
HAL Id: hal-01545331
https://hal.univ-brest.fr/hal-01545331v1

Submitted on 22 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

LOGO: A New Distributed Leader Election Algorithm
in WSNs with Low Energy Consumption

Ahcène Bounceur, Madani Bezoui, Umber Noreen, Reinhardt Euler, Farid
Lalem, Mohammad Hammoudeh, Sohail Jabbar

To cite this version:
Ahcène Bounceur, Madani Bezoui, Umber Noreen, Reinhardt Euler, Farid Lalem, et al.. LOGO:
A New Distributed Leader Election Algorithm in WSNs with Low Energy Consumption. ICFITT
EAI International Conference on Future Internet Technologies and Trends, Aug 2017, Surat, India.
�hal-01545331�

https://hal.univ-brest.fr/hal-01545331v1
https://hal.archives-ouvertes.fr


LOGO: A New Distributed Leader Election
Algorithm in WSNs with Low Energy

Consumption

Ahcène Bounceur1, Madani Bezoui2, Umber Noreen1, Reinhardt Euler1

Farid Lalem1, Mohammad Hammoudeh3, and Sohail Jabbar4

1 Université de Bretagne Occidentale
CNRS Lab-STICC Laboratory, UMR 6285

Brest, France,
Ahcene.Bounceur@univ-brest.fr

2 Université de Boumerdes,
Boumerdes, Algerie

3 University of Manchester,
Manchester, UK

4 Department of Computer Science
National Textile University

Faisalabad, Pakistan

Abstract. The Leader Election Algorithm is used to select a specific
node in distributed systems. In the case of Wireless Sensor Networks, this
node can be the one having the maximum energy, the one situated on the
extreme left in a given area or the one having the maximum identifier.
A node situated on the extreme left, for instance, can be used to find
the boundary nodes of a network embedded in the plane. The classical
algorithm allowing to find such a node is called the Minimum Finding
Algorithm. In this algorithm, each node sends its value in a broadcast
mode each time a better value is received. This process is very energy
consuming and not reliable since it may be subject to an important
number of collisions and lost messages. In this paper, we propose a new
algorithm called LOGO (Local Optima to Global Optimum) where some
local leaders will send a message to a given node, which will designate
the global leader. This process is more reliable since broadcast messages
are sent only twice by each node, and the other communications are
based on a direct sending. The obtained results show that the proposed
algorithm reduces the energy consumption with rates that can exceed
95% compared with the classical Minimum Finding Algorithm.

Key words: Wireless Sensor Network, Leader Election, Distributed al-
gorithms

1 Introduction and related work

Wireless Sensor Networks (WSNs) are useful in situations where we need to
measure environmental data, especially when the measures must be taken in



2 Ahcène Bounceur and Madani Bezoui et al.

dangerous or inaccessible places. In the context of Internet of Things (IoTs)
and Smart-Cities, WSNs can be used to detect free places in car parkings, to
secure and detect intrusions around sensitive sites, to predict and detect fires,
etc. They are composed of autonomous sensor nodes that communicate between
them using short wireless communication in order to exchange messages and
data. They can also communicate with a static or mobile base station in order
to transmit the collected data.

