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Abstract—In this paper, a new technique for power quality dis-
turbances classification is proposed. It focuses on voltage sags
and swells that are first pre-classified into four classes that de-
pend on the number of non-zero symmetrical components and
can contain different types of sag and swell. Using the estimated
symmetrical component values, we can afterward classify the
corresponding sag or swell signature. In this study, we show that
the pre-classification can be reformulated as a pure model order
selection problem. To solve this problem, we propose two pre-
classifiers based on Information Theoretical Criteria. The former
yields the highest statistical performances, while the latter has a
lower computation complexity. The performances of the proposed
classification algorithms are evaluated using Monte Carlo simu-
lations on synthetic signals and using real power system data
obtained from the DOE/EPRI National Database of Power System
Events. The achieved simulations and experimental results clearly
illustrate the effectiveness of the proposed algorithms for voltage
sag and swell classification.

Index Terms—Power quality monitoring, disturbances, voltage
sags and swells, estimation, classification, symmetrical compo-
nents, unbalanced power system.

I. INTRODUCTION

OVER the last decades, the necessity of producing more energy
combined with the interest in clean energies have led to

a greater penetration of renewable energy systems in the power
grid. The intermittent and discontinuous nature of renewable energy
sources may impact the power system and can lead to grid instability
or even its failure. Particularly, the integration of renewable energy
sources has a substantial influence on power quality by affecting
voltage and frequency control [1]–[4]. To overcome this difficulty, the
need of a better control strategies for power systems have recently led
to the concept of smart-grids [5]. A smart grid uses two-way flows
of electricity and information, and computational intelligence in an
integrated fashion across the entire spectrum of the energy system
from the generation to the end points of electricity consumption [6].
A smart-grid is a modern electric power grid infrastructure for
improved efficiency, reliability, and safety, through automated control
and modern communication technologies. Furthermore, the future
smart grid is expected to be self-healing and resilient to system
anomalies [7]–[10].

A key role of a smart grid is allowing an electrical grid to
be more flexible while meeting power quality standards. Power
Quality (PQ) is a very significant issue of electrical power system
operations. PQ disturbances can be extremely different in their
characteristics and consequences for end-user equipments. They are
usually divided into several classes such as sag, swell, transient,

Z. Oubrahim, V. Choqueuse, and M.E.H. Benbouzid are with the
University of Brest, FRE CNRS 3744 IRDL, Brest, France (e-mail:
zakarya.oubrahim@univ-brest.fr, vincent.choqueuse@univ-brest.fr,
mohamed.benbouzid@univ-brest.fr). Z. Oubrahim is also with ISEN
Brest, Brest, France. M.E.H. Benbouzid is also with the Shanghai
Maritime University, Shanghai, China. Y. Amirat is with ISEN Brest,
FRE CNRS 3744 IRDL, Brest, France (e-mail: yassine.amirat@isen-
bretagne.fr). This work was supported by Brest Métropole and ISEN
Brest.

fluctuation, and interruption [11]. Voltage sags and swells are one
of the most critical disturbances in power supply because they can
degrade customer load performance and efficiency. From an economic
viewpoint, these disturbances can cause million-dollar losses for
industrial consumers [12].

In terms of power quality issues, this paper focuses on voltage
sags and swells. There are several international standards for charac-
terizing voltage sags and swells, such as the IEEE 1159, IEC 61000-
4-30, and EN 50160 [13]–[15]. According to the IEEE std. 1159, a
sag is a decrease in the root mean square (rms) voltage or current
levels from 0.1 to 0.9 per unit (pu) at the power system frequency
for durations ranging from a half-cycle to one minute (short time),
or over one minute (long time). According to the same standard, a
swell is an increase in the rms voltage level between 1.1 and 1.8
pu of the nominal value. To minimize their economical impacts, it
becomes imperative to integrate advanced algorithms to characterize
voltage sags and swells. This characterization is usually composed
of two steps which are the event detection, that is concerned with
determining the starting and ending times of the event, and the event
classification [11].

Several techniques have been proposed in the literature to detect
three-phase unbalance and/or classify voltage sags and swells. Re-
garding the detection of three-phase unbalance, [16] and [17] describe
two techniques based on hypothesis tests. The classification of PQ
disturbances have also been investigated in [18]–[21], where two-
voltage classification algorithms were proposed. These algorithms
allow classifying the six voltage sag types Ca, Cb, Cc, Da, Db,
and Dc according to the ABC classification proposed in [22]. The
first classifier is based on symmetrical components (SC) and the
second classifier is based on three-phase voltage magnitudes and
their phase angles (TP-TAA). The classifier described in [19] and
T18 compares the six rms values of phase-to-ground and phase-to-
phase voltages after removing the zero-sequence component. This
six-phase algorithm also classifies the voltage sag types Ca, Cb, Cc,
Da, Db, and Dc. Despite their simplicity, these techniques are very
sensitive to large variations in magnitude or phase-angle jump and
they do not cover all sag types proposed in [22]. In [23], the authors
have proposed a technique based on space vector representation in the
complex plane and zero sequence voltage. This technique provides
a complete sag and swell type classification. A fault detection and
classification technique using wavelet transform (WT) has been also
proposed in [24].

