a DGMF task model of 43 frames. There
are more frames than the 36 jobs because some jobs that make a blocking
call to a function, are divided into several frames. After the transformation, a
transaction of 44 tasks is the result. The extra task, compared to the 43 frames,
is a ghost root task added by a test like [8]. The transaction is illustrated in
Figure 9.

Notice that different jobs of a thread, released at different slots, become
non-immediate tasks in the transaction, related by precedence dependency (e.g.
RS B1 ≺ RS B2). Furthermore, a thread that makes a blocking call, to a
function handled by a thread on GPP2, is divided into several frames, and then
several tasks (e.g. Frame Cycle becomes FC S1 1 ≺ FC S1 2 ≺ FC S1 3).

Furthermore, it may seem that some tasks should have two predecessors. For
example we should have AB B1 1 ≺ AB B2 1 because these two tasks represent
two jobs of a same thread. We should also have Rx Slot B2 ≺ AB B2 1 since
these two tasks represent jobs of two threads with a precedence dependency. But
since the offset of AB B2 1 is strictly greater than the deadline of Rx Slot B2,

30

S1 B1 B2 B3 B4 B5 T1 T8T2 T3 T4 T5 T6 T7

Frame_Cycle

Req_Msg

Build_TSlot

Build_SSlot

Build_BSlot

Deadline in

next frame

Deadline in

next frame

Rx_Slot

Analyse_Beacon

Analyse_Data

Tx Rx Rx Rx Rx Tx Tx RxTx Tx TxRxRxRx

Figure 8: TDMA Frame and Threads of Real Case-Study: Line = Instances of
a thread; Down arrow = Deadline; Dashed arrow = Precedence; Black = Exec
on GPP1 ; Gray = Exec on GPP2 ; 36 jobs in total from 8 threads on GPP1
and 4 threads on GPP2 ; Sizes not proportional to time values

RM_T1 RM_T3

FC_S1_1

RM_T5 RM_S1 RM_T7 RM_B5

BT_T1 BB_B5_1

BB_B5_2

BB_B5_3

BT_T3 BT_T5 BT_T7

RS_B1 RS_B2 RS_B3 RS_B4 RS_T2 RS_T4 RS_T6 RS_T8

AD_T2 AD_T4 AD_T6 AD_T8AB_B1_1

AB_B1_2

AB_B1_3

AB_B2_1

AB_B2_2

AB_B2_3

AB_B3_1

AB_B3_2

AB_B3_3

AB_B4_1

AB_B4_2

AB_B4_3

Tick

BB_S1_1

BB_S1_2

BB_S1_3

FC_S1_2

FC_S1_3

Figure 9: Tree-Shaped Transaction of a Real Case-Study: Black tasks on
GPP1, gray tasks on GPP2, Tick task is ghost root task; Task nomenclature
is [Name] [Slot] [Part (Optional)]; Abbreviated names are RM = Request Msg,
BT = Build TSlot, BB = Build BSlot, BS = Build SSlot, FC = Frame Cycle,
RS = Rx Slot, AB = Analyse Beacon, AD = Analyse Data

31

the precedence dependency RS B2 ≺ AB B2 1 is reduced by the DGMF trans-
formation. Other cases of tasks with multiple predecessors are due to the same
kind of precedence dependencies as the example. Multiple predecessors are thus
reduced to one in the same way as the example, by the transformation. In the
end the resulting transaction is tree-shaped.

In general, the more jobs of a thread there are, the more frames there are.
Similarly, the more there are blocking calls to functions allocated on other pro-
cessors, the more frames there are.

In the next section, we propose a schedulability test for tree-shaped trans-
actions with non-immediate tasks. Such type of transactions can be the result
of DGMF transformation.

5 Schedulability Analysis of Tree-Shaped Trans-
actions With Non-Immediate Tasks

Schedulability tests for tree-shaped transactions have been proposed by [8] but
they do not handle non-immediate tasks. Non-immediate tasks need specific
schedulability analysis. Therefore, in this section, a schedulability test is pro-
posed for tree-shaped transactions with non-immediate tasks. The test is called
WCDOPS+NIM and it extends the WCDOPS+ test proposed in [8]. The pro-
posed test completes the general DGMF analysis method presented in the pre-
vious section.

In the following sections, first the consequence of non-immediateness is
shown. Then the WCDOPS+NIM test is exposed. First, experiments show
some simulations that compare the original WCDOPS+ test to our test. Fi-
nally, our test is applied to a real case-study from Thales.