The main context of this paper, is the surveillance of sensitive and dan-
gerous sites where one needs to find the boundary nodes of a WSN. A recent
algorithm, called D-LPCN [1] (Distributed Least Polar-angle Connected Node),
can be used for this purpose. The nodes must communicate with each other.
This characteristic is necessary in order to be able to detect faulty nodes [2].
These algorithms start from the node which is on the extreme left of the net-
work. To find this particular node, one can use any Leader Election algorithm
which can also be used for other applications and actions, like for example, coor-
dination, cooperation, etc. Leader election is a complex problem in distributed
systems since the data are distributed among the different nodes, which are ge-
ographically separated as is the case for WSNs. Several approaches are available
to deal with this problem. The Minimum Finding Algorithm [3] is the classical
one and it is based on updating and broadcasting each smallest received value.
A new leader selection algorithm for homogenous wireless sensor networks is
presented in [4]. In [6], an improved version of the well-known Leader Election
Ring algorithm is presented, where the authors to reduce the number of election
messages by making assumptions on perfect clock synchronization and a perfect
connection between transmitter and receiver. These assumptions are not realis-
tic in wireless sensor networks and they require additional complex algorithms
to deal with this synchronization. In [7], another improved version of Bully’s
algorithm is described, which acquires a smaller number of transmissions for
leader election but takes more time. During leader election, a node will compare
its value with the received value and only transmit the greater one. In [8], the
network is divided and a pre-election to select a provisional leader is performed.
The main drawback of this approach is when a node crashes and the contents of
the memory will be completely removed. In [9], the number of nodes which can
detect the failure is bounded before starting the Leader election algorithm. In
this paper, the algorithm’s time and complexity remain optimal even in worst
case scenarios. The authors of [10] have modified Bully’s algorithm in a way to
improve the processing time. Their main contribution is that the election of a
node is done on the basis of its performance and operation rate instead of on its
higher identifier. Their algorithm allows to determine a leader before an exist-
ing leader dies. As in [6], the authors of [11] made the assumption of a perfect
transmission connection and the time on air and collision scenarios is ignored,
while implementing fault detection algorithms. Also, a series of dynamic leader
election protocols in broadcast networks has been proposed. In [12], it is sug-
gested to choose one leader and one leader assistant, so that in the case where
the leader node crashes, the assistant node can take over the charge and coor-



LOGO Algorithm 3

dinate other nodes. This can significantly decrease the total number of elections
in the network, especially when the network size is large. A similar approach is
followed in [5] whose approach does not rely on any particular network topology.
In [13], two main algorithms are presented. The Bully algorithm [17] and the
Ring Algorithm [14]. In [15], the author has proposed two algorithms working in
the case of asynchronous networks. Both of the proposed algorithms can reduce
the time complexity.

Except for the Minimum Finding Algorithm [3] and the algorithm of [15],
the presented algorithms can be used only in the case of synchronous networks.
In this article, we present a new algorithm that works with asynchronous net-
works without making any assumption on the topology. This algorithm has been
compared with the classical Minimum Finding Algorithm, and the simulation re-
sults have shown that its complexity regarding exchanged messages is reduced
by rates that can exceed 95%.

The remainder of the paper is organized as follows: In the following sec-
tion, the Minimum Finding Algorithm will be reviewed. In Section 3, the Local
Minimum Finding Algorithm (LMF) will be presented. Section 4 will present
the proposed approach. The platform CupCarbon, which is used to implement
the proposed algorithm, will be described in Section 5. In Section 6, simulation
results will be presented. Finally, Section 7 concludes the paper.

2 The Minimum Finding Algorithm

In this section, we will present an algorithm that allows to determine a node
leader representing the node with minimum or maximum value v. This value can
represent the battery level, the residual energy, the identifier, the local energy, the
x-coordinate in a network, etc. This algorithm is based on the Minimum Finding
Algorithm presented in [3, 16] which itself relies on the tree-based broadcast
algorithm. The same algorithm can be used to find the maximum value. It can
be described as follows. At the beginning, each node of the network assumes
that its local value is the minimum of the network (the leader) and assigns it to
the variable xmin. This value will be broadcasted and the corresponding node
will wait for incoming xmin values from its neighbors. If a received value xmin

is less than its local xmin value then this one will be updated and broadcasted
again. This process is done repeatedly by each node as long as a received value
is less than its local xmin value. After a given time tmax, only the leader, with
the smallest value, will not receive a value that is smaller than its local xmin

value.
Algorithm 1 is the pseudo-code of this process, where t0 is the time of the

first execution of the algorithm, that can correspond to the first powering-on of
a sensor node, tc the current local time of a sensor node, and tmax the maximally
tolerated running time of the algorithm from the first execution to the current
time of a sensor node.