A panorama and state of the art of PQ disturbances classification
based on pattern recognition techniques has been proposed in [29].
Classifiers based on pattern recognition techniques, such as artificial
neural networks (ANN) or support vector machine (SVM), have
been presented in [25]–[28]. In [30], a PQ disturbances classifier
based on balanced neural tree method and using empirical-mode
decomposition (EMD) has been presented. However, the EMD
suffers from drawbacks such as mode mixing that may lead to a
wrong intrinsic mode functions (IMF) decomposition, and border
effects. In [31], the authors have proposed a PQ disturbances analysis
method based on wavelets and fuzzy sets theory. Nevertheless, the
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wavelet transform technique leads to poor performances accuracy
under noisy environment. In [32], a hybrid fuzzy C-means particle
swarm optimization (PSO) technique has been proposed for PQ
disturbances classification using a variety of windowing techniques.
This technique uses the S-transform, which is an extension of
the wavelet transform (WT). An approach for PQ disturbances
detection and classification under non-stationary conditions based on
S-transform and neural networks has also been presented in [33]. In
[34], the authors have developed an S-transform-based probabilistic
neural network (PNN) classifier for recognition of PQ disturbances.
A combination of a neural-network-based technique for single
and combined PQ disturbances detection and classification under
noiseless and noisy conditions has been proposed in [35]. Although
this classifier has good capabilities for classifying combined PQ
disturbances, the analysis stage needs more attention about sub-
classes of each PQ disturbance, especially sag and swell. A feature
extraction method for the automatic classification of PQ disturbances
based on wavelet neural network (WNN) has been proposed in
[36]. Its main advantage is the reduction of training data size and
a good signal characterization. A SVM classification system for
voltage disturbances has been proposed in [37], where the SVM
classifier performances is investigated for different training and
testing data. However, the performances of all the above-presented
artificial intelligence techniques critically depend on the learning
stage that requires a training database. The size of this latter must
be sufficiently large to encompass different kinds of power quality
conditions, which may be difficult to obtain in practice. Their
performances also depend on many parameters and on the features
extraction process. Furthermore, the learning stage requires relatively
high computational complexity effort. Moreover, most of previous
works in PQ disturbance classification are suboptimal because they
only exploit the information contained in a single-phase, instead of
exploiting the multidimensional nature of the electrical signals [38].

To overcome these problems, this paper proposes a new PQ clas-
sification technique based on the analysis of the three-phase signal.
The proposed classifier can be applied as a post-processing tool for
transient characterization and disturbance detection in power systems
[11]. Similarly to the technique described in [17], the proposed
classifier is based on model order selection. Nevertheless, unlike the
method in [17], which mainly focuses on the detection problem,
the proposed technique emphasizes on the classification problem.
Specifically, the proposed classifier is able to identify the number
of non-zero symmetrical components and to pre-classify the signal
into 4 classes under quasi-stationary conditions. Once the correct
class is selected, the corresponding sag or swell can be identified
using the estimated symmetrical components. The performances of
the proposed algorithm are evaluated with synthetic and experimental
data. Thus, an in-depth analysis of its sensitivity is carried out for
different signal lengths, noisy environments, and quasi-stationary con-
ditions. Then, its robustness is evaluated for different Total Harmonic
Distortion (THD) values. After that, the classifier computation com-
plexity is analyzed. Finally, a comparison is carried out between the
proposed technique and two other classifiers, namely the symmetrical
components and the three-phase three-angle algorithms.

The main contributions of this paper, with respect to the above-
discussed literature, can be summarized as follows:
• Compared to the classifiers published in [18], [19], [21], the

proposed algorithm has the ability to provide a complete sag
and swell classification. In contrast to pattern recognition-based
classifiers, the proposed algorithm does not require any training
database and no parameter to be set. Furthermore, while most of
the PQ disturbance classification techniques exploit single-phase

information, the proposed classifier will exploit three-phase
information that allow better classification performances [29].

• A comparison between two proposed pre-classifiers based on
Information Theoretical Criteria has been made. The first pre-
classifier is called the Maximum Likelihood (ML) pre-classifier
and the seconde one is called the Approximate (App) pre-
classifier. The former yields the highest statistical performances,
while the latter has a lower computation complexity. Then, a
classifier based on estimated symmetrical component values has
been proposed and evaluated. It allows the classification of the
corresponding sag or swell.

• An experimental validation with time-varying real power system
signals is carried out.

This paper is organized as follows. Section II presents the signal
and phasor models. Section III describes the classification method
for sags and swells signatures, then Section IV illustrates the ef-
fectiveness of the proposed technique evaluated using Monte Carlo
simulations on synthetic signals and using real power system data.

II. SIGNAL AND PHASOR MODELS

This section presents the three-phase signal and phasor models.
Based on the phasor model, we also describe the 4-classes and the
nine sags and swells signatures.

A. Three-Phase Signals Model

In a three-phase power system, the signal on phase m (m = 0, 1, 2)
can be expressed as [39]

xm[n] = am cos (nω0 + ϕm) + bm[n], (1)

where am and ϕm correspond to the amplitude and phase angle,
respectively, ω0 denotes the normalized angular frequency, and bm[n]
refers to the additive noise. The parameters am and ϕm are usually
described more compactly by introducing the complex phasor. Math-
ematically, the complex phasor on phase m is defined as

cm , ame
jϕm . (2)

Without loss of generality, we assume that the voltage sensors record
N consecutive samples (n = 0, 1 · · · , N − 1). By using a matrix
notation, the recorded samples on the three phases can be written as

X = AC + B, (3)

where

• X and B are N × 3 matrices containing the recorded and noise
samples, respectively. These matrices are defined by

X =

 x0[0] x1[0] x2[0]
...

