Thermal Evolution of Magnetic Interactions in Ni Nanowires Embedded in Polycarbonate Membranes by Ferromagnetic Resonance
Abstract
Ni polycrystalline nanowires with diameters of 50, 80, and 100 nm were electrodeposited in cylindrical pores of track-etched polycarbonate membranes. Their magnetic properties were determined as a function of temperature using ferromagnetic resonance and magnetization measurements. At room temperature, the uniaxial anisotropy is equal to the shape anisotropy whereas an additional contribution is evidenced at low temperature. This additional contribution is attributed to magnetoelastic effects induced in the nanowires due to the different thermal expansion constants of Ni and polycarbonate. The analysis of magnetization processes in Ni nanowire arrays evidenced strong dipolar interactions inside the wires due to the domain structure. The coercive field of the nanowires was shown to be nearly a linear function of the temperature and could be accounted for temperature dependence of the uniaxial anisotropy.