4 Ahcène Bounceur and Madani Bezoui et al.

Algorithm 1 MinFind : The pseudo-code of the classical Leader Election Algo-
rithm
Input: tmax, v
Output: leader
1: leader = true;
2: t0 = getCurrentTime();
3: xmin = v;
4: send(xmin, *);
5: repeat
6: x = read();
7: if (x < xmin) then
8: leader = false;
9: xmin = x;

10: send(xmin, *);
11: end if
12: tc = getCurrentTime();
13: until (tc − t0 > tmax)

In order to set the value of tmax, one needs to calculate the time complexity
of this algorithm. For this purpose, let us consider the worst case represented
by a linear network with n nodes, where we are searching for the node with
minimum x-coordinate. This node, situated on the extreme left, will send only 1
message and will receive only 1 message. Nevertheless, the right-most node will
receive and send n− 1 messages of the received assumed xmin coordinate, since
it is the node having the largest x-coordinate. Therefore, each one of the other
nodes, except the extreme left one, has at least one node on its left. Thus, these
nodes will broadcast the newly received xmin.

Altogether, the message complexity is equal to M [MinFind] = 2(n − 1) =
2n−2. If we assume that a sensor node can send and receive messages simultane-
ously (full-duplex communication) the overall time complexity T [MinFind] =
n − 1. Since the time complexity is known, it is possible to estimate the value
of tmax, the required time to find the leader. For example, in a network of 100
sensor nodes, with 1024 bits message size sampled with a 250 kb/s frequency
(802.15.4 standard based network), 406 ms are required to find the leader. In
this article, we have simulated two networks of 100 sensor nodes using the Cup-
Carbon simulator. The first network is assumed to be linear (cf. Figure 1) and
second is assumed to be random (cf. Figure 2). The simulation results show that
the leader is captured in 406 ms with a consumption of 1J to 9J per node for the
linear network. And in case of a random network, it took 70 ms with an energy
consumption of 1J to 5J per node. In these simulations, the energy required
for a serialization of data from the microcontroller to the RF radio module is
neglected. But, if we assume a serialization time of 38400 b/s then to find the
leader requires 1.5 s and 190 ms for the linear and the random network, re-
spectively. Determining an accurate estimator of the value of tmax in the case of
random networks could be a topic for future work.



LOGO Algorithm 5

Fig. 1. A linear network with 100 sensor nodes.

Fig. 2. A random network with 100 sensor nodes.

3 The Local Minima Finding algorithm

A local minimum node, also called Local Leader, is the node which has no neigh-
bor with a value smaller than its own value. But this value is not necessarily a
global minimum. The marked nodes, represented by the red arrows in Figure 4,
show examples of local minima.

The Local Minima Finding (LMF) Algorithm uses the same principle as
the previously presented MinFind algorithm to determine if a node is a local
minimum or not, with the exception that each node will send its coordinates
only once, and after receiving the messages from all its neighbors, it decides if it
is a local minimum or not in case it receives a smaller value than its own. The
algorithm of finding local minima is given as follows:

Algorithm 2 LMF : The pseudo-code of the Local Minima Finding Algorithm

Input: t, v
Output: local min
1: local min = true;
2: xmin = v;
3: send(xmin, *);
4: while (((x = read(t)) 6= null) and local min) do
5: if (x < xmin) then
6: local min = false;
7: end if
8: end while



6 Ahcène Bounceur and Madani Bezoui et al.

4 The proposed method

4.1 Concept

In the MinFind algorithm each node is sending messages repeatedly and up-
dates its values each time the received value is smaller than its own value. After
a certain time, each node will be marked as a non-leader (or non-minimum)
node, except the leader which has the smallest value since this node will never
receive any smaller value than its own. This process is time-consuming and it
requires a lot of broadcasting messages, which makes it very energy consuming
and impractical in reality for the case of WSNs, because of collisions, for in-
stance. To address this issue, we propose a new approach where each node will
send a broadcast message once, in order to determine the local minima using the
LMF algorithm (cf. Algorithm 2). Then each local minimum will send a message
to a given reference node which will select the global minimum. This approach
is detailed as follows:

Step 1: Mark each node as a global minimum and select one node as a reference
node (cf. Figure 3).

Fig. 3. Example of a network with a designed reference node.

Step 2: Run the LMF algorithm to find the local minima nodes and unmark the
other nodes (cf. Figure 4).

Step 3: The reference node will send a message to the nodes in order to ask the local
minima nodes to send their values (cf. Figure 5).