5.1 Applicability of WCDOPS+ on Non-immediate Tasks

Based on a software radio protocol architecture, we have shown in [33, 34] that
if WCDOPS+ is applied directly to non-immediate tasks, then interference is
underestimated. Indeed, the test does not consider that there are tasks that are
not released immediately, therefore it omits some combinations of tasks that
may interfere together some other task. This means WCRT computation is
optimistic.

We proposed a possible solution to this underestimation problem in [33,
34]. We proposed to model non-immediateness between two tasks by ghost
intermediate tasks. Before defining a ghost intermediate task, the terminology
of tree-shaped transaction entities must first be updated due to the existence of
non-immediate tasks.

Definition 4 (Direct Predecessor and Successor in Tree-shaped Transaction).
A task τij is said to have one direct predecessor, denoted by pred(τij), and a
set of direct successors, denoted by succ(τij). A task τix is pred(τij) (resp. in

32

succ(τij)) if there is no task τiy such that τix ≺ τiy ≺ τij (resp. τij ≺ τiy ≺ τix).
For the root task of a tree-shaped transaction, pred(τi1) is undefined.

The concept of ghost tasks is introduced in [8] (Definition 2). The concept
of intermediate tasks is proposed in [35]. An intermediate task represents some
extra execution time or message transmission time. A ghost intermediate task
can be defined as follows:

Definition 5 (Ghost Intermediate Task). A ghost intermediate task τixy is a
task between τix and its non-immediate direct successor τiy (τix ≺ τiy). Prece-
dence dependency τix ≺ τiy is replaced by τix ≺ τixy ≺ τiy. Ghost intermediate
task τixy is allocated alone on a processor, modeled only for the ghost interme-
diate task. Parameters of task τixy are formally defined as follows:

Cixy = Cbixy = Oiy − (Oix + Cbix)

Oixy = Oix + Cbix

Jixy = Rwix −Oixy
Dixy =∞
Bixy = 0

prio(τixy) = 1

∀τkl, proc(τixy) 6= proc(τkl)

(12)

Unfortunately if we model non-immediateness with ghost intermediate tasks,
WCRT computation becomes pessimistic [33, 34]. Consider a task τix and its
non-immediate direct successor τiy. Even if the response time of τix increases,
it does not necessarily finish after the earliest release time of τiy. Task τix then
has no impact on the response time of τiy. With a ghost intermediate task
τixy between the two, due to the precedence dependencies, any increase to the
response time of τix will increase the response time of τixy and thus τiy [33, 34].
Therefore the WCRT of non-immediate tasks may be overestimated if we model
ghost intermediate tasks.

In the case where τiy is released immediately by τix (i.e. case where τix
finishes after the earliest release of τiy), then τiy executes instead of lower priority
tasks. Any higher priority tasks released by the lower priority tasks will not
interfere τiy. Consider now that τiy is preceded by a ghost intermediate task
τixy. While τixy is executing, the lower priority tasks can execute and release
the higher priority tasks before τixy finishes. These higher priority tasks may
then interfere τiy. The response time of τiy is then impacted by both τix and
the interferences, although it is incorrect as shown in [33, 34]. This result shows
again how the WCRT of a non-immediate task may be overestimated if we
model ghost intermediate tasks.

In conclusion, two problems are observed when applying WCDOPS+ to
transactions with non-immediate tasks. First, if applied directly, tasks interfer-
ence may be underestimated, and thus WCRT computation is optimistic. Sec-
ond, by modeling non-immediate tasks with ghost intermediate tasks, response

33

Op2: Create worst case scenario candidate

Op3a: Compute all other Γ𝑖 interference

Op3b: Compute Γ𝑎 interference

Op4: Compute response time of 𝜏𝑎𝑏 for scenario

Op5: Compute WCRT of 𝜏𝑎𝑏

L
o

o
p

 f
o

r
a

ll
s
c
e

n
a

ri
o

s
Op1: Define sets of interfering tasks

Analyze task 𝜏𝑎𝑏 of Γ𝑎

Figure 10: WCDOPS+NIM Overview: Circles indicate key operations

time and tasks interference are overestimated. WCRT computation is then pes-
simistic. In the following section our test proposes to solve these problems by
considering the effects of non-immediateness directly.