...
...

x0[N − 1] x1[N − 1] x2[N − 1]

 , (4)

B =

 b0[0] b1[0] b2[0]
...

...
...

b0[N − 1] b1[N − 1] b2[N − 1]

 , (5)

• A is a N × 2 real-valued matrix which is defined by

A =


1 0

cos(w0) sin(w0)
...

...
cos((N − 1)w0) sin((N − 1)w0)

 , (6)
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• C is a 2×3 real-valued matrix containing the real and imaginary
parts of the phasors and is defined by

C =

[
a0 cos(ϕ0) a1 cos(ϕ1) a2 cos(ϕ2)
−a0 sin(ϕ0) −a1 sin(ϕ1) −a2 sin(ϕ2)

]
. (7)

In the following, we resort to a vectorized version of X to analyse the
recorded signal. Let us introduce vec(.) the vectorization operator that
converts a matrix into a column vector by stacking the columns of the
matrix on top of one another. Using the properties of the vectorization
operator, the three-phase signal x , vec(X) can be expressed into a
3N × 1 column vector as

x = (I3 ⊗ A) c + b, (8)

where b = vec (B), c , vec(C), I3 is the 3× 3 identity matrix, and
⊗ corresponds to the Kronecker product.

B. Phasor Model

In order to analyze the phasors configuration, it is usually con-
venient to decompose the three complex phasors into a more syn-
thetic basis. In this subsection, we propose to decompose the three
phasors c0, c1, and c2 into a basis composed of 3 symmetrical
components called the zero-sequence z0, positive-sequence z1, and
negative-sequence z2. The complex phasors c1, c2 and c3 can be
expressed according to these three symmetrical components through
the Fortescue transform as [40]c0c1

c2

 =

1 1 1

1 e4jπ/3 e2jπ/3

1 e2jπ/3 e4jπ/3

z0z1
z2

 . (9)

The main benefit of using the symmetrical components relies on the
fact that, under nominal conditions, the symmetrical components are
sparse i.e. z0 = z2 = 0. In this paper, we consider the 4 following
classes.
• C1: Zero and negative sequences are equal to 0 i.e. z0 = z2 = 0.
• C2: Zero sequence is equal to 0 i.e. z0 = 0.
• C3: Negative sequence is equal to 0 i.e. z2 = 0.
• C4: All sequences are different from 0.
For the 4 considered classes, the vector containing the real and

imaginary parts of the three phasors, c, in (8) can be expressed with
respect to the real and imaginary parts of the symmetrical components
as

c = Wksk, (10)

where the matrix Wk and the augmented symmetrical components
sk depend on the class number. For example, for Class C1, the vector
c can be decomposed as

c =

Q0

Q1

Q2


︸ ︷︷ ︸

W1

[
<e(z1)
=m(z1)

]
︸ ︷︷ ︸

s1

, (11)

where

Qk =

[
<e(e2jkπ/3) =m(e2jkπ/3)

=m(e2jkπ/3) −<e(e2jkπ/3)

]
. (12)

Table I presents the expressions of Wk and sk for the classes C1, C2,
C3, and C4.

Note that the proposed classification is also related to the com-
monly used ABC classification [41]. The ABC classification is
composed of nine sag/swell signatures, denoted with letters from A
to I [23], [41]. These signatures are characterized by a complex pre-
fault voltage, E, and a complex post-fault voltage, V [41]. For each

TABLE I
EXPRESSIONS OF Wk AND Sk WITH RESPECT TO CLASS Ck .

Class C1 C2 C3 C4
k 1 2 3 4

Wk

Q0

Q1

Q2

 Q0 Q0

Q1 Q2

Q2 Q1

 Q0 Q0

Q0 Q1

Q0 Q2

 Q0 Q0 Q0

Q0 Q1 Q2

Q0 Q2 Q1



sk
[
<e(z1)
=m(z1)

] 
<e(z1)
=m(z1)
<e(z2)
=m(z2)



<e(z0)
=m(z0)
<e(z1)
=m(z1)




<e(z0)
=m(z0)
<e(z1)
=m(z1)
<e(z2)
=m(z2)


Type A Type B Type C

Type D Type E Type F

Type G Type H Type I

Fig. 1. ABC Classification: Sags and swells signatures [23].

TABLE II
LINK BETWEEN THE PROPOSED AND ABC CLASSIFICATIONS.

Type z0 z1 z2 Class
Balanced 0 E 0 C1A 0 V 0

C 0 V+E
2

E−V
2

C2
D 0 V+E

2
V−E

2

F 0 2V+E
3

V−E
3

G 0 2V+E
3

E−V
3

H V − E E 0 C3
I 3(E−V )

2
E 0

B V−E
3

V+2E
3

V−E
3 C4E E−V

3
2V+E

3
E−V

3

signature, the phasor configuration is illustrated in Fig. 1, where the
dashed and solid arrows present the phasor configuration before and
after voltage sag/swell, respectively. The link between the proposed
and ABC classifications is presented in Table II. In particular, one
can note that the proposed classification can be used to pre-classify
the nine signatures of the ABC classification.

