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     Nous interprétons spontanément nos stimulations sensorielles.



Nous nous formons instantanément des représentations
sociales de nos interlocuteurs, notamment grâce aux 
expressions de leur visage et de leur voix



High-level social inferences from faces
constrain the search for combinations of features to subsets of
features. The starting point for the data-driven approach is a
mathematical model of face representation that captures the
holistic variation of faces. The first such models were based
on a principal components analysis (PCA) of the pixel intensi-
ties of face images [15]. Subsequent models were based on a
PCA of the shape of faces acquired from three-dimensional
laser scanning of faces [16,17]. The same technique can be
used to build a statistical model of face reflectance, texture,
and pigmentation, using the red, green, and blue colour
values from each pixel on the face’s surface. In these models,
each face is represented as a vector in a multi-dimensional
space (figure 1). The statistical face space allows us to
randomly sample faces that are representative of the face
variation captured by these models. To identify the combi-
nations of features that lead to social judgements, we simply
need to ask participants to judge the randomly sampled
faces. If these judgements are reliable, we can build a model
of the face variation that drives the judgements [18–20]. This
model is a new vector in the statistical face space that captures
the meaningful face variation with respect to the judgement.

Figure 2 shows such a model based on subject’s ratings of
faces. In the case of trustworthiness judgements, the primary
dimension on which faces are evaluated [18,21], we can see
that trustworthy faces are more feminine and have positive
expressions. Note that although emotional expressions were
not manipulated, they naturally emerged from the judgements
of the randomly varying faces. We can infer that weak emotional
signals are an important input to judgements, and test this in
standard experiments [22]. In the case of dominance judgements,
the second fundamental dimension on which faces are evalu-
ated, we can see that dominant faces are more masculine and
facially mature. We can infer that inferences of physical strength
are an important input to dominance judgements [18,21].

Coming back to the example quote we gave at the begin-
ning, there are clear future directions here: notably,
extending the analysis to nonlinear effects. The results from
linear techniques, such as the PCA approach we reviewed
above, can be taken as initial findings that could guide more
complex studies that begin to explore truly holistic face proces-
sing in which different features or dimensions interact in more
complicated ways. Needless to say, this opens up a much
larger search space, but if suitably guided by initial findings,
particular parts of this space could be explored. This last

point also raises an important comment on the relationship
between data-driven and hypothesis-driven methods: they
should interact and inform one another. Not all methods
should be entirely agnostic, but as we accrue findings, future
approaches, even if data-driven in part, should incorporate
aspects of prior findings to help constrain our search for
those features and dimensions that matter the most.
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Figure 1. Statistical models of faces. An individual face stimulus can be represented as a vector in a dimensional space. With synthetic face stimuli, one can omit dimensions
that would be psychologically irrelevant, such as the type of camera taking the picture, and incorporate a more restricted set of dimensions to begin with. (a) Illustration of
statistical face space with two dimensions representing face shape. (b) Illustration of statistical face space with two dimensions representing face reflectance.
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Figure 2. Faces generated by a data-driven computational model of judgements
of (a) competence; (b) dominance; (c) extroversion; and (d ) trustworthiness. The
middlemost face on each row is the average face in the statistical model. The face to
the right is 3SD above the average face on the respective trait dimension; the face
to the left is 3SD below the average face.
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exposure from 100 to 1,000 ms, none of these changes was
significant. We compared the correlations at 100 and 500 ms, at

500 and 1,000 ms, and at 100 and 1,000 ms using Williams’s test
for dependent correlations (Steiger, 1980). None of these tests

reached significance.
We expected that we would find the highest correlation for

judgments of attractiveness. Attractiveness, after all, is a

property of facial appearance. However, the correlations for
judgments of trustworthiness were slightly higher. We also

conducted partial correlation analyses, controlling for judg-
ments of attractiveness, to rule out the possibility that the
judgments made after limited exposure time simply reflected an

attractiveness halo effect. Although the correlations were re-
duced (Table 1), they remained highly reliable for all judgments.

Comparing the difference between the zero-order and the partial
correlations at the different levels of exposure time suggests that

the effect of attractiveness on trait judgments was reduced with
increased exposure to the faces. The partial correlations in-
creased with increased exposure time, but as in the case of the

zero-order correlations, none of the changes reached signifi-
cance.