5.2 A Schedulability Test for Non-Immediate Tasks

To consider the effects of non-immediateness directly, we propose the Worst
Case Dynamic Offset with Priority Schemes Plus for Non-Immediate tasks (WC-
DOPS+NIM) schedulability test, which extends the original WCDOPS+ test.
The general approach of the WCDOPS+NIM algorithm is the same as the WC-
DOPS+ algorithm. The algorithm is illustrated in Figure 10. The system to
analyze has some transactions Γi. It is assumed that the WCRT of τab, belong-
ing to Γa, is computed.

Due to the complexity of the mathematical equations and space limitations,
we will now only summarize the crucial steps of algorithm. A fully detailed
explanation the WCDOPS+NIM test, and its differences with the original test,
can be found in [33, 34]. We also provided theorems and proofs to justify the
changes we made.

Op1: Define sets of interfering tasks The initial step is to define some
task sets to help the analysis of τab. For example some tasks of higher priority
than τab should be considered to interfere τab as one single task if they are
related by precedence dependencies [8].

In order to identify the correct set of tasks, and thus not underestimate the
interferences on τab, we can consider that non-immediate tasks are preceded
by ghost intermediate tasks. We model these ghost intermediate tasks only to

34

compute the correct tasks sets in this step. They are not considered in the next
steps.

Op2: Create worst case scenario candidate In this step, we create a
worst case scenario candidate to compute the response time of of τab within the
scenario. The worst case scenario is when some higher priority task τac (also
in Γa) starts the busy period of τab. As a reminder, The busy period of a task
is the time interval during which the processor executes jobs of the task and
jobs of other tasks of higher priority or equal priority [36]. To get the worst
scenario, we then start a busy period with all tasks τac, hence a worst case
scenario candidate. Task τac is chosen by considering tasks that interfere as one
single task, computed in the previous step.

When there is a non-immediate higher priority task τac, then we consider
that it can start the busy period. We also check if the non-immediate task τac
can experience jitter, due to its predecessor finishing after the earliest release
time of τac. Indeed, a non-immediate task should not experience jitter if it starts
the busy period, and its predecessor task is of higher priority than the analyzed
τab task [33, 34].

Op3a, Op3b: Compute Γi and Γa interference In this step, we compute
the interferences from of transactions Γi to τab, including Γa. When interferences
are computed, execution conflicts are considered. Not all sets of tasks defined
in Op1 can interfere together. They are then in execution conflict. This is due
to precedence dependencies, task priorities, and processor allocations [8].

When there are non-immediate tasks, we check which non-immediate task
must be released immediately in the scenario. This will impact the detection
of execution conflicts. Indeed, a non-immediate task released immediately by
a precedent task should be in the set of the precedent task. Since execution
conflicts are detected correctly, the the interferences are not overestimated [33,
34].

From an implementation point of view, the algorithm computes interferences
by exploring the tree-shaped transaction with a depth-first search. Modifications
are needed in the exploration algorithm, due to non-immediate tasks [33, 34].

Op4: Compute response time of τab for scenario In this step, the re-
sponse time of τab is computed for the worst case scenario candidate. We take
the longest response time of one of its jobs, since several jobs of τab can be
released in the busy period of the scenario. A response time is computed by
considering the execution time of τab, the interferences it experiences, the jitter
it experiences (especially due to preceding tasks), and the WCBT it experiences
due to shared resources [8].

If the longest response time comes from the scenario where τac = τab starts
the busy period, then τab could have not experienced jitter, thanks to step Op2.
Therefore the response time of τab is not overestimated [33, 34].

35

Op5: Compute WCRT of τab In this step, the WCRT of τab is computed by
taking the longest response time computed from one of the worst case scenario
candidates.

The WCDOPS+NIM test completes the scheduling analysis method for
DGMF tasks. The following section shows some experiments and results.

5.3 Experiment and Evaluation

The WCDOPS+NIM test is implemented in Cheddar. This section presents
some experiments done to evaluate the analysis results of the test. A first
experiment evaluates the WCDOPS+NIM test by simulation, while the second
applies it to a real case-study from Thales. The following sections present
these experiments. In each section the experimental setup is exposed, then
experimental results are presented and discussed.

5.3.1 WCDOPS+NIM Evaluation

The WCDOPS+NIM test is compared to the original WCDOPS+ test by sim-
ulation. This experiment evaluates the pessimism of the original test when it
is applied to transactions where there are non-immediate tasks. In order to
compare WCDOPS+NIM with WCDOPS+, the tests are applied to randomly
generated system architecture models. The models are generated according to
the same parameters as the WCDOPS+ simulations in [8] so both tests can be
compared. The Cheddar generator is updated for the simulations.