C. General Vectorized Signal Model
This section presents the general vectorized signal model. Using

(8) and (10), the signal model can be described under the general
form

x = Mksk + b, (13)
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time

Vm

X0

X1

XL

0 Ns(1− q)

Ns − 1

2Ns(1− q)

Ns(1− q) +Ns − 1

Fig. 2. Concept of sliding window under quasi-stationary conditions.

where k corresponds to the class number and

Mk , (I3 ⊗ A)Wk. (14)

The goal of this paper is to determine the phasor configuration, i.e.
the class number k and the signature, from the vectorized three-phase
signal x.

Note that, while the theoretical methods presented in the following
sections are based on the stationary assumption, these methods can be
easily extended to the non-stationary case. Indeed, when the signal
parameters are time-varying, a straightforward solution is to use a
short-time analysis as illustrated by Fig. 2. In Fig. 2, the analysis
is performed on several signal blocks with a window length of Ns
samples. By considering an overlapping parameter 0 ≤ q < 1 , the
lth signal block can be mathematically expressed by

Xl =

x0[Nb] x1[Nb] x2[Nb]
...

...
...

x0[Ne] x1[Ne] x2[Ne]

 , (15)

where Nb = lNs(1−q), Ne = lNs(1−q)+Ns−1. In this context,
the lth vectorized block, xl = vec (Xl), is given by

xl = Mkskl + bl, (16)

where skl corresponds to the lth augmented time-varying symmet-
rical components. By using a small window length Ns, the signal
parameters and the class number k can be tracked over time.

III. SIGNATURE CLASSIFIER

This section presents the proposed decision-tree classifier aiming
at classifying the signal into one of the nine classes of the ABC
classification. Specifically, the first subsection describes the proposed
decision tree and the second one focuses on the decision algorithms.

A. Decision Tree
Fig. 3 depicts the decision tree of the proposed classifier. The

proposed decision tree is based on two stages, which are the pre-
classification into one of the 4 classes (C1, C2, C3, and C4) and
the final classification into one of the nine signatures of the ABC
classification.

In the first stage, as the 4 classes are nested1, we propose to
reformulate the classification problem as a pure model order selection

1For example, the class C1 is a particular case of the class C3

problem. Indeed, Table I shows that the pre-class can be determined
from the identification of the model order, i.e. the size of the vector
sk. Specifically, the size of the vector sk is equal to 2 for the class
C1, 4 for the classes C2 and C3, and 6 for the class C4. To determine
the model order, we propose to use a detection technique based on
Information Theoretic Criterion [43].

Once the nine signatures have been pre-classified into one of
the 4 classes, the corresponding signature type can be classified
by analyzing the symmetrical components. As these components
are unknown, we propose to estimate them by using the Maximum
Likelihood technique. Then, we determine the signature by analyzing
the values of the estimated symmetrical components. Specifically, for
C1, it is possible to discriminate between sag type A and balanced
power system by comparing the value of |ẑ1| with the pre-fault value.
For C2, the value of |ẑ1+ ẑ2| allows the discrimination between type
C and types D, F, and G. Then, the discrimination between type D
and types F and G can be obtained by analyzing the value of |ẑ1−ẑ2|.
For class C3, <e( ẑ0

ẑ1
) allows the classification between types I and H.

Finally, for C4, the value |ẑ1− ẑ0| allows the discrimination between
types B and E. Note that the proposed decision tree is not able to
discriminate between types F and G.

B. Proposed Decision Algorithms

In this subsection, we show how to pre-classify the signal into 4
classes using Information Theoretical Criteria, and how to estimate
the symmetrical components z1, z2, and z3 using the Maximum
Likelihood technique.

Regarding the pre-classifier, the selected class Ck based on Infor-
mation Theoretical Criteria is the one that minimizes the following
penalized likelihood function [44]

k̂ = arg min
k=1,2,3,4

−2 ln p(x, ŝk) + γk, (17)

where ln p(x, ŝk) denotes the log-likelihood function of the vectorized
signal x for the class k, and ŝk corresponds to the Maximum
Likelihood Estimator of sk. The term γk is a penalty function that
depends on the total number of samples and on the number of
free parameters. In the following paragraphs, we provide explicit
expressions for the log-likelihood function and penalty term.

1) Expression of the log-likelihood function: Under the assumption
that the additive noise is Gaussian distributed with a zero mean and a
variance equal to σ2 i.e. b ∼ N (0, σ2I3N ), it has been demonstrated
in [43] that the log-likelihood function ln p(x, ŝk) is equal to

−2 ln p(x, ŝk) = constant + 3N ln σ̂2
k, (18)

where σ̂2
k is the Maximum Likelihood Estimator of the noise variance

under the assumption that the signal comes from class Ck. Note that,
in addition to the model order, the estimator of the noise variance σ̂2

also provides a simple measure of the goodness of fit for competing
models with the same model order such as C2 and C3. Mathematically,
the noise variance estimator is given by

σ̂2
k =

1

3N
‖x−Mk ŝk‖2, (19)

where ŝk corresponds to the Maximum Likelihood Estimator of the
vector sk. As ŝk = (MT

k Mk)
−1MT

k x, it follows that

σ̂2
k = xTP⊥k x, (20)

where P⊥k is the orthogonal projector onto the null space of Mk,
which is defined as [45]

P⊥k , I3N −Mk(MT
k Mk)

−1MT
k . (21)
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Measured three-phase
voltage

Pre-classification
based on Information
Theoretical Criteria

If |ẑ1| < 1 If |ẑ1 + ẑ2| < 1 If <e( ẑ0
ẑ1
) < 0 If |ẑ1 − ẑ0| < 1

Type
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System

Type
C

If |ẑ1 − ẑ2| < 1
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Type
H
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B
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Yes

No
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No

Yes

No

Fig. 3. Flowchart of the proposed classification algorithm.

