Skip to Main content Skip to Navigation
Journal articles

Oxidatively Induced Reactivity of [Fe 2 (CO) 4 (κ 2 -dppe)(μ-pdt)]: an Electrochemical and Theoretical Study of the Structure Change and Ligand Binding Processes

Abstract : The one-electron oxidation of the diiron complex [Fe2(CO)4(κ2-dppe)(μ-pdt)] (1) (dppe = Ph2PCH2CH2PPh2; pdt = S(CH2)3S) has been investigated in the absence and in the presence of P(OMe)3, by both electrochemical and theoretical methods, to shed light on the mechanism and the location of the oxidatively induced structure change. While cyclic voltammetric experiments did not allow to discriminate between a two-step (EC) and a concerted, quasi-reversible (QR) process, density functional theory (DFT) calculations favor the first option. When P(OMe)3 is present, the one-electron oxidation produces singly and doubly substituted cations, [Fe2(CO)4–n{P(OMe)3}n(κ2-dppe)(μ-pdt)]+ (n = 1: 2+; n = 2: 3+) following mechanisms that were investigated in detail by DFT. Although the most stable isomer of 1+ and 2+ (and 3+) show a rotated Fe(dppe) center, binding of P(OMe)3 occurs at the neighboring iron center of both 1+ and 2+. The neutral compound 3 was obtained by controlled-potential reduction of the corresponding cation, while 2 was quantitatively produced by reaction of 3 with CO. The CO dependent conversion of 3 into 2 as well as the 2+ ↔ 3+ interconversion were examined by DFT.
Document type :
Journal articles
Complete list of metadatas

https://hal.univ-brest.fr/hal-01561135
Contributor : Nicolas Renard <>
Submitted on : Wednesday, July 12, 2017 - 1:54:52 PM
Last modification on : Thursday, October 3, 2019 - 8:50:07 AM

Identifiers

Collections

Citation

Dounia Chouffai, Giuseppe Zampella, Jean-François Capon, Luca de Gioia, Frederic Gloaguen, et al.. Oxidatively Induced Reactivity of [Fe 2 (CO) 4 (κ 2 -dppe)(μ-pdt)]: an Electrochemical and Theoretical Study of the Structure Change and Ligand Binding Processes. Inorganic Chemistry, American Chemical Society, 2011, 50 (24), pp.12575 - 12585. ⟨10.1021/ic201601q⟩. ⟨hal-01561135⟩

Share

Metrics

Record views

158