The generator produces system architecture models composed of 4 processors
all with a preemptive FP scheduling policy. In the simulations, all processors
have a utilization factor that varies between 10% to 70%. A model also has 10
transactions with 10 tasks per transaction. A transaction has a period between
10 and 100000 units of time.

Initially a task has the same priority as its direct predecessor in the trans-
action. It is also allocated on the same processor as its direct predecessor. The
direct predecessor is chosen randomly. Both priority and processor parameters
can vary. The probability to choose a random priority for a task, after its de-
fault priority is set, is 0, 0.25, or 0.50, depending on the user-defined simulation
parameters. There is a probability of 0.25 to choose a random processor for a
task, after its default processor is set. If a parameter varies, a random priority
(resp. a random processor) is chosen for a task.

Tasks are immediate initially. When its offset is computed, a generated
task can become non-immediate randomly. The probability to increase a task’s
offset, after its default offset is set, is 0.25 or 0.50, depending on the user-defined
simulation parameters. If a task becomes non-immediate, its offset is increased
by a random value between 0 and 1000. WCDOPS+ is applied with ghost
intermediate tasks added to model non-immediateness.

Simulations are conducted by making different parameters of the generator
vary. For each set of parameters of the generator, 5 system architecture models

36

10 20 30 40 50 60 70

CPU Utilization (%)

1

1,1

1,2

1,3

1,4

R
(W

C
D

O
P
S
+

)
/

R
(W

C
D

O
P
S
+

_
N

IM
)

nim_prob = 0.25 nim_prob = 0.5

Figure 11: Comparison between WCDOPS+ and WCDOPS+NIM by Processor
Utilization and Offset Increase Probability: nim prob denotes the probability
to increase a task’s offset

are generated and the response times are computed for each model. For a set of
generator parameters, the average ratio between WCRTs given by WCDOPS+
and WCDOPS+NIM is computed.

Figure 11 shows results of the first simulation where the processor utilization
varies between 10% and 70%. The probability to choose a random processor
and a random priority remains at 0.25. The evolution of the ratio is shown for
a probability of 0.25 and 0.5 to increase offsets.

Figure 12 shows results of the second simulation where the processor utiliza-
tion varies between 10% and 70%. The probability to choose a random processor
and to increase offsets remains both at 0.25. The evolution of the ratio is shown
for a probability of 0.0, 0.25 and 0.5 to choose a random priority for a task.

These simulation results show that results vary according to the processor
utilization. The WCDOPS+NIM test gives less pessimistic WCRTs for lower
and higher processor utilizations. The highest average ratio between a response-
time given by WCDOPS+ and WCDOPS+NIM is 1.43. Like in [8], due to the
nature of the experiment, the simulation becomes unfeasible for a high processor
utilization. In the experiment, the threshold is 70%.

In conclusion the WCRTs computed by WCDOPS+NIM are more than 40%
less than WCRTs computed by the original test, for a processor utilization of
70%. Furthermore, the higher the processor utilization is, the less pessimistic
the WCRTs given by WCDOPS+NIM are, compared to WCDOPS+.

5.3.2 Experimentation on Software Radio Protocol

As a reminder, the WCDOPS+NIM test is proposed for tree-shaped transactions
that have non-immediate tasks. Such transactions may be the result of DGMF

37

10 20 30 40 50 60 70

CPU Utilization (%)

1,0

1,1

1,2

1,3

1,4
R

(W
C

D
O

P
S
+

)
/

R
(W

C
D

O
P
S
+

_
N

IM
)

prio_prob = 0.0 prio_prob = 0.25
prio_prob = 0.5

Figure 12: Comparison between WCDOPS+ and WCDOPS+NIM by Processor
Utilization and Random Priority Probability: prio prob denotes the probability
to choose a random priority

transformations. The schedulability test is thus applied by first modeling the
system with DGMF. To assess the gain of applying WCDOPS+NIM on a real
software radio protocol, the test is compared to current practices at Thales. A
case-study is used to evaluate our proposed analysis method. Besides evaluating
the advantages of the proposed analysis method, this experiment also determines
its scalability.