It is worth mentioning that the inverse of MT
k Mk is generally difficult

to obtain analytically. Nevertheless, in some particular cases, this
inverse has a simple closed form. Indeed, when the number of
samples is large, i.e N � 1 or when N is a multiple of a half of the
signal period, i.e. N = kπ/ω0, it can be checked that ATA = N

2
I.

Furthermore, as WT
k Wk = 3I, it follows that MT

k Mk ≈ 3N
2

I.
Therefore, the orthogonal projector, P⊥k , can be approximated by

P⊥k ≈ I3N −
2

3N
MkMT

k . (22)

Based on the values of P⊥k , we propose two different pre-classifiers:
the Maximum Likelihood (ML) classifiers and the Approximate
(App) one. The ML classifier is obtained by using the exact value
of the orthogonal projector (21) in (20), (18), and (17). The App
classifier is obtained by using the approximated projector (22) in (20),
(18), and (17). Finally for the ML and App classifiers, the estimated
classes are respectively given by

k̂ML = arg min
k=1,2,3,4

3N ln
(

xTP⊥k x
)
+ γk (23)

k̂App = arg min
k=1,2,3,4

3N ln

(
‖x‖2 − 2

3N
‖MT

k x‖2
)
+ γk, (24)

where ‖x‖2 , xT x corresponds to the squared norm of x. Note that
the App pre-classifier has a lower computational complexity than
the ML pre-classifier since it requires a smaller number of matrix
multiplications and does not involve any matrix inversion.

2) Expression of γk: The goal of the penalty term γk is to promote
simplicity over complexity. Mathematically, this function penalizes
the log-likelihood function with respect to the number of samples,
3N , and estimated parameters, nk. Several penalty terms have been
proposed in the literature based on different motivations [43]. In
particular, the most commonly used penalty terms are the Akaike
Information Criterion (AIC) γAICk = 2nk, and the Bayesian Infor-
mation Criterion (BIC) γBICk = nk ln(3N). For the class k, the
number of estimated parameters is equal to nk = lk + 1, where lk

TABLE III
PENALTY FUNCTION WITH RESPECT TO CLASS Ck .

Class C1 C2 C3 C4
nk 3 5 5 7

γAICk 6 10 10 14
γBICk 3 ln(3N) 5 ln(3N) 5 ln(3N) 7 ln(3N)

corresponds to the size of ŝk and the number 1 is due to the noise
variance estimation. Finally, the values of the AIC and BIC criteria
are summed up in Table III for classes C1, C2, C3, and C4.

The second stage of the proposed classifier uses the symmetrical
component estimates to determine the signature type. Statistically,
the ML estimator of ẑ0, ẑ1, and ẑ2 can be easily extracted from the
ML estimator of sk. The exact and approximate estimators of sk are
respectively given by [44]

ŝML
k =

(
MT
k Mk

)−1

MT
k x (25)

ŝAppk =
2

3N
MT
k x. (26)

Then, the expression of the vth symmetrical component, denoted ẑv ,
can be obtained from ŝML

k , or ŝAppk , by constructing the complex
value

ẑv = [̂sk]2u + j [̂sk]2u+1, (27)

where [̂sk]u corresponds to the uth element of ŝk. Note that the index
v depends on the class Ck. Indeed using Table I, it can be readily
checked that v = 1 when u = 0 for class C1, v = u + 1 for class
C2, v = u for classes C3 and C4.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section the performance of the proposed classifier illustrated
in Fig. 3 is evaluated through synthetics signals and real power
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TABLE IV
4-CLASSES: SIMULATION PARAMETERS.

C1 C2 C3 C4
c0 0.5∠− 20◦ 1∠− 20◦ 0.5∠− 20◦ 1∠− 20◦

c1 0.5∠− 140◦ 0.66∠− 159.10◦ 1.32∠− 159.10◦ 0.5∠− 140◦

c2 0.5∠100◦ 0.66∠119.11◦ 1.32∠119.11◦ 0.5∠100◦
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Fig. 4. Average probability of correct classification versus samples
number for SNR = 15 dB.

system data. Two classifiers have been implemented: the Maximum
Likelihood (ML) classifier composed of the exact ML pre-classifier
in (23) and the ML estimator of ẑv in (25), and the approximate
(App) classifier composed of the approximate pre-classifier in (24)
and the approximate ML estimator of ẑv in (26).