How much of the variance in time-unconstrained judgments
can be accounted for by time-constrained judgments? To answer

this question, we conducted three regression analyses (one for
each level of exposure time) in which time-unconstrained
judgments (5 types of judgment ! 66 faces) were regressed on

time-constrained judgments and dummy variables controlling for
the type of judgments (4) and the face stimuli (65). As shown in

Figure 1, with the increase in exposure from 100 to 1,000 ms, the
variance accounted for increased only 2.2%. Although we did not
include conditions in which participants were exposed to faces

for more than 1,000 ms, it is reasonable to assume that the ex-
plained variance could not be improved with longer exposures.

Assuming that the average reliability of the judgments is .90, the
ceiling of the explained variance should be, on average, 81.0%.

Given that the procedures for collecting the time-constrained

judgments and the time-unconstrained (criterion) judgments

were different and that these differences could have increased
the error variance, the accounted-for variance at 1,000-ms ex-

posure (74.9%) seems very close to the possible ceiling.

Analysis Within Experiments
All judgments showed the same pattern as a function of exposure
time. As shown in the top panel of Figure 2,1 when exposure time
increased from 100 to 500 ms, judgments became more negative

(for all judgments, p < .05, prep > .91, d > 0.85). Faces were
perceived as less attractive, less likeable, less trustworthy, less

competent, and more aggressive. The mean level of judgments
stabilized at the 500-ms exposure, and no significant changes
were observed for the increase to 1,000-ms exposure. As shown

in the middle panel of Figure 2, when exposure time increased
from 100 to 500 ms, response times for all five judgments de-

creased (for all judgments, p< .05, prep> .93, d> 0.91). As with
the trait judgments, little change was observed when exposure

time increased from 500 to 1,000 ms; although response times
continued to decrease, the only significant effect was for trust-
worthiness judgments, t(23) 5 4.14, prep 5 .99, d 5 1.73.

As shown in the bottom panel of Figure 2, when exposure time
increased from 100 to 500 ms, confidence in all five judgments

increased. The only effect that did not reach significance was for
judgments of aggressiveness, t(24) 5 1.47, prep 5 .84, d 5 0.60

(for the other four judgments, p < .05, prep > .93, d > 0.94).
When exposure time increased from 500 to 1,000 ms, confi-
dence in judgments, except judgments of competence, increased

again. Although this increase in confidence was significant only
for attractiveness judgments, t(19) 5 2.59, prep 5 .95, d 5 1.19,

and approached significance for trustworthiness judgments,
t(23) 5 1.94, prep 5 .90, d 5 0.81, the combined p value from all
five experiments was .028 (z 5 2.20), and the average effect size

d was 0.41.

Relations Between Trait Inferences
We conducted principal-components analyses with Varimax
rotation to test whether person impressions became more dif-

ferentiated as a function of increased exposure to the faces. As
shown in Table 2, the analyses for both the 100-ms and the 500-
ms exposure times identified only one factor, suggesting a coarse

positive/negative discrimination. All positive traits had high
positive loadings on the factor, and aggressiveness had a high

negative loading. This factor accounted for 62.5% of the vari-
ance in judgments made after 100-ms exposure and 58.3% of the
variance in judgments made after 500-ms exposure. The dif-

ference in the explained variance suggests that judgments made
after 100-ms exposure were more correlated than judgments

Fig. 1. Percentage of variance in judgments made in the absence of time
constraints accounted for by time-constrained trait judgments.

1The analyses we report here were conducted at the level of participants (i.e.,
analyzed the mean judgments across faces). We conducted the same analyses at
the level of faces (i.e., analyzed the mean judgments across participants) and
obtained identical results.
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Abstract

On hearing a novel voice, listeners readily form personality impressions of that speaker. Accurate or not, these impressions
are known to affect subsequent interactions; yet the underlying psychological and acoustical bases remain poorly
understood. Furthermore, hitherto studies have focussed on extended speech as opposed to analysing the instantaneous
impressions we obtain from first experience. In this paper, through a mass online rating experiment, 320 participants rated
64 sub-second vocal utterances of the word ‘hello’ on one of 10 personality traits. We show that: (1) personality judgements
of brief utterances from unfamiliar speakers are consistent across listeners; (2) a two-dimensional ‘social voice space’ with
axes mapping Valence (Trust, Likeability) and Dominance, each driven by differing combinations of vocal acoustics,
adequately summarises ratings in both male and female voices; and (3) a positive combination of Valence and Dominance
results in increased perceived male vocal Attractiveness, whereas perceived female vocal Attractiveness is largely controlled
by increasing Valence. Results are discussed in relation to the rapid evaluation of personality and, in turn, the intent of
others, as being driven by survival mechanisms via approach or avoidance behaviours. These findings provide empirical
bases for predicting personality impressions from acoustical analyses of short utterances and for generating desired
personality impressions in artificial voices.
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Introduction