The case-study is the real software radio protocol that was presented in Sec-
tion 4.3.3. As a reminder, the case-study is implemented with 8 POSIX threads
on a processor called GPP1, and 4 threads on a processor called GPP2. Both
processors are scheduled by the SCHED FIFO scheduler of Linux (preemptive
FP policy). The threads have precedence dependencies and they are released
at the start of different slots of a TDMA frame of 14 slots. The case-study,
modeled with DGMF, was transformed to a tree-shaped transaction of 44 tasks
with non-immediate tasks, shown in Figure 9 of Section 4.3.3.

Currently the analysis approach used at Thales is similar to the approach of
the Joseph & Pandya test in [16] (abbreviated as the ”J&P test” in the following
paragraphs). To assess the advantage of applying WCDOPS+NIM to the real
software radio protocol, WCRTs given by WCDOPS+NIM are compared with
those computed by the J&P test. The J&P test cannot be applied directly to
the case-study for the following reasons:

• Precedence dependency between tasks that may be on different processors

• Constraint of deadline less than or equal to period, assumed by the J&P
test

38

For the problem of precedence dependency between tasks on different pro-
cessors, in the case-study, the priority assignment in [23] is first used when
analyzing a particular task: a task has a priority lower than its predecessor’s
priority. All tasks are then allocated to a same processor and a synchronous
system is assumed for the J&P test.

The J&P test assumes a task deadline less than or equal to its period. There-
fore the test only computes the WCRT of the first job of a task. The constraint
on deadlines is not respected by the case-study tasks, so the response time of
the first job is not sufficient to determine schedulability. On the other hand,
as we will see with the results in the following paragraph, even the response
time of the first job is overestimated by the J&P test, compared to a WCRT
computed by WCDOPS+NIM.

Only the WCRTs of tasks, without any successor, are compared. These
tasks represent the completion of some service, thus their response time is of
interest to determine if the service misses some deadline. For example in the
service represented by the precedence dependency chain RM S1 ≺ BB S1 1 ≺
BB S1 2 ≺ BB S1 3, only the WCRT of BB S1 3 is of interest to determine if
the service misses its deadline, i.e. if the deadline of BB S1 3 is missed.

When applying WCDOPS+NIM on the case-study, the convergence of re-
sponse times takes 7 seconds on a Intel Core i5 @ 2.40 GHz. The computed
WCRTs are shown in Table 5. From results in Table 5, a ratio of response times,
given by both tests, is computed for each task. In average, this ratio is 8.89
so in average the J&P schedulabiltiy test gives a WCRT almost 9 times higher
than WCDOPS+NIM. This result shows that considering TDMA task releases
reduces the pessimism of WCRTs.

The WCDOPS+ test was also applied to the case-study by modeling non-
immediateness with ghost intermediate tasks. The ratio of WCRTs computed by
WCDOPS+, compared to WCRTs computed by WCDOPS+NIM, is 1.08. The
pessimism of WCRTs computed by WCDOPS+ is thus negligible. This result
can be explained by the fact that the processor utilization of the case-study is low
since the duration of slots is high compared to the WCETs of tasks. As shown
by the simulations in Section 5.3.1, for a low processor utilization, WCDOPS+
does not give significantly more pessimistic WCRTs than WCDOPS+NIM.

The slot durations are high because the initial TDMA configuration is not
necessarily optimized. Furthermore some processor time must be dedicated to
execution of other applications than the software radio protocol. Later specifi-
cations will decrease the slot durations, which means an increase in processor
utilization.

6 Conclusion

6.1 Summary

The work presented in this article contributed to scheduling analysis of real-time
radio software systems. This article focused on communication systems using

39

Table 5: Task WCRTs of MAC Layer Case-Study: RRM is WCRT given by
[16]; RWCDOPS+NIM is WCRT (global WCRT minus offset) given by WC-
DOPS+NIM; Time values in ms

Task RRM RWCDOPS+NIM

FC S1 3 33405 573
AB B1 3 6505 1241
AB B2 3 6505 1241
AB B3 3 6505 1241
AB B4 3 6505 741
AD T2 1 3955 651
AD T4 1 3955 651
AD T6 1 3955 651
AD T8 1 3955 651
BT T1 1 1915 463
BT T3 1 1915 463
BT T5 1 1915 463
BT T7 1 1915 463
BB B5 3 16859 3313
BS S1 3 16959 3634

TDMA to access the shared communication medium. We took software radio
protocols developed at Thales Communications & Security as case-studies.

Software radio protocols have some characteristics to consider for schedul-
ing analysis. Among these characteristics, the system has tasks released by
TDMA ticks, and execution times and deadlines that depend on the TDMA
slots. The tasks are also dependent, through precedence dependencies and
shared resources. They execute on a partitioned multiprocessor execution plat-
form, with preemptive fixed priority scheduling.