A. Monte Carlo Simulation Results

In this subsection, the two pre-classifiers are evaluated using
synthetic signals. The classification performance, which is quantified
through the average probability of correct classification, is evaluated
using both the AIC and BIC penalty terms. The average probability
of correct classification is estimated using Nmc = 1000 Monte Carlo
trials for each class Ck. In each simulation, the signal is generated
from the model defined in (1) with ω0 = 2πf0/Fs, where f0 = 50Hz
and Fs = 48 × f0 = 2400 Hz. The amplitudes and initial phases
of the three complex phasors for 4-classes are given in Table IV.
Then, the average probability of correct classification is estimated as
follows

P̂a =
1

4Nmc

4∑
k=1

Nc∑
n=1

δ(k − k̂n), (28)

where k̂n is the estimated class for the nth trial, and δ(l) is the
Kronecker delta which is equal to 1 if l = 1 and zero elsewhere. In
the next subsections, the average probability of correct classification
is analyzed for different signal lengths, N, and Signal to Noise Ratio
(SNR), where the SNR is defined as

η =
1

6σ2

2∑
k=0

a2k, (29)

and σ2 corresponds to the noise variance.
1) Probability of correct classification versus number of samples:

Fig. 4 shows the influence of the number of samples on the average
probability of correct classification when the SNR is equal to 15 dB.
It can be observed that the ML pre-classifier outperforms, in most of
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Fig. 5. Average probability of correct classification versus SNR for N =
72 and N = 480.

the cases, the approximate one. Nevertheless, these two pre-classifiers
lead to the same probability of correct classification when the number
of samples is large or when N is a multiple of a half cycle i.e.
N = (48/2)k = 24k. It is important to note that phasor measurement
units (PMUs) can measure 50/60 Hz AC waveforms (voltages and
currents) typically at a rate of a multiple of a cycle (48 samples per
cycle).

Regarding the penalty factors, we observe that the pre-classifier
using BIC penalty term outperforms the pre-classifier using AIC
penalty term whatever the signal length is, for the ML and App pre-
classifiers. In particular, we can note that for large N the BIC penalty
term leads to an average probability of correct classification equal to
1, while the AIC penalty term leads to a smaller average probability.
For small N, we also note that the BIC has a faster response time
than the AIC penalty term.

2) Probability of correct classification versus noise variance:
Fig. 5 highlights the influence of the SNR on the average probability
of correct classification (P̂a). In this simulation, the number of
samples N is set to 72 and 480 samples (multiple of a half-cycle).
Under these conditions, the ML and approximate pre-classifiers lead
to the same probability of correct classification. For N = 72 samples,
the BIC ML pre-classifier leads to P̂a = 1 when the SNR is greater
than 3 dB. For N = 480 samples, the BIC ML pre-classifier leads to
P̂a = 1 when SNR is greater than 0.5 dB. This clearly shows that
the proposed pre-classifier has good capabilities under a highly noisy
environment. For the AIC pre-classifier, we observe that P̂a is not
equal to 1 even for large SNRs and N. To explain this limitation,
Tables V and VI present the confusion matrices when N = 480
samples and at SNR = 5 dB. For the ML pre-classifier using BIC
penalty term, we observe that each trial is correctly classified since the
confusion matrix only contains diagonal elements. For the ML pre-
classifier using the AIC penalty term, we observe that the confusion
matrix also contains non-diagonal elements and is upper triangular.
The upper triangular structure shows that the AIC penalty term seems
to overestimate the model order.

3) Robustness of the proposed classifier: This subsection evaluates
the performance of the proposed algorithm under harmonic environ-
ments. By introducing harmonic components in (1), the signal model
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TABLE V
AIC CRITERION: ML PRE-CLASSIFIER CONFUSION MATRIX.

C1 C2 C3 C4
C1 741 135 124 0
C2 0 874 0 126
C3 0 0 861 147
C4 0 0 0 1000

TABLE VI
BIC CRITERION: ML PRE-CLASSIFIER CONFUSION MATRIX.

C1 C2 C3 C4
C1 999 0 1 0
C2 0 1000 0 0
C3 0 0 1000 0
C4 0 0 0 1000
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Fig. 6. Harmonic effect on the proposed classifier. Comparison between
ML classifiers using BIC and AIC penalty terms.

can be described by

xm[n] = am cos (nw0 + φm)

+
∑

h=3,5,7...

α (amh cos (hnw0 + φmh)) + bm[n], (30)

where amh and φmh correspond to the amplitude and initial phase of
the hth order harmonic, respectively. The quantity α > 0 corresponds
to the harmonic parameter. The harmonic amplitudes are set to
am5 = 0.06 pu, am7 = 0.05 pu, am11 = 0.015 pu, am11 = 0.03
pu, and am13 = 0.03 pu.

Fig. 6 shows the P̂a of the proposed pre-classifiers versus the
Total Harmonic Distortion (THD) for N = 144 samples and SNR =
5 dB. The Total Harmonic Distortion is controlled by varying the
different harmonics amplitudes through the scalar α. We show that
the performances of the proposed pre-classifiers decreases for a high
value of THD. Furthermore, we observe that for a THD less than
50% the BIC ML pre-classifier leads to a constant P̂a = 1, while for
the AIC pre-classifier it is increasing with respect to the THD. For a
THD > 70%, the P̂a of both pre-classifiers is decreasing when the
THD increases due to the model mismatch.

4) Computation complexity: Fig. 7 compares the computation
complexity (in seconds) between the ML and App classifiers. The
computation time are evaluated by averaging the execution time
through 1000 Monte Carlo trials. Results show that both classifiers
computation times increase proportionally to the number of samples
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Fig. 7. Computation time versus N: Comparison between ML and
Approximate classifiers.

