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Abstract:

The sulfur biogeochemical cycle plays a key role in regulating Earth's surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition ( 34 S) of sedimentary sulfate and sulphide phases over Earth history can be used to infer substantive changes to the Earth's surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual  34 S records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals, but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300 m drill core of Mediterranean sediments deposited over the past 500,000 years and spanning the last five glacial-interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the  34 S pyr record necessarily corresponds to local environmental changes. The stratigraphic variations (>76.8‰) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial-interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial-interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides important perspective on the origin of variability in such records and suggests novel paleoenvironmental information can be derived from pyrite  34 S records.

Significant Statement

Sulfate is a major oxidant in the global ocean with a long residence time (13 Myr). As such, changes in sulfur isotopes ratio ( 34 S/ 32 S) of marine sulfur phases are often attributed to global biogeochemical perturbations. Sediments collected on the shelf of the Gulf of Lion, revealed remarkable sulfur isotopic fluctuations in sedimentary pyrite over the last 500,000 years, ranging between -44.0‰ and 32.3‰. We suggest this pattern is related to changes in the local environmental deposition, specifically sedimentation modulating connectivity with the overlying water column and resulting microbial activity. Besides providing new understanding of an important and poorly constrained aspect of past glacial-interglacial transitions, our results are critically important because they question the degree to which changes in sulfur isotopes in pyrite reflect global biogeochemical processes versus local depositional conditions.

\body

The sulfur biogeochemical cycle helps regulate Earth's surface redox conditions through a variety of abiotic and biological reactions [START_REF] Garrels | Phanerozoic cycles of sedimentary carbon and sulfur[END_REF]. These diverse reactions are often associated with distinctive stable isotopic fractionations of sulfur species [START_REF] Fike | Rethinking the ancient sulfur cycle[END_REF][START_REF] Canfield | Biogeochemistry of sulfur isotopes[END_REF]. As such, changes in the sulfur isotopic composition ( 34 S) of sedimentary phases over Earth history are often used to infer substantive changes to the Earth's surface environment, including the rise of atmospheric oxygen, the oxygenation of the oceans, and episodes of metazoan evolution and mass extinction [START_REF] Fike | Rethinking the ancient sulfur cycle[END_REF][START_REF] Canfield | Biogeochemistry of sulfur isotopes[END_REF][START_REF] Fike | Oxidation of the Ediacaran Ocean[END_REF][START_REF] Riccardi | Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction[END_REF][START_REF] Jones | Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ 34 S[END_REF]. Here we examine the sulfur isotopic record preserved in pyrite (δ 34 S pyr ) from sediments from the Gulf of Lion deposited over the last 500,000 years associated with the last five glacialinterglacial transitions. Gulf of Lion is located in the North-Western Mediterranean basin and is characterized by a wide continental shelf (70 km) that was sub-aerially exposed during glacial periods over the Late Quaternary [START_REF] Rabineau | Sedimentary sequences in the Gulf of Lion: a record of 100,000 years climatic cycles[END_REF][START_REF] Jouet | Shoreface migrations at the shelf edge and sea-level changes around the Last Glacial Maximum (Gulf of Lions, NW Mediterranean)[END_REF]. This study is based on borehole PRGL 1-4 (Fig. 1), drilled in the framework of the EU PROMESS project (http://www.pangaea.de/Projects/PROMESS1/), which sampled a 300 m long continuous record of the Bourcart and Herault canyons' interfluve sediment sequence on the upper slope of the Gulf of Lion (Fig. 1). The water depth of the core (298 m) ensures continued deposition under well oxygenated conditions during glacial and interglacial periods with sedimentation rates that enable high-resolution records and where the changing proximity to the continental shelf results in variable detrital input. Given these characteristics, this drill core represents a record of glacialinterglacial deposition that is uniquely positioned to assess the environmental dependence of  34 S pyr signatures in marine sediments.

Results and Discussion

A total of 131 pyrite sulfur isotopes analyses have been performed along the 300 m PRGL1-4 core, spanning the last 5 glacial-interglacial transitions (see Supporting Information Fig. 1). Throughout the core, pyrite shows extreme variations in  34 S from -44.0‰ to 32.3‰, while pyrite contents vary between 0.02 and 1.69 weight %. No clear trend was observed between  34 S pyr and the pyrite content, nor between δ 34 S pyr and the iron content (see Supporting Informations S1 and S2). Complementary analysis of organic carbon isotopes ( 13 C org ) was conducted and these values vary between -25.3‰ and -21.8‰ with no clear trends between  13 C org and total organic carbon (TOC) contents, which vary between 0.35% and 0.84%.