Step 4: Each local minimum node will send a message to the reference node and the
reference node will determine the global minimum from the received local
minima nodes (cf. Figure 6).

Step 5: The reference node will send a message to the global minimum node saying
that it is the global minimum node (cf. Figure 7).



LOGO Algorithm 7

Fig. 4. The local minima found by Algorithm 2.

Fig. 5. The reference node asks for local minima nodes (flooding messages).

4.2 The LOGO Algorithms

To present the proposed algorithms, let us define in Table 1 some message prim-
itives necessary for the communication between nodes and their definitions and
in Table 2 the functions used in the algorithms. The proposed algorithm works
in the case of bidirectional communication.



8 Ahcène Bounceur and Madani Bezoui et al.

Fig. 6. The local minima nodes will declare themselves to the reference node (blue
arrows).

Fig. 7. The reference node designates the global minimum node (leader) and informs
that node.

Table 1. Message primitives and their definitions.

Primitive Definition

T1 I send you my value

T2 Send me your value if you are a local minimum

T3 I send you my value as a local minimum

T4 I want to inform the global minimum (leader election)



LOGO Algorithm 9

Table 2. Functions of the proposed algorithms.

Function Definition

getId() returns the node identifier

delay(dt) waits dt milliseconds before going to the next instruction

add(v,t) adds the value v at the top of the vector t

pop(t) removes the value at the top of the vector t and returns it

stop() stops the execution of the program

send(a,b) sends the message a to the sensor node having the identifier b,
or in a broadcast (if b = ∗)

read() waiting for receipt of messages. This function is blocking, which means
that if there is no received message any more, it remains blocked in this
instruction

read(wt) waiting for receipt of messages. If there is no received message after
wt milliseconds then the execution will continue and go to the next
instruction

Note that there are two algorithms. One is executed by the reference node
(Algorithm 3) and the second is executed by the remaining nodes (Algorithm 4).
Algorithm 3 of the reference node takes as inputs a value x and the time wt re-
quired before selecting the global minimum. The output global min is a variable
which is equal to true if the current reference node is a leader (minimum) and
false, otherwise. It starts with an initialization (lines 1 to 3). And it waits for 1
second (line 4), the necessary time to finish the process of determining the local
minima. This time must be changed if the number of neighbors of a sensor node
is very important. It is the time required for any sensor node to send a message
in a broadcast and receive mode from its neighbor nodes. Then it sends a mes-
sage T2 to ask the local minima to send their value x (lines 5 and 6). In line
8, the reference node will wait for receiving a message containing the id of the
transmitter (r id), the value r x of the local minimum message and t, the stack
of the path from the local minimum node to the reference node. If a message
is received before wt milliseconds, then it means that a message T3 is received
from a local minimum node. In this case, the received value r x is tested whether
it is smaller than the current value x min which at the beginning is equal to the
local value x (line 18). If this is the case, the reference node will be declared as
a non-global minimum (line 19), the value of id min will be updated with the
value of r id (line 20), the value of x min will be updated with the value of r x
(line 21) and the route t from the reference node to the local minimum (id min)
will be assigned to t min (line 22). Otherwise, if the received message is null
(line 9), which can happen when the node does not receive any message during
the wt milliseconds, then the reference node has received messages from all the
local minima. In this case, if the global min value is equal to true, the reference
node is the global minimum and the algorithm will stop (line 15). Otherwise, the
route t is the one situated between the reference node and the global minimum



10 Ahcène Bounceur and Madani Bezoui et al.

node. A message T4 will be sent to the global minimum, having the identifier
id min, using the route t (lines 11 to 13) in order to elect it.

Algorithm 3 LOGO : The pseudo-code of the reference node.

