D. Hashizume, K. Miqueu, J. Sotiropoulos, A. Baceiredo, T. Kato et al., (c) Fu? rstner, A, Angew. Chem., Int. Ed. 2013 Acc. Chem. Res. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. New J. Chem, vol.52, issue.298, pp.4426-4592, 2000.

J. R. Salau?-n, J. M. Conia, B. M. Trost, M. J. Bogdanowicz, B. M. Trost et al., from the Cambridge Crystallographic Data Centre via www.ccdc.cam. ac, These data can be obtained free of charge, pp.1443340-7601, 1579.

A. Oskam, P. Jutzi, E. A. Bunte, C. A. Arrington, J. T. Petty et al., (19) Transient 2-silaketenes, Z. Anorg. Allg. Chem. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc. J. Am. Chem. Soc, vol.61920, issue.13221, pp.865-6240, 1988.

T. Iwamoto, . J. Chem.-eur, C. Foo, H. Xi, Y. Li et al., Geometries were optimized using the M06-2X density functional with the 6-31G(d) basis set. The energy of each stationary point was recomputed using the 6-311+G(d,p) basis set. The reported Gibbs free energies (298.15 K and 1 atm) were computed from the total energies obtained with the 6-311+G(d,p) basis set and zeropoint , thermal, and entropy corrections computed with the 6-31G(d) basis set. (25) See the Supporting Information. (26) Peng, 27) Peng, pp.15100-1668, 1970.