Voices are saturated with cues to a person’s age, gender, and
affective state [1], with information being extractable whether
listening to sentences [2], or sub-second vocal bursts [3,4]. Within
voice perception, a focus on personality has endured: from
Cicero’s apparent pondering of competent speakers in De Oratore;
through the golden period of radio exploring status [5]; to modern
researchers examining various personality traits including attrac-
tiveness and dominance [6–12].

Judgements of personality influence our social interactions. By
example, perceived facial attractiveness affects numerous decisions
that we make (for review see [13]), including mate choices, job
selection and voting behavior [12,14,15]. Likewise, research has
shown that perceived vocal personality influences mate selection,
leader election, and consumer choices [16–19]. Such judgements
from faces are formed after less than 100 ms exposure, [20,21] and
are consistent across observers [22,23]. Furthermore, given that
many judgements are based on static images or short interactions,
these decisions are largely made without much knowledge of the
person in question – often termed ‘zero acquaintance’ [23–27].
Yet, despite their equal relevance to our daily lives, the rapid
attribution of personality traits to novel speakers is poorly
understood. As such, the key traits for deriving first impressions

of people from short vocalizations, and the vocal acoustics
governing these traits, remain to be established.

Across various domains, it has been shown that consideration of
numerous personality traits may be reduced to summary
dimensions, in turn allowing for the estimation of other traits
[28–30]. Fiske, Cuddy and Glick [31] revealed that judgements of
social groups were summarised via a two-dimensional space
comprising of warmth and competence. Likewise, Oosterhof &
Todorov [32] showed personality impressions from faces were
summarized by valence and dominance: Sutherland and col-
leagues [33] validated this model for faces, whilst also proposing a
third dimension of attractiveness-youth. In voices, from scrambled
mock-jury deliberations, female judgements of male speakers were
summarised by ratings of friendliness and dominance [10], whilst
Zuckerman and colleagues [12], utilising people reading passages
of texts, found the three key dimensions explaining personality
traits to be dominance, likeability and achievement. Furthermore,
Montepare & Zebrowitz-McArthur [29] found comparable results
exploring personality attribution of people reciting the alphabet.
Thus one proposed understanding is that, typically, a two
dimensional space can summarise all other traits, with one trait
emphasising warmth/trust/likeability, and a second trait empha-
sising strength/dominance.

Such a solution is clearly influenced by the traits examined. For
example, as perhaps a compromise to the numerous possible
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likely candidates, and correlating the new PCs to the removed
personality scales. An original scale is proposed as a suitable
summary if it correlates strongly with one PC and weakly with the
other. PC1 of all ratings excluding Trustworthiness, highly
correlated with Trustworthiness ratings (rs = .92, p,.001; Trust-
worthiness to PC2, rs = 2.19, n.s). Likewise, PC1 of all ratings
excluding Likeability, highly correlated with Likeability ratings
(rs = .95, p,.001; Likeability to PC2, rs = 2.3, n.s.). In turn,

ratings of Trustworthiness and Likeability were strongly correlated
(rs = .93, p,.001). Excluding Dominance, PC2 correlated strongly
with Dominance ratings (rs = .94, p,.001; Dominance to PC1,
rs = .06, n.s.) (Fig. 1b). A three dimensional solution to this PCA,
and analysis based on gender of rater, is shown in the
Supplementary Information (File S1; see Table S1 for 3D PCA,
and Table S2, Table S3 & Table S4 for analysis by rater gender).