Input: x, wt
Output: global min
1: id = getId()
2: x min = x
3: global min = true
4: delay(1000)
5: message = (T2, id, null, null)
6: send(message, *)
7: while (true) do
8: (type, r id, r x, t)=read(wt)
9: if (type==null) then

10: if (global min==false) then
11: n id = pop(t min)
12: message = (T4, id min, null, t min)
13: send(message, n id)
14: else
15: stop()
16: end if
17: else
18: if ((type==T3) and (r x < x min)) then
19: global min = false
20: id min = r id
21: x min = r x
22: t min = t
23: end if
24: end if
25: end while

Algorithm 4 of the remaining node takes as input only the value x. The
output global min is a variable which is equal to true if the current node is a
leader (global minimum) and false, otherwise. Each non-reference node starts
with initializations (lines 1 to 5). The variable once1 is used to allow only once
the reception of T2 messages and the variable once2 is used to accept only once
any received T4 message. Then it starts the process of the LMF by sending
in a broadcast a T1 message in order to test if it is a local minimum or not
by comparing the values received from its neighbors with its own value x. If
any received value is smaller than its value, then the node will be considered
as a non-global minimum (lines 9 to 15). Once all the values of the neighbors
received, the algorithm goes to the second step, where it will wait for a message
T2 initiated by the reference node. In this case, it will route this message to
its neighbors and if it is a local minimum (global min = true) then it will send
the message T3 to answer the message T2 coming from the reference node, in



LOGO Algorithm 11

order to tell him that it is a local minimum (lines 22 and 23). Finally, it will be
considered as a non-global minimum (line 24). The next part of the algorithm
concerns the creation of the route from the local minimum node to the reference
node. If any node receives a message T3 then it will add itself to a stack t (line
28) representing the route from the local minimum to the reference node, and
route it again to the node p id which had sent him previously a T2 message
(lines 29 and 30). As soon as all the non-reference nodes have done this step,
the reference node will be in the situation where he has received all the routes
and values from the local minima and it chooses the one of the global minimum.
Then it will send a message T4 to elect the global minimum (lines 11 to 13
of Algorithm 3). Finally, each non-reference node which receives a T4 message
(line 32) containing the route t and the identifier r id of the leader, will test if
its identifier id matches the received identifier r id (line 35). If yes, it will be
elected (lines 36 and 37). Otherwise, it will route the same message to the next
sensor node having the identifier n id pulled from the route t (lines 39 to 41).

5 CupCarbon simulator and SenScript

The simulation of networks is an essential tool for testing protocols and their
prior performance deployment. Researchers often use network simulators to test
and validate proposed protocols and algorithms before their real deployment.
Indeed, such an establishment may be costly and challenging, especially when
talking about a large number of nodes distributed at a large scale. This is why the
simulation of networks is essential. CupCarbon is a Smart City and Internet of
Things Wireless Sensor Network (SCI-WSN) simulator. Its objective is to design,
visualize, debug and validate distributed algorithms for monitoring, tracking,
collecting environmental data, etc., and to create environmental scenarios such
as fires, gas, mobiles, and generally within educational and scientific projects. It
can help to visually explain the basic concepts of sensor networks and how they
work; it may also support scientists to test their wireless topologies, protocols,
etc., cf. Figure 8.

Networks can be designed and prototyped by an ergonomic and easy to use
interface using the OpenStreetMap (OSM) framework to deploy sensors directly
on the map. It includes a script called SenScript, which allows to program and
configure each sensor node individually. The energy consumption can be calcu-
lated and displayed as a function of the simulated time. This allows to clarify the
structure, feasibility and realistic implementation of a network before its real de-
ployment. CupCarbon offers the possibility to simulate algorithms and scenarios
in several steps. For example, there could be a step for determining the nodes of
interest, followed by a step related to the nature of the communication between
these nodes to perform a given task such as the detection of an event, and finally,
a step describing the nature of the routing to the base station in case that an
event is detected [18, 19].

SenScript is the script used to program sensor nodes of the CupCarbon sim-
ulator. It is a script where variables are not declared, but can be initialized. For



12 Ahcène Bounceur and Madani Bezoui et al.

Algorithm 4 LOGO : The pseudo-code of the non-reference node.