A clear distinction in pyrite  34 S pyr values is observed between glacial and interglacial periods (Fig. 2) as deduced from the oxygen isotope curve obtained from planktonic foraminifera [G. bulloïdes] and the associated updated age model published on the same core [START_REF] Cortina | Impact of climate and sea level changes on the ventilation of intermediate water and benthic foraminifer assemblages in the Gulf of Lions, off South France, during MIS 11 in the northwestern Mediterranean Sea(Gulf of Lions)[END_REF]. Distinctly different bimodal distributions are observed between glacial (sensu stricto, i.e., cold substages) periods with high  34 S values and high isotopic variability (average  34 S = -15.2‰ ± 9.0‰, n = 46) and the interglacial (sensu stricto, i.e., warm substages) periods characterized by low  34 S and low isotopic variability (average  34 S =-41.6‰ ± 2.2‰, n = 19; Fig. 2). The increased variability observed during glacial times provides insights into the suite of process and their inherent temporal fluctuations that are likely to regulate the observed changes in δ 34 S pyr .

Specifically, the lowered sea level during glacial times brought the site of deposition closer to the shore and source of detrital materials. These shallower, more proximal settings are subjected to short-term, stochastic variations in depositional conditions [START_REF] Cortina | Impact of climate and sea level changes on the ventilation of intermediate water and benthic foraminifer assemblages in the Gulf of Lions, off South France, during MIS 11 in the northwestern Mediterranean Sea(Gulf of Lions)[END_REF], including sediment characteristics (organic carbon loading, sedimentation rates; physical reworking) and benthic ecology (bioturbation, presence of microbial mats) that can impact pyrite formation and eventual  34 S composition. Within the glacial and interglacial sediments, the  34 S values and variability can be further understood as a function of temperature, as reconstructed from alkenone records [START_REF] Cortina | The response of SST to insolation and ice sheet variability from MIS 3 to MIS 11 in the northwestern Mediterranean Sea (Gulf of Lions)[END_REF][START_REF] Cortina | Anomalous SST warming during MIS 13 in the Gulf of Lions (northwestern Mediterranean Sea)[END_REF]. For example, warmer intervals during interglacial time are associated with more negative  34 S values (Fig. 2).

Over the last two glacial-interglacial cycles, where the time reconstruction is best constrained, pyrite  34 S values in PRGL1-4 are modulated by and track depositional conditions across glacial-interglacial cycles (Fig. 3). During glacial times, higher  34 S pyr values are associated with lower sea levels, and low  13 C org values, which are often attributed to greater input of terrestrial organic matter [START_REF] Lamb | A review of coastal palaeoclimate and relative sealevel reconstructions using δ13C and C/N ratios in organic material[END_REF]. Interestingly, because of their increased proximity to shore, glacial deposits are also associated with increased sedimentation rates [START_REF] Sierro | Phase relationship between sea level and abrupt climate change[END_REF] and are characterized by decreased porosity intervals (see Supporting Information Fig. 2). In such nearshore environments, the rapid sediment burial ensures that a higher concentration of labile organic matter (supported by our TOC values) gets into the sediment without undergoing aerobic respiration. As such, a larger fraction of more easily metamobilizable (i.e., less degraded by oxic processes) organic matter is available for sulfate reduction [START_REF] Canfield | Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments[END_REF].

In contrast, decreased and less variable  34 S pyr values are associated with the transition into and during interglacial times. These are associated with warmer temperatures and higher sea levels, as well as increased  13 C org values, indicative of increased marine input [START_REF] Tesi | Source, transport and fate of terrestrial organic carbon on the western Mediterranean Sea, Gulf of Lions, France[END_REF]. Sediments deposited during interglacial periods are also associated with lower sedimentation rates (because of landward migration of the shoreline) and increased foraminiferal abundance, resulting in intervals of higher porosity (21; see Supplementary Fig. 2). As sedimentation rates decrease, organic matter spends more time in the zone of aerobic respiration. Therefore, less (and less reactive) organic matter remains for sulfate-reducing bacteria under these conditions.