For scheduling analysis of a software radio protocol, we solved the issue of
applicability of task models and analysis methods. Indeed, existing task models
of the literature are not applicable to all characteristics of a software radio
protocol.

The solution proposed in this article, is to abstract the architecture of a
software radio protocol with the DGMF task model. Our task model fulfills re-
quirements for scheduling analysis of a software radio protocol based on TDMA.
Indeed, our task model expresses individual jobs of a task, called DGMF frames.
DGMF extends the GMF task model with task dependencies and the proposed
task model is applicable to a partitioned multiprocessor execution platform.

To analyze DGMF tasks, they are transformed to transactions. Then an
adapted schedulability test, proposed in this article, is applied to the trans-
actions. Our schedulability test is called WCDOPS+NIM, and it extends the
WCDOPS+ test of the literature. The proposed test is applicable to tree-shaped
transactions with non-immediate tasks.

DGMF, transactions, and their analysis methods are implemented in the

40

Cheddar scheduling analysis tool. Scheduling analysis, with DGMF, can then
be applied automatically.

The proposed solution was evaluated through several experiments. The mod-
eling and transformation of DGMF tasks to transactions was evaluated both by
simulation and with a real case-study. Simulation results showed that the im-
plementation of the transformation is polynomial, when the number of DGMF
frames increases, or the number of precedence dependencies increases. For a
model of 100 DGMF tasks, 1000 DGMF frames, and 1100 precedence depen-
dencies, simulation results showed that the transformation time takes about 160
ms.

DGMF was then applied for the modeling of a real case-study from Thales.
This experiment showed that a real system has much less tasks, frames and
precedence dependencies than the models generated in the simulation. Indeed,
the case-study was modeled with 8 DGMF tasks, 43 frames and 14 precedence
dependencies.

The DGMF model representing the real case-study was transformed into a
transaction model. The WCDOPS+NIM test was then applied. Experimental
results showed that WCDOPS+NIM computes WCRTs almost 9 times lower in
average than the fundamental periodic task model test. The approach of the
periodic task model analysis is used for some systems at Thales. Simulation
results also showed that WCDOPS+NIM gives less pessimistic response times
than WCDOPS+, as processor utilization increases. For a processor utilization
of a 70%, WCDOPS+NIM gives up to 40% less pessimistic WCRTs.

In conclusion the proposed solution solves the issues faced by scheduling
analysis of a software radio protocol based on TDMA. Experimental results
also show that the solution is scalable to systems developed at Thales Commu-
nications & Security.

6.2 Future Works

In the future, we wish to improve the DGMF analysis method, by extending the
WCDOPS+NIM schedulability test. The analysis method assumes that DGMF
tasks respect the Cycle Separation property. This means that the deadline of
job p of FNi

i is less than the release of job p + 1 of F 1
i . By assuming this

property, the first frame F 1
i should not interfere the last frame FNi

i , unless
the last frame misses a deadline. To analyze DGMF tasks that do not respect
the Cycle Separation property, the WCDOPS+NIM schedulability test needs to
consider this behavior.

The WCDOPS+NIM test is currently applicable to tree-shaped transac-
tions. There exists an extension of WCDOPS+ for graph-shaped transactions
in [37]. In the future, the WCDOPS+NIM test can be adapted for graph-shaped
transactions with non-immediate tasks.

Works can also be done on exploiting the DGMF task model with higher level
architecture models. In [34], we proposed an experimental architecture model
of a software radio protocol in UML MARTE [38] that can be used for schedu-
lability analysis with DGMF but The MARTE model and its transformation to

41

DGMF, have to be formalized in the future.
Finally, we should also investigate how DGMF can exploit other architecture

models described with languages such as AADL [39], and EAST-ADL [40]. This
would also investigate furthermore the applicability of DGMF to domains such
as avionic and automotive.

References

[1] J. Mitola, The software radio architecture, IEEE Communications Maga-
zine 33 (5) (1995) 26–38.

[2] T. Chan, Time-division multiple access, in: Handbook of Computer Net-
works, John Wiley & Sons, Hoboken, 2011, pp. 769–778.

[3] C. Liu, J. Layland, Scheduling algorithms for multiprogramming in a hard-
real-time environment, Journal of the ACM 20 (1) (Jan, 1973) 46–61.