Input: x
Output: global min
1: id = getId()
2: x min = x
3: global min = true
4: once1 = false
5: once2 = false
6: message = (T1, id, x min, null)
7: send(message,*)
8: while (true) do
9: (type, r id, r x, t) = read()

10: if (type == T1) then
11: if (r x < x min) then
12: x min = r x
13: global min = false
14: end if
15: end if
16: if ((type == T2) and (once1 == false)) then
17: once1 = true
18: p id = r id
19: message = (T2, id, null, null)
20: send(message, *)
21: if (global min == true) then
22: add(id, t)
23: message = (T3, r id, x min, t)
24: send(message, p id)
25: global min = false
26: end if
27: end if
28: if (type == T3) then
29: add(id, t)
30: message = (T3, r id, r x, t)
31: send(message, p id)
32: end if
33: if ((type == T4) and (once2 == false)) then
34: once2 = true
35: if (r id == id) then
36: global min = true
37: stop()
38: else
39: n id = pop(t)
40: message = (T4, r id, null, t)
41: send(message, n id)
42: end if
43: end if
44: end while



LOGO Algorithm 13

Fig. 8. CupCarbon User Interface.

Fig. 9. Number of exchanged messages.

string variables, it is not necessary to use the quotes. A variable is used by its
name, and its value is determined by $.

6 Simulation results

In this section, we will compare the proposed algorithm with the classical Min-
Find algorithm, since both of them can be used for any network. For the simula-
tion, we have used the simulator CupCarbon [19], and SenScript is used to write
the previously presented algorithms. We assume bidirectional communication



14 Ahcène Bounceur and Madani Bezoui et al.

Fig. 10. Reduction rate in terms of the number of exchanged messages.

between nodes. Figure 3 shows an example of a wireless sensor network designed
in CupCarbon. We have randomly generated 10 networks with 20, 40, 60, 80,
100, 200, 300, 400, 500 and 600 sensor nodes, respectively. For each network, we
have calculated the number of transmitted and received messages (exchanged
messages) in order to compare their energy consumption which is directly re-
lated to this metric. We have obtained the graphs of Figures 9 and 10. As we
can see, the difference in each case can exceed 95% and this rate is increasing
with the size of the networks. From this figure, one can conclude that for very
large networks, this reduction can reach 99%.

7 Conclusion

We have presented a new Leader Election algorithm which is low energy consum-
ing. This algorithm is called LOGO (Local Optima to Global Optimum) where
sensor nodes that are local leaders will send a message to a reference node which
will designate the global leader and elect it by sending it a selection message.
The classical algorithm allowing to find this node is called Minimum Finding
Algorithm. In this algorithm, each node sends its value in a broadcast mode
each time a better value is received. This process is very energy consuming and
not reliable since it may be subject to an important number of collisions and lost
messages. Our proposed algorithm is more reliable since broadcast messages are
sent only twice by each node, and the other communications are based on a di-
rect sending. The obtained results show that the proposed algorithm reduces the
energy consumption with rates that can exceed 95% compared to the classical
algorithm. We are now working on comparing our algorithm with other methods
and to implement it on real hardware sensor platforms. Combining the proposed
idea with some computational intelligence technique as presented in [20] can also
give more favorable results in energy consumption.



LOGO Algorithm 15

Acknowledgment

This project is supported by the French Agence Nationale de la Recherche ANR
PERSEPTEUR - REF: ANR-14-CE24-0017.

References

1. Saoudi, M., Lalem, F., Bounceur, A., Euler, R., Kechadi, M. T., Laouid, A., Madani,
B., and Sevaux, M., D-LPCN: A Distributed Least Polar-angle Connected Node Al-
gorithm for Finding the Boundary of a Wireless Sensor Network, Ad Hoc Networks
Journal, Elsevier, Volume 56, 1 March 2017, Pages 56-71.

2. Farid Lalem, Rahim Kacimi, Ahcène Bounceur, and Reinhardt Euler. Boundary
node failure detection in wireless sensor networks. In IEEE International Sympo-
sium on Networks, Computers and Communications (ISNCC 2016), 11-13 May,
Hammamet, Tunisia, 2016.

3. Santoro, N., Design and analysis of distributed algorithms, Vol. 56, John Wiley &
Sons, 2007.

4. Sohail Jabbar, Abid Ali Minhas, Moneeb Gohar, Anand Paul, and Seungmin Rho,
E-MCDA: Extended-Multilayer Cluster Designing Algorithm for Network Lifetime
Improvement of Homogenous Wireless Sensor Networks, International Journal of
Distributed Sensor Networks, Article ID 902581, ISSN: 1550-1329 (Print), ISSN:
1550-1477 (Online)

5. Sohail Jabbar, Abid Ali Minhas, Muhammad Imran, Shehzad Khalid and Kashif
Saleem, Energy Efficient Strategy for Throughput Improvement in Wireless Sensor
Networks, Sensors, Vol. 15, Issue 2, 2015, pp. 2473-2495,MDPI Publishers, 15, 2473-
2495; doi:10.3390/s150202473

6. Beaulah Soundarabai, P., Thriveni, J., Venugopal, K. R., and Patnaik, L. M. An
Improved Leader Election Algorithm for Distributed Systems. International Journal
of Next-Generation Networks, 2013, 5(1), 21.

7. Effat Parvar, M., Yazdani, N., Effat Parvar, M., Dadlani, A., and Khonsari, A.
Improved algorithms for leader election in distributed systems. In the 2nd IEEE
International Conference on Computer engineering and technology (ICCET), 2010,
Vol. 2, pp. 2-6.

8. Kim, T. W., Kim, E. H., Kim, J. K., and Kim, T. Y. A leader election algorithm in a
distributed computing system. In Proceedings of the Fifth IEEE Computer Society
Workshop on Future Trends of Distributed Computing Systems, 1995, pp. 481-485.

9. Chow, Y. C., Luo, K. C., and Newman-Wolfe, R. An optimal distributed algorithm
for failure-driven leader election in bounded-degree networks. In IEEE Proceedings
of the Third Workshop on Future Trends of Distributed Computing Systems, 1992,
pp. 136-141.

10. Park, S. H., Kim, Y., and Hwang, J. S. An efficient algorithm for leader-election in
synchronous distributed systems. In Proceedings of the IEEE Region 10 Conference
TENCON, 1999, Vol. 2, pp. 1091-1094.

11. Brunekreef, J., Katoen, J. P., Koymans, R., and Mauw, S. (1996). Design and
analysis of dynamic leader election protocols in broadcast networks, Distributed
Computing, 9(4), 157-171.

12. Zargarnataj, M. New election algorithm based on assistant in distributed systems.
In IEEE/ACS International Conference on Computer Systems and Applications,
AICCSA’07, 2007, pp. 324-331.



16 Ahcène Bounceur and Madani Bezoui et al.

13. Balhara, S., and Khanna, K., Leader Election Algorithms in Distributed Systems,
Journal of Computer Science and Information Technology, IJCSMC, Vol. 3, Issue.
6, June 2014, pg.374-379.

14. Zargarnataj, M., New Election Algorithm based on Assistant in Distributed Sys-
tems, In IEEE/ACS International Conference on Computer Systems and Applica-
tions, Amman, 2007, pp. 324-331.

15. Singh, G. Efficient distributed algorithms for leader election in complete networks.
In 11th IEEE International Conference on Distributed Computing Systems, 1991,
pp. 472-479.

16. Lynch, N. A., Distributed algorithms, Morgan Kaufmann, 1996.
17. Garcia-Molina, H., Elections in a Distributed Computing System, IEEE Transac-

tions on Computers, Vol. C-31, No. 1, 1982, pp. 48-59.
18. CupCarbon simulator, http://www.cupcarbon.com
19. Mehdi, K., Lounis, M., Bounceur, A., and Kechadi, T. CupCarbon: A Multi-Agent

and Discrete Event Wireless Sensor Network Design and Simulation Tool, In IEEE
7th International Conference on Simulation Tools and Techniques (SIMUTools’14),
Lisbon, Portugal, 2014.

20. Sohail Jabbar, Rabia Iram, Abid Ali Minhas, Imran Shafi, Shehzad Khalid, Muqeet
Ahmad Intelligent optimization of energy aware routing in wireless sensor network
through bio-inspired computing: survey and future directions, International Journal
of Distributed Sensor Networks, Vol. 2013, Article Id 421084, 13 pages, 2013