Stratigraphic variations in pyrite  34 S are often interpreted to reflect changes in the global sulfur biogeochemical cycle, such as intervals of enhanced pyrite burial or variations in the marine sulfate reservoir [START_REF] Gill | Geochemical evidence for widespread euxinia in the Later Cambrian ocean[END_REF][START_REF] Owens | Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event[END_REF]. However, in this case, these strata were deposited over an interval of 500 kyr, much less than the residence time ( 13 (csSRR) in these sediments [START_REF] Sim | Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp[END_REF]. Specifically, there is a well-documented relationship whereby faster rates of csSRR are associated with decreased isotopic fractionation between the parent sulfate and the produced sulfide [START_REF] Sim | Effect of electron donors on the fractionation of sulfur isotopes by a marine Desulfovibrio sp[END_REF][START_REF] Leavitt | Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record[END_REF]. Thus, our data could indicate faster csSRR during glacial times, possibly driven by enhanced input of more easily metabolizable organic matter and/or enhanced terrestrial nutrient input (as supported by lower organic carbon isotopic values, see Supplementary Fig. 1). In contrast, slower csSSR would characterize interglacial times associated with more limited (both in abundance and reactivity) organic matter resources and more stable nutrient input.

Assuming that pyrite is formed mainly in the pore-water environment, as it is expected under oxygenated (non euxinic) water column [START_REF] Censi | Yttrium and REE signature recognized in Central Mediterranean Sea (ODP Site 963) during the MIS 6-MIS 5 transition[END_REF], an alternative mechanism to explain our data involves a change in the connectivity of sedimentary porewaters where pyrites are forming with the overlying water column [START_REF] Gomes | Sulfur isotope systematics of a euxinic, low-sulfate lake: Evaluating the importance of the reservoir effect in modern and ancient oceans[END_REF]. Such a change could be the natural result of the increased sedimentation rates and decreased porosity during glacial times (Supplementary Fig. 2), both of which act to more effectively isolate porewaters from ready communication with seawater. This decreased connectivity effectively isolates the local porewater sulfate reservoir, leading to increased porewater  34 S SO4 through ongoing microbial sulfate reduction [START_REF] Gomes | Sulfur isotope systematics of a euxinic, low-sulfate lake: Evaluating the importance of the reservoir effect in modern and ancient oceans[END_REF]. In turn, this microbial activity naturally leads to an increase in the resulting biogenic  34 S H2S , which eventually forms pyrite following reaction with available iron. The increased variability in δ 34 S pyr during glacial times can be understood as the natural response to increased short-term fluctuations in depositional conditions that characterize shallower water environments more proximal to the shore. During interglacial times, the return to slower sedimentation rates and higher porosity, driven in part by the admixture of foraminifera (Supplementary Fig. 2), results in enhanced communication between porewater and seawater. In this relatively open system, the constant supply of seawater sulfate results in a stable, low value for porewater  34 S SO4 (and therefore in the resulting δ 34 S pyr ) in these intervals. While the relationship between sedimentation rate and δ 34 S pyr indicates a dominant control by sedimentation (Fig. 4), it should be noted that these two mechanisms are not mutually exclusive. Indeed, all things being equal, increased csSRR will inherently lead to more closed system behavior because it represents enhanced sulfate consumption relative to the diffusive exchange of sulfate. Further, there is a general trend toward increasing rates of sulfate reduction with increasing sedimentation rate [START_REF] Claypool | Ventilation of marine sediments indicated by depth profiles of pore water sulfate and δ 34 S[END_REF].

The magnitude and directionality of the relationship between water depth and pyrite  34 S observed here agree with predictions previously made (2) but never rigorously tested and provide a powerful new way to reconstruct paleo-environmental conditions in sedimentary environments, particularly the degree to which sedimentary porefluids may have been in communication with the overlying water column. In addition, the δ 34 S pyr data presented here also shed light on the possible origins of similar variability in this proxy in deep time.

Implication for deep time records:

Many deep time studies make use of direct proxies for seawater sulfate, such as carbonateassociated sulfate (CAS), which are generally thought to reflect marine sulfate with little fractionation (e.g., 7; but see 34). Indeed, studies utilizing direct proxies for seawater sulfate (e.g., [START_REF] Gill | Geochemical evidence for widespread euxinia in the Later Cambrian ocean[END_REF][START_REF] Owens | Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event[END_REF][START_REF] Fike | A paired sulfate-pyrite δ 34 S approach to understanding the evolution of the Ediacaran-Cambrian sulfur cycle[END_REF][START_REF] Sansjofre | Multiple sulfur isotope evidence for massive oceanic sulfate depletion in the aftermath of Snowball Earth[END_REF] can provide powerful insights into ancient biogeochemical conditions. In many cases, however, no direct proxy of seawater sulfate is present and stratigraphic records of δ 34 S pyr are used to reconstruct global biogeochemical cycling and redox change (e.g., 10-13). In other cases, the isotopic offsets between coeval  34 S records from sulfate and pyrite are used to reconstruct marine sulfate levels or the types of microbial metabolism present (e.g., 4, 8). With few exceptions (e.g., 6), these δ 34 S pyr records are not interpreted in the context of local depositional or facies change.