[4] L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A. Burns, G. But-
tazzo, M. Caccamo, J. Lehoczky, A. K. Mok, Real time scheduling theory:
A historical perspective, Real-Time Systems 28 (2-3) (Nov-Dec, 2004) 101–
155.

[5] S. Baruah, Dynamic- and static-priority scheduling of recurring real-time
tasks, Real-Time Systems 24 (1) (Jan, 2003) 93–128.

[6] S. Baruah, D. Chen, S. Gorinsky, A. Mok, Generalized multiframe tasks,
Real-Time Systems 17 (1) (Jul, 1999) 5–22.

[7] K. Tindell, J. Clark, Holistic schedulability analysis for distributed hard
real-time systems, Microprocessing and Microprogramming 40 (2-3) (Apr,
1994) 117–134.

[8] O. Redell, Analysis of tree-shaped transactions in distributed real time
systems, in: Proceedings of the 16th Euromicro Conference on Real-Time
Systems, Catania, Italy, 2004, pp. 239–248.

[9] F. Singhoff, A. Plantec, P. Dissaux, J. Legrand, Investigating the usability
of real-time scheduling theory with the cheddar project, Real-Time Systems
43 (3) (Jun, 2009) 259–295.

[10] H. Zimmermann, OSI reference model–the ISO model of architecture
for open systems interconnection, IEEE Transactions on Communications
28 (4) (1980) 425–432.

[11] N. Malcolm, W. Zhao, The timed-token protocol for real-time communica-
tions, Computer 27 (1) (Jan, 1994) 35–41.

[12] R. Rajkumar, Real-time synchronization protocols for shared memory mul-
tiprocessors, in: Proceedings of the 10th International Conference on Dis-
tributed Computing Systems, Paris, France, 1990.

42

[13] L. Sha, R. Rajkumar, J. Lehoczky, Priority inheritance protocols: an
approach to real-time synchronization, IEEE Transactions on Computers
39 (9) (1990) 1175–1185.

[14] H. Kopetz, Event-triggered versus time-triggered real-time systems, in: Op-
erating Systems of the 90s and Beyond, Vol. 563 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 1991, pp. 86–101.

[15] H. Kopetz, The time-triggered model of computation, in: Proceedings of
the 19th IEEE Real-Time Systems Symposium, Madrid, Spain, 1998.

[16] M. Joseph, P. Pandya, Finding response times in a real-time system, The
Computer Journal 29 (5) (1986) 390–395.

[17] J. Palencia, M. Harbour, Exploiting precedence relations in the schedula-
bility analysis of distributed real-time systems, in: Proceedings of the 20th
IEEE Real-Time Systems Symposium, Phoenix, AZ, 1999, pp. 328–339.

[18] E. Wandeler, L. Thiele, Optimal TDMA time slot and cycle length alloca-
tion for hard real-time systems, in: Proceedings of the 11th Asia and South
Pacific Design Automation Conference, Yokohama, Japan, 2006.

[19] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, A. Wiese, A
generalized parallel task model for recurrent real-time processes, in: Pro-
ceedings of the 33rd Real-Time Systems Symposium, San Juan, Puerto
Rico, 2012.

[20] H. Takada, K. Sakamura, Schedulability of generalized multiframe task sets
under static priority assignment, in: Proceedings of the 4th International
Workshop on Real-Time Computing Systems and Applications, Taipei, Tai-
wan, 1997, pp. 80–86.

[21] J. Palencia, M. Harbour, Schedulability analysis for tasks with static and
dynamic offsets, in: Proceedings of the 19th IEEE Real-Time Systems
Symposium, Madrid, Spain, 1998.

[22] H. Chetto, M. Silly, T. Bouchentouf, Dynamic scheduling of real-time tasks
under precedence constraints, Real-Time Systems 2 (3) (1990) 181–194.

[23] N. Audsley, K. Tindell, A. Burns, The end of the line for static cyclic
scheduling?, in: Proceedings of the 5th Euromicro Workshop on Real-Time
Systems, Oulu, Finland, 1993.

[24] J. Forget, F. Boniol, E. Grolleau, D. Lesens, C. Pagetti, Scheduling depen-
dent periodic tasks without synchronization mechanisms, in: Proceedings
of the 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, Stockholm, Sweden, 2010.

43

[25] M. Forget, E. Grolleau, C. Pagetti, P. Richard, Dynamic priority scheduling
of periodic tasks with extended precedences, in: Proceedings of the 16th
Conference on Emerging Technologies & Factory Automation, Toulouse,
France, 2011.