TABLE VII
VOLTAGE SAGS TYPE C: COMPARISON OF THE PROPOSED CLASSIFIER

WITH SC AND TP-TA ALGORITHMS

Case C C C
V̂a 0.85∠− 20◦ 0.85∠− 20◦ 0.85∠− 20◦

V̂b 0.56∠− 118◦ 0.46∠− 110◦ 0.65∠− 168◦

V̂c 0.56∠160◦ 0.65∠168◦ 0.46∠110◦

SCA Dc Dc Ca
TP-TAA Ca Ca Dc
BIC ML C C C

N, while having different slopes. Specifically, the slope of the App
classifier is lower than the ML classifier one. Therefore, when the
signal length N is a multiple of a half-cycle, the approximate
classifier is an attractive choice for pre-classification since it has a
lower computational cost and reaches the statistical performance of
the ML classifier.

5) Classification comparison: This subsection proposes a compar-
ison of the ML classifier using the BIC penalty term (BIC-ML) with
two others techniques, namely the symmetrical components and the
three-phase three-angle algorithms (SCA and TP-TAA, respectively).
The SCA and TP-TAA allow identifying the six voltage sags types
among the C and D types. For the SC algorithm, the angle between
the drop in positive- and negative-sequence voltages is used for
classification [18]. The TP-TA algorithm is based on the remains
rms voltage (RV), the inverse remains voltage (IRV), the delta inverse
remains voltage (4IRV), and the three angles α, β, and γ [21]. In
the following, the performances of the classification algorithms are
evaluated using the phasor configurations presented in [21]. For each
technique, the phasors are estimated using the ML estimator in (25)
with a half-cycle window length.

From Tables VII, VIII, IX, and X, we observe that the proposed
classifier (BIC-ML) leads to an accurate classification of voltage sags
in all cases, while the SC and TP-TA algorithms exhibit erroneous
classification under large-phase angle jump and amplitude. These
results show that the proposed algorithm has higher classification
performance than the SC and TP-TA algorithms.

B. Experimental Tests
In this subsection, the performances of the ML classifiers using

BIC and AIC penalty terms are evaluated using real power system
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TABLE VIII
VOLTAGE SAGS TYPE C: COMPARISON OF THE PROPOSED CLASSIFIER

WITH SC AND TP-TA ALGORITHMS

Case C C C
V̂a 0.85∠− 20◦ 0.85∠− 20◦ 0.92∠0◦

V̂b 0.78∠− 177◦ 0.65∠− 168◦ 0.80∠− 122◦

V̂c 0.34∠104◦ 0.46∠110◦ 0.80∠123◦

SCA Ca Dc Ca
TP-TAA Ca Ca Ca
BIC ML C C C

TABLE IX
VOLTAGE SAGS TYPE D: COMPARISON OF THE PROPOSED CLASSIFIER

WITH SC AND TP-TA ALGORITHMS

Case D D D
V̂a 0.87∠− 20◦ 0.10∠84.29◦ 0.70∠0◦

V̂b 0.40∠− 131◦ 0.81∠− 90.71◦ 0.92∠− 114◦

V̂c 0.82∠133◦ 0.91∠90.63◦ 0.92∠110◦

SCA Db Da Da
TP-TAA Db Da Cb
BIC ML D D D

TABLE X
VOLTAGE SAGS TYPE C AND D: COMPARISON OF THE PROPOSED

CLASSIFIER WITH SC AND TP-TA ALGORITHMS

Case C D D
V̂a 1∠0.6◦ 0.92∠06◦ 0.70∠0◦

V̂b 0.81∠− 152◦ 0.92∠− 130◦ 0.92∠− 114◦

V̂c 0.47∠126◦ 0.70∠120◦ 0.92∠110◦

SCA Ca Dc Da
TP-TAA Ca Ca Cb
BIC ML C D D

data obtained from the DOE/EPRI National Database of Power Sys-
tem Events [46]. The disturbances used in this subsection correspond
to the events 2825, 2827, 2802, 2786, and 2911. These disturbance
events correspond to different voltage sag and swell configurations.
Regarding the classifier settings, the window length was set to a
half-cycle (64 samples) with a half-cycle overlap. Figs. 8-12 present
the three-phase signal, the amplitude of the estimated phasors, the
selected pre-class and the estimated signature for the 5 events.

For event 1 (Fig. 8), we observe that both pre-classifiers using the
BIC and the AIC penalty terms achieve the same results. Indeed, both
pre-classifiers lead to null zero- and negative-sequences (C1) under
balanced conditions. Under transient conditions a non-null symmet-
rical sequence is obtained (C4). It seems that both pre-classifiers can
achieve a good classification under balanced or transient conditions.
For event 2 (Fig. 9), both pre-classifiers achieve the same results
under balanced conditions since they lead to null zero- and negative-
sequences (C1). Under transient conditions, these pre-classifiers give
different classification results. The BIC pre-classifier leads to a null
zero-sequence (C2), while the AIC pre-classifier leads to a non-
null symmetrical-sequence (C4). It is observed that after 0.12 s, the
ML classifier using the AIC penalty term seems to give incorrect
classification since it leads to a type FG instead of type A. In
contrast, the ML classifier using the BIC penalty term seems to
achieve good classification results. For event 3 (Fig. 10), we observe
that both pre-classifiers achieve different classification results. Under
balanced conditions, the pre-classifier using the BIC penalty term
leads to null zero- and negative-sequences (C1), whereas the pre-
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Fig. 8. Event 1 (2827): Voltage sag and swell classification. Comparison
between ML classifiers using BIC and AIC penalty terms.
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Fig. 9. Event 2 (2825): Voltage sag and swell classification. Comparison
between ML classifiers using BIC and AIC penalty terms.