Interestingly, many of the reports showing positive  34 S pyr excursions in the rock record are also associated with shallowing-upwards depositional sequences formed during sea level lowstands. The present study is particularly relevant for considering the ~10-30‰ positive excursions in δ 34 S pyr that are associated with the initiation and termination of the end-Ordovician Hirnantian glaciation and mass extinction (e.g., [START_REF] Jones | Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ 34 S[END_REF][START_REF] Yan | Carbon and sulfur isotopic anomalies across the Ordovician-Silurian boundary on the Yangtze Platform, South China[END_REF][START_REF] Zhang | Large perturbations of the carbon and sulfur cycle associated with the Late Ordovician mass extinction in South China[END_REF][START_REF] Jones | Dynamic sulfur and carbon cycling through the end-Ordovician extinction revealed by paired sulfate-pyrite δ 34 S[END_REF][START_REF] Gorjan | Carbon-and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section, South China: global correlation and environmental event interpretation[END_REF][START_REF] Hammarlund | A sulfidic driver for the end-Ordovician mass extinction[END_REF]. Depositional environments at this time experienced a magnitude (~100 m) and timescale (~10 5 yr) of sea level change that would have been comparable to those influencing the Pleistocene sediments of the Gulf of Lion.

Our data suggest that rather than reflecting a change in the global sulfur cycle, these δ 34 S pyr excursions could also be explained by local changes in depositional conditions, particularly changes in sedimentation that modulate connectivity with the overlying water column (e.g. Fig. 4). In this scenario, it is local sedimentological changes that impact how records of sulfur cycling get preserved in sedimentary records. The temporal coincidence of the Hirnantian δ 34 S pyr excursions, found in sections around the world associated with the end Ordovician glaciation, would then be the result of synchronous local changes in environmental conditions in basins around the world, changes driven globally by sea level fluctuations during the onset and termination of the Hirnantian glaciation. Local environmental controls could be relevant for explaining other stratigraphic δ 34 S pyr excursions in Earth history, particularly those associated with changing depositional facies and lacking a direct proxy for the marine sulfate reservoir (e.g., [START_REF] Goldberg | Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: evidence from biogenic sulphur and organic carbon isotopes[END_REF][START_REF] Feng | Reconstruction of paleo-redox conditions and early sulfur cycling during deposition of the Cryogenian Datangpo Formation in South China[END_REF][START_REF] Parnell | Early oxygenation of the terrestrial environment during the Mesoproterozoic[END_REF]. As such, the data presented here show that pyrite  34 S can be a valuable new proxy for reconstructing local paleoenvironmental and sedimentological conditions throughout Earth history.

Materials and Methods:

Pyrite Sulfur ( 34 S pyrite and S content)

Pyrite sulfur from the samples was extracted using the chromium reduction method [START_REF] Canfield | The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[END_REF][START_REF] Tuttle | An analytical scheme for determining forms of sulphur in oil shales and associated rocks[END_REF][START_REF] Burton | A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils[END_REF]. This method allows a recovering of all reduced inorganic sulfur present in sedimentary samples (pyrite, element sulfur and iron monosulfide phases 

Organic carbon analyses ( 13 C org and TOC)

Prior to Organic carbon and Nitrogen analyses, the carbonated fraction was removed from bulk samples using excess 1.5 HCl digestion during 48h. During digestion centrifuge tube were placed in ultrasonic bath to increase the mechanical separation of clay and calcium carbonates.

After total dissolution residues were washed three times with distilled water, centrifuged then dried at 50°C. The residual powders were homogenized and prior to analyses 30 mg were loaded into tin capsule. Analyses were performed using an Elemental Analyser (EA, Flash 2000 -ThermoScientific) coupled to an isotope ratio mass spectrometer (Delta V+ Thermo Scientific EA-IRMS) at the Pôle de Spectométrie Océan (PSO, Brest, France). Carbon is given as delta notation as per mil deviation from Pee Dee Belemnite (PDB), with an analytical error of <0.2‰ (1) for organic carbon isotopes. Total Organic Carbon (TOC) were measured using the Thermal Conductivity Detector (TCD) of the Flash EA 2000, ThermoScientific at PSO, Brest, France. coded by temperature obtained from the relative composition of C 37 unsaturated alkenones [START_REF] Cortina | The response of SST to insolation and ice sheet variability from MIS 3 to MIS 11 in the northwestern Mediterranean Sea (Gulf of Lions)[END_REF][START_REF] Cortina | Anomalous SST warming during MIS 13 in the Gulf of Lions (northwestern Mediterranean Sea)[END_REF]. Sensu stricto (s.s.) refers to the warm substages of the interglacials and cold substages during glacials. The sensu latto (s.l.) includes all the data within interglacial or glacial periods. 