[26] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, A. Wiese, Feasibility anal-
ysis in the sporadic DAG task model, in: Proceedings of the 25th Euromicro
Conference on Real-Time Systems, Paris, France, 2013.

[27] P. Ekberg, N. Guan, M. Stigge, W. Yi, An optimal resource sharing proto-
col for generalized multiframe tasks, in: Nordic Workshop on Programming
Theory, Vasteras, Sweden, 2011.

[28] A. Rahni, Contributions à la validation d’ordonnancement temps réel en
présence de transactions sous priorités fixes et EDF, Ph.D. thesis, Univer-
sité de Poitiers, Poitiers, France (2008).

[29] K. Tindell, Adding time-offsets to schedulability analysis, Tech. rep., Uni-
versity of York (1994).

[30] S. Klaus, Finding a minimal transitive reduction in a strongly conncected
digraph within linear time., in: Proceedings of the 15th International Work-
shop on Graph-Theoretic Concepts in Computer Science, Vol. 411, Berlin,
Germany, 1990.

[31] A. Choquet-Geniet, E. Grolleau, Minimal schedulability interval for real-
time systems of periodic tasks with offsets, Theoretical Computer Science
310 (Jan, 2004) 117–134.

[32] A. Burns, A. Wellings, Real-time systems and programming languages:
Ada 95, real-time Java, and real-time POSIX, Pearson Education, 2001.

[33] S. Li, F. Singhoff, S. Rubini, M. Bourdellès, Extending schedulability tests
of tree-shaped transactions for TDMA radio protocols, in: Proceedings
of the 19th IEEE International Conference on Emerging Technology &
Factory Automation, Barcelona, Spain, 2014.

[34] S. Li, Scheduling analysis of tasks constrained by time-division multiplex-
ing: application to software radio protocols, Ph.D. thesis, Universit de
Bretagne Occidentale, Brest, France (Nov, 2014).

[35] J. Garcia, J. Gutierrez, M. Harbour, Schedulability analysis of distributed
hard real-time systems with multiple-event synchronization, in: Proceed-
ings of the 12th Euromicro Conference on Real-Time Systems, Stockholm,
Sweden, 2000.

[36] J. Lehoczky, Fixed priority scheduling of periodic task sets with arbitrary
deadlines, in: Procedings of the 11th Real-Time Systems Symposium, Lake
Buena Vista, USA, 1990, pp. 201–209.

44

[37] J. Kany, S. Madsen, Design optimisation of fault-tolerant event-triggered
embedded systems, Master’s thesis, Technical University of Denmark, Lyn-
gby, Denmark (2007).

[38] M. Z. Iqbal, S. Ali, T. Yue, L. Briand, Applying UML/MARTE on indus-
trial projects: challenges, experiences, and guidelines, Software & Systems
Modeling (Mar, 2014) 1–19.

[39] P. H. Feiler, D. P. Gluch, J. J. Hudak, The architecture analysis & de-
sign language (AADL): an introduction, Tech. rep., Software Engineering
Institute, Pittsburgh (2006).

[40] V. Debruyne, F. Simonot-Lion, Y. Trinquet, EAST-ADL - an architecture
description language, in: Architecture Description Languages, Vol. 176,
Springer-Verlag, New York, USA, 2005, pp. 181–195.

45

	Introduction
	Context
	Overview of Contributions
	Article Organization

	Software Radio Protocol
	Radio Protocols Based On Time-Division Multiplexing
	Software and Execution Platform Architecture
	Requirements for Scheduling Analysis

	Applicability of Related Works
	Dependent General Multiframe
	DGMF, an Extension of GMF
	DGMF Definitions and Properties
	DGMF Example
	Applicability of GMF Analysis Methods on DGMF

	DGMF Scheduling Analysis Using Transactions
	Transaction Definitions
	DGMF To Transaction
	Transformation Example
	Assessing Schedulability of Resulting Transactions

	Experiment and Evaluation
	Transformation Correctness
	Transformation Time Performance
	Case-Study Modeling with DGMF

	Schedulability Analysis of Tree-Shaped Transactions With Non-Immediate Tasks
	Applicability of WCDOPS+ on Non-immediate Tasks
	A Schedulability Test for Non-Immediate Tasks
	Experiment and Evaluation
	WCDOPS+NIM Evaluation
	Experimentation on Software Radio Protocol

	Conclusion
	Summary
	Future Works