classifier using the AIC penalty term leads to a null zero-sequence
(C2). Under transient conditions, the BIC pre-classifier leads to a
null zero-sequence (C2) and the AIC pre-classifier leads to non-null
symmetrical-sequences (C4). We can note that after 0.10 s both pre-
classifiers lead to the same result. For event 4 (Fig. 11) both pre-
classifiers lead to different results under balanced conditions (C1 and
C3) but achieve the same result after 0.03 s. For event 5 (Fig. 12), the
two pre-classifiers lead to the same results except between 0.03 s and
0.04 s. In most of the cases, we observe that the BIC classifier seems
to achieve better classification results under balanced and transient
conditions than the AIC classifier.
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Fig. 10. Event 3 (2802): Voltage sag and swell classification. Compari-
son between ML classifiers using BIC and AIC penalty terms.
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Fig. 11. Event 4 (2786): Voltage sag and swell classification. Compari-
son between ML classifiers using BIC and AIC penalty terms.

C. Discussion

The previous sections have focused on the influence of signal
length, noise level, harmonics, and window length (overlap) on
the performance of the proposed classifiers (ML and approximate
classifiers with BIC and AIC penalty terms). Simulation results have
clearly shown that the ML classifier using the BIC penalty term
achieves higher classification performances whatever the number of
samples and SNR are.

The statistical performances of the ML and App classifiers depend
on the number of samples, N, and on the SNR. Specifically, increasing
the value of N or SNR also increases the classification performance
of the ML classifier. Regarding the differences between the ML and
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Fig. 12. Event 5 (2911): Voltage sag and swell classification. Compari-
son between ML classifiers using BIC and AIC penalty terms.

App classifiers, simulation results have shown that the ML classifier
generally leads to the best classification performance. However, it
should be mentioned that the approximate classifier can reach the
performance of the ML classifier for particular cases, especially when
the signal length N is a multiple of a half-cycle. Concerning the
penalty term, most simulations have shown that the classifier using
the BIC penalty term outperforms the AIC-based classifier. Indeed,
simulation results have shown that the AIC penalty term seems to
overestimate the number of non-zero symmetrical components.

Regarding the computation complexity, the approximate classifier
has a lower computation time than the ML one. Indeed, this latter
classifier involves larger number of matrix multiplications in com-
parison to the ML classifier. Nevertheless, the performance of the
approximate classifier critically depends on the number of samples.
Specifically, the classifier performance rapidly degrades when the
number of samples is not a multiple of a half-cycle.

Under quasi-stationary conditions, i.e. when the signal parameters
are time-varying, the tracking of the signal class requires a small
sample window length, N . Nevertheless, there is a natural tradeoff
between the tracking and statistical performance. According to Monte
Carlo simulation, for the approximate classifier, we advise to select a
window length N equal to a multiple of a half-cycle. In particular, to
meet the the minimum sag and swell durations defined in the standard
IEEE std. 1159, we recommend to choose a window length equal to
a half-cycle. To easily meet this criterion, we also advise to choose
a sampling frequency equal to Fs = Nf0 where N >> 2 and f0 is
the signal frequency (f0 = 50 Hz or f0 = 60 Hz).

V. CONCLUSION

This paper dealt with power quality disturbances classification in
three-phase unbalanced power systems with a particular focus on
voltage sags and swells. A new classification approach based on
Information Theoretical Criteria has been proposed. This approach
is mainly based on two steps: 1) the signal pre-classification into
one of 4 pre-classes, where each class contains one or various sags
or swells types and depends on the number of non-zero symmetri-
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cal components, 2) the signature type classification using the ML
estimate of the symmetrical components.

Regarding the proposed classifier, we have investigated the use
of two Information Theoretical Criteria, namely the AIC and BIC.
Simulation results have shown that the BIC criteria outperforms the
AIC criteria in terms of average probability of correct classification
for different data length and signal to noise ratio, whatever the
classifier is. In particular, the analysis of the confusion matrices has
indicated that the AIC seems to slightly overestimate the number of
non-zero symmetrical component even for a large number of samples
or signal to noise ratio. The results have also shown that the BIC
classifier is robust against harmonic environment for moderate Total
Harmonic Distortion (THD < 50%).

For applications requiring a low computational complexity, we
have also proposed an approximate classifier that involves fewer
matrix multiplications and no matrix inversion. Simulations based
on synthetic signals and real power systems data have clearly shown
that, in most of the cases, the exact classifier exhibits better statistical
performances than the approximate one. However, simulation results
have also shown that the approximate classifier has a much lower
computation complexity and can lead to near optimal performances
when N is a multiple of a half-cycle. Future investigations should
deal with the evaluation of the proposed algorithms performances for
the classification of other critical PQ disturbances.
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