  Myr; ref. 25) of sulfate in the modern ocean. While these sediments were deposited in the Gulf of Lion, the Mediterranean Sea maintained connectivity with the global ocean and retained marine sulfate abundances and isotopic compositions during glacial-interglacial periods, based on both the abundance and isotopic composition of sulfate porewater profiles[START_REF] Böttcher | CARBON, SULFUR, AND OXYGEN ISOTOPE GEOCHEMISTRY OF INTERSTITIAL WATERS FROM THE WESTERN MEDITERRANEAN[END_REF] and the continuous sea water infill of Mediterranean Sea by Atlantic water through the Gilbraltar Strait since ~4.4 Ma[START_REF] Rohling | Sea-level and deep-seatemperature variability over the past 5.3 million years[END_REF][START_REF] Hernández-Molina | Onset of Mediterranean outflow into the North Atlantic[END_REF]. Thus, continued connectivity with the ocean and the short timescale of deposition preclude any substantive change in the parent sulfate reservoir, such as might arise from prolonged variation in the burial flux of pyrite, during deposition of these sediments. How then is this variation in pyrite  34 S to be interpreted? Two possible mechanisms present themselves to explain the observed databoth fundamentally driven by glaciation induced environmental changes: one reflecting changes in the inherent metabolic activity of sulfur cycling microbes in the sediments; the other, changes in the connectivity of porewaters to the overlying water column. In the former, isotopic fractionation during microbial sulfur cycling is typically dominated by microbial sulfate reduction (3) and a change in pyrite  34 S can result from variations in the rate of cell-specific sulfate reduction

Figure 1 :

 1 Figure 1: Map of the Gulf of Lion with the position of the PRGL1-4 core (42.690N; 3.838E). The bold grey line highlights the present shoreline position and the contours reflect modern water depths. The bold blue line corresponds to the shoreline position during the last-glacial period (low sea level).

Figure 2 :

 2 Figure 2: Histogram of pyrite  34 S (this study) as a function of glacial/interglacial periods, color-

Figure 3 :

 3 Figure 3: Glacial-interglacial geochemical records.  34 S pyr (black crosses; black line representing LOESS regression, this study),  13 C org (brown diamonds and brown line (LOESS regression), this study) , reconstructed sea levels (orange) from the Red Sea, and  18 O G. Bulloides (green) for the last 6 Marine isotopic stages (10 to 200 kyr). Relative Sea Level (orange line) superimposed with 95% of probability interval (light orange lines) from ref. 43 and  18 O G.Bulloides from ref. 17, 21. Blue vertical bands represent the glacial times with corresponding cold substages (i.e. sensu-stricto) in darker blue. Red bands correspond to interglacials periods with warm substages (i.e. sensustricto) highlighted in dark pink. Vertical pink dashed lines reflect glacial termination (T.) times according to ref. 44; vertical black dashed lines reflect scheme of marine stages according to ref. 45.

Figure 4 :

 4 Figure 4: The relationship between sedimentation rate (m kyr -1 ) and δ 34 S pyr . Sedimentation rates are calculated using the linear relationship between depth in borehole and the update age model derived from ref. 17. Light / dark blues circles correspond to cold substages (i.e. respectively sensu-lato and sensu-stricto) whereas light / dark red circles refer to warm substages (i.e. respectively sensu-lato and sensu-stricto).

  ). During extraction, samples were reacted with ~25 mL of 1M reduced chromium chloride (CrCl 2) solution and 25 mL of 6N HCl for four hours in a specialized extraction line under a Nitrogen atmosphere. The liberated hydrogen sulfide was reacted in a silver nitrate (0.1M) trap, recovering the sulfide as Ag 2 S; reproducibility was under 5% for repeated analyse. Residual Ag 2 S were rinsed three times using Mili-Q water, centrifuged then the dried until complete dryness. The Ag 2 S powders were homogenized prior to being analysed, then 450 µg was loaded into tin capsules with excess V 2 O 5 .The Ag 2 S was analysed measuring34 S/ 32 S ratio following online combustion with a Thermo Delta V Plus coupled with a Costech ECS 4010 Elemental Analyser at Washington University in St Louis. Pyrite sulfur composition are expressed in standard delta notation as per mil (‰) deviations from Vienna Canyon Diablo Troilite (VCDT) with an analytical error of <0.5‰.
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