Figure 1. Principal Component Analysis solutions and main correlates of the Social Voice Space. A) The two dimensional solution of the
Principal Component Analysis for male (left) and female (right) voices (black dots). Labels equate to: Agg – Aggressiveness; Att – Attractiveness; Com
– Competence; Conf – Confidence; Dom – Dominance; Lik – Likeability; Tru – Trustworthiness; War – Warmth. B) Correlation plots between the ratings
of trustworthiness (Tru - top row), dominance (Dom - bottom row), and the first (PC1) and second (PC2) principal components for male (left) and
female (voices). Blue ‘+’ represent individual voices. Trustworthiness was chosen arbitrarily over Likeability due to the strong correlation between
these two traits.
doi:10.1371/journal.pone.0090779.g001

Table 2. Loadings on the first two principal components of all social traits for the male and female voice PCAs, including variance
explained.

Male PCA Female PCA

Social Trait Component 1 Component 2 Component 1 Component 2

Aggressiveness 20.74 0.61 20.52 0.76

Attractiveness 0.33 0.71 0.74 20.45

Competence 0.70 0.63 0.88 0.20

Confidence 0.75 0.44 0.62 0.74

Dominance 0.15 0.98 0.55 0.80

Likeability 0.95 20.20 0.93 20.24

Trustworthiness 0.92 20.05 0.96 20.15

Warmth 0.91 20.35 0.91 20.12

Variance Explained (%) 56.18 31.8 59.54 25.53

Loadings represent the correlations of the trait judgements with the first two principal components as calculated including all eight personality traits.
doi:10.1371/journal.pone.0090779.t002

First Impressions of Personality from Voices
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à A robust code to infer first-impressions 
from the acoustical features of speech

McAleer, P., Todorov, A., & Belin, P. PloS one (2014)



Probing the processing of complex 
auditory signals in high-level judgments 	
•  The prosodic information (pitch, loudness, timing, …) conveyed by speech 

signals is crucial for social interaction

•  Pitch is the dimension that conveys most of the information about a 
speaker’s traits, social and emotional states.

•  Social inferences mainly rely on pitch dynamics (i.e. intonation)

à How are social judgments inferred from dynamic pitch patterns?

Reverse-correlation constitutes a powerful approach to examine such question 
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Reverse-correlation in high-level vision
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Fig. 3. The results from the three tasks based on the high confidence “probably” trials (a) Happy/unhappy, (b)
male/female, (c) Tom Cruise/John Travolta. The base images were identical for the expression and gender tasks.
The darkest and lightest areas of the classification images, which are from the data of all 36 subjects, indicate the
areas that most influenced the subjects’ classifications. The addition of the classification image to the base face
results in Class Image 1, which appears happy. The subtraction of the classification image results in Class Image
2, which appears unhappy. The same addition and subtraction operations produce the class images for (b) female
and male and (c) Cruise and Travolta, respectively. The rightmost two columns show the classification images for
the median subject calculated in terms of Euclidean pixel distance for a given subject’s classification image and the
average classification image.

Gender in Columns 3 and 4, it becomes clear that while the eyes and mouth play a large role,
the diffuse energy in the center of the face creates distinctive gender changes of the nose. This
illustrates how this technique can discover the diffuse, subtle information employed by face
perceivers.
A classification image can be constructed from only those sinusoidal components that dif-

fered significantly between the two categories on each task. Significance was tested with
repeated independent t tests for each of the 4092 components with adjustment for multiple
comparisons (Rom, 1990). For the Expression task, 187 components reached significance
(p < .0005), for Gender, 85 components (p < .001), and for the celebrity identity task, 52
components (p < .001). The images in Fig. 4 reveal that, indeed, relatively few components,
in the order of 100, are adequate to recreate the class differences.
Valentin et al. (1994) and Sergent (1989) have speculated, on the basis of statistical analysis

of sets of faces, that whereas gender and expression can be conveyed by low frequency infor-
mation, individuation is carried in higher frequency channels. Fig. 5 shows the class images
for all sinusoids separately for each of the five scales. For all tasks, including individuation, a
large portion of the information distinguishing the classes appears to be at 4 and 8 cycles/image.
This shows that human observers categorizing faces by identity do chose to make use of low
frequency information in performing their categorizations. Furthermore, this low frequency in-
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Fig. 2. Four noisy face images produced by superimposing sinusoidal noise over the identical base image. Different
patterns of the noise can render the resultant image as looking male or female and happy or unhappy. A sample of
observers judged panel a as an unhappy male, panels b and c as happy females, and panel d as a happy male. (In
the actual experiment, an individual subject made only a single classification judgment, e.g., happy or unhappy.)

As noted previously, the Schyns, Bonnar, and Gosselin (2002) method localizes the regions
that observers employ to discriminate one picture from another. We can compare our results to
theirs by noting the regions of our classification images that are of high contrast. The results for
the two methods are in good agreement on a coarse level for the expression and gender tasks
in assigning high value to the regions around the eyes and mouth, respectively. For identity,
a more distributed region over the face is employed. The classification-image technique need
not be limited to simply localizing the areas utilized. We can also view the direction of changes
that influence observer decisions. For example, by examining the reconstruction images for
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for all sinusoids separately for each of the five scales. For all tasks, including individuation, a
large portion of the information distinguishing the classes appears to be at 4 and 8 cycles/image.
This shows that human observers categorizing faces by identity do chose to make use of low
frequency information in performing their categorizations. Furthermore, this low frequency in-
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(p < .0005), for Gender, 85 components (p < .001), and for the celebrity identity task, 52
components (p < .001). The images in Fig. 4 reveal that, indeed, relatively few components,
in the order of 100, are adequate to recreate the class differences.
Valentin et al. (1994) and Sergent (1989) have speculated, on the basis of statistical analysis

of sets of faces, that whereas gender and expression can be conveyed by low frequency infor-
mation, individuation is carried in higher frequency channels. Fig. 5 shows the class images
for all sinusoids separately for each of the five scales. For all tasks, including individuation, a
large portion of the information distinguishing the classes appears to be at 4 and 8 cycles/image.
This shows that human observers categorizing faces by identity do chose to make use of low
frequency information in performing their categorizations. Furthermore, this low frequency in-
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faces. Sampling error could have constrained face representa-
tion in ways that affect the final models. Second, stimulus faces
generated using the face space did not have hair, an important
feature affecting person perception (e.g., Macrae & Martin,
2007). Third, only shape information was used to construct the
models, although reflectance information (pigmentation and
texture) might play an important role in social perception
(Todorov & Oosterhof, 2011). Last, although Oosterhof and
Todorov included visualizations of the constructed social
dimensions, they did not report quantitative analyses with
respect to diagnostic face regions.

Here, we use a different class of RC techniques aimed at
extending the findings of Oosterhof and Todorov (2008) by
assessing whether their findings are method invariant and
by quantitatively identifying which specific facial regions are
involved in social perception. This class of RC techniques was
developed in parallel by Kontsevich and Tyler (2004) and
Mangini and Biederman (2004, also see Gosselin & Schyns,
2003). This technique enables researchers to generate images
that reflect participants’ internal representations of faces, with-
out making any assumption about what those representations
might look like. Recently, this RC variant has become increas-
ingly popular in social cognitive research (see, e.g., Dotsch,
Wigboldus, Langner, & van Knippenberg, 2008; Dotsch, Wig-
boldus, & van Knippenberg, 2011; Imhoff, Dotsch, Bianchi,
Banse, & Wigboldus, in press; Jack, Caldara, & Schyns,
2011; Karremans, Dotsch, & Corneille, in press).

A typical RC image classification task (in this example we
discuss a two images forced choice, or 2IFC, variant used by
Dotsch et al., 2008) employs random variations of facial
images created with a constant base face (Figure 1A) and
randomly generated noise patterns (Figure 1B) superimposed
on the face. Because the noise distorts the base face image, the
face looks different with each different random noise pattern.
For each superimposed random noise pattern, a negative pat-
tern (the mathematical opposite) is generated. Each pixel that
is dark in the original noise pattern is bright in the negative
noise pattern, much like photo negatives. In a single trial, the
base image with the original noise and the base image with
the negative noise superimposed are presented side by side
(Figure 1C). Participants are then asked to select the face that
best resembles the target category. The average of all selected
noise patterns constitutes the classification image (CI), whereas

the average of all unselected noise patterns is the anti-CI. For
instance, Dotsch, Wigboldus, Langner, and van Knippenberg
(2008) used a neutral male face as base face, and superimposed
random noise consisting of multiple truncated sinusoids. These
were then used as stimuli in a Moroccan classification task:
participants chose from two stimuli (Figure 1C) the stimulus
that best resembled a Moroccan face. The average of all noise
patterns that participants classified as Moroccan constituted the
Moroccan CI. Superimposing this CI on top of the original base
image resulted in approximations of what participants thought
typical Moroccan faces looked like.

The 2IFC task described above is based on the psychophy-
sical RC methodology described by Mangini and Biederman
(2004), where one image was presented in each trial and parti-
cipants classified the image into one of two categories. In this
case, CIs for each category are calculated by averaging all
images classified as the respective category. Mangini and Bie-
derman demonstrated that this technique can be used to model
identities (John Travolta vs. Tom Cruise), gender categories
(male vs. female), and emotional expressions (happy vs. sad).
However, the extent to which this task can be applied to mod-
eling social perception is somewhat limited. First, the task used
as base face a morph between two images that accurately rep-
resented the two target categories (e.g., John Travolta’s and
Tom Cruise’s face). When modeling social dimensions,
researchers do not possess images that accurately represent the
two target categories. Instead, those images are exactly what
researchers set out to discover. Second, participants discrimi-
nated between two specific categories, making it impossible
to tap into the internal representation of just one category with-
out contrasting it with another category. The 2IFC variant does
not suffer from these problems, because participants select the
image that best fits one target category and the images can be
created using a base face unrelated to the target category.

Here, we use the 2IFC RC image classification task to model
perception of face trustworthiness and dominance. Importantly,
the 2IFC task enables us to go beyond the results of Oosterhof
and Todorov (2008) in two ways. First, the base image of sti-
mulus faces can include hair and the superimposed noise
affects shape as well as reflectance information. Second, with
the 2IFC task we can identify facial regions diagnostic for
social perception. Arguably, this might be achieved using yet
another RC technique, bubbles (Gosselin & Schyns, 2001), in

Figure 1. Base face (A), random noise example (B), and example stimuli of noise superimposed on a single base image (C). The left stimulus
shows the base image with original noise superimposed and the right stimulus shows the base image with the negative noise superimposed.
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untrustworthy); and (3) CIs for a trait on one dimension (e.g.,
trustworthiness) are unrelated (weakly correlated) to
CIs pertaining to another dimension (e.g., dominance). Note
however that the correlations with unrelated dimensions are
nonzero, indicating that trustworthiness and dominance,
although unique dimensions, are not completely orthogonal.

Subjective Metrics

As subjective metric, an independent sample of 38 Princeton
University undergraduate students were asked to rate the
trustworthy, untrustworthy, dominant, and submissive CIs (one
aggregate CI per trait) on trustworthiness, dominance, and
threat, on a scale from 1 (not trustworthy [dominant,

threatening]) to 9 (very trustworthy [dominant, threatening]).
Participants rated the stimuli in random order within blocks
(one type of judgment per block). The blocks had a fixed order,
respectively, trustworthiness, dominance, and threat. We added
threat because previous work by Oosterhof and Todorov (2008)
showed that threat is a combination of untrustworthiness and
dominance. Because both dimensions contribute to threat, we
expected the untrustworthy and dominant CIs to be rated
equally high on threat, and the trustworthy and submissive CIs
to be rated equally low on threat. Beforehand, to prevent that
participants would be unfamiliar with the faces when judging

Figure 3. Resulting classification images ([CIs] top row, the average of all noise patterns selected as best resembling the target trait, super-
imposed on the base image) and anti-CIs (bottom row, the average of all noise patterns not selected as best resembling the target trait,
superimposed on the base image).

Table 1. Participants’ Agreement Measures for Each Social Judgment
Quantified as Cronbach’s a Computed Over Subjects’ CI Noise
Pattern Pixel Luminance Values

CI Cronbach’s a

Trustworthy .56
Untrustworthy .65
Dominant .76
Submissive .58

Table 2. Objective Metric of Similarity Between the Various Visua-
lized Traits Quantified as Correlations Between the Aggregated CI
Noise Patterns Pixel Values by Trait

1 2 3 4

1. Trustworthy
2. Untrustworthy !.65
3. Dominant !.27 .50
4. Submissive .23 !.41 !.70
5. Antifacea .66 .67 .71 .71

aThe antiface is the CI based on the unselected faces in the reverse correlation
task for the trait on the other end of the same dimension (e.g., the trustworthy
face is correlated with the anti-untrustworthy face).
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faces. Sampling error could have constrained face representa-
tion in ways that affect the final models. Second, stimulus faces
generated using the face space did not have hair, an important
feature affecting person perception (e.g., Macrae & Martin,
2007). Third, only shape information was used to construct the
models, although reflectance information (pigmentation and
texture) might play an important role in social perception
(Todorov & Oosterhof, 2011). Last, although Oosterhof and
Todorov included visualizations of the constructed social
dimensions, they did not report quantitative analyses with
respect to diagnostic face regions.

Here, we use a different class of RC techniques aimed at
extending the findings of Oosterhof and Todorov (2008) by
assessing whether their findings are method invariant and
by quantitatively identifying which specific facial regions are
involved in social perception. This class of RC techniques was
developed in parallel by Kontsevich and Tyler (2004) and
Mangini and Biederman (2004, also see Gosselin & Schyns,
2003). This technique enables researchers to generate images
that reflect participants’ internal representations of faces, with-
out making any assumption about what those representations
might look like. Recently, this RC variant has become increas-
ingly popular in social cognitive research (see, e.g., Dotsch,
Wigboldus, Langner, & van Knippenberg, 2008; Dotsch, Wig-
boldus, & van Knippenberg, 2011; Imhoff, Dotsch, Bianchi,
Banse, & Wigboldus, in press; Jack, Caldara, & Schyns,
2011; Karremans, Dotsch, & Corneille, in press).

A typical RC image classification task (in this example we
discuss a two images forced choice, or 2IFC, variant used by
Dotsch et al., 2008) employs random variations of facial
images created with a constant base face (Figure 1A) and
randomly generated noise patterns (Figure 1B) superimposed
on the face. Because the noise distorts the base face image, the
face looks different with each different random noise pattern.
For each superimposed random noise pattern, a negative pat-
tern (the mathematical opposite) is generated. Each pixel that
is dark in the original noise pattern is bright in the negative
noise pattern, much like photo negatives. In a single trial, the
base image with the original noise and the base image with
the negative noise superimposed are presented side by side
(Figure 1C). Participants are then asked to select the face that
best resembles the target category. The average of all selected
noise patterns constitutes the classification image (CI), whereas

the average of all unselected noise patterns is the anti-CI. For
instance, Dotsch, Wigboldus, Langner, and van Knippenberg
(2008) used a neutral male face as base face, and superimposed
random noise consisting of multiple truncated sinusoids. These
were then used as stimuli in a Moroccan classification task:
participants chose from two stimuli (Figure 1C) the stimulus
that best resembled a Moroccan face. The average of all noise
patterns that participants classified as Moroccan constituted the
Moroccan CI. Superimposing this CI on top of the original base
image resulted in approximations of what participants thought
typical Moroccan faces looked like.

The 2IFC task described above is based on the psychophy-
sical RC methodology described by Mangini and Biederman
(2004), where one image was presented in each trial and parti-
cipants classified the image into one of two categories. In this
case, CIs for each category are calculated by averaging all
images classified as the respective category. Mangini and Bie-
derman demonstrated that this technique can be used to model
identities (John Travolta vs. Tom Cruise), gender categories
(male vs. female), and emotional expressions (happy vs. sad).
However, the extent to which this task can be applied to mod-
eling social perception is somewhat limited. First, the task used
as base face a morph between two images that accurately rep-
resented the two target categories (e.g., John Travolta’s and
Tom Cruise’s face). When modeling social dimensions,
researchers do not possess images that accurately represent the
two target categories. Instead, those images are exactly what
researchers set out to discover. Second, participants discrimi-
nated between two specific categories, making it impossible
to tap into the internal representation of just one category with-
out contrasting it with another category. The 2IFC variant does
not suffer from these problems, because participants select the
image that best fits one target category and the images can be
created using a base face unrelated to the target category.

Here, we use the 2IFC RC image classification task to model
perception of face trustworthiness and dominance. Importantly,
the 2IFC task enables us to go beyond the results of Oosterhof
and Todorov (2008) in two ways. First, the base image of sti-
mulus faces can include hair and the superimposed noise
affects shape as well as reflectance information. Second, with
the 2IFC task we can identify facial regions diagnostic for
social perception. Arguably, this might be achieved using yet
another RC technique, bubbles (Gosselin & Schyns, 2001), in

Figure 1. Base face (A), random noise example (B), and example stimuli of noise superimposed on a single base image (C). The left stimulus
shows the base image with original noise superimposed and the right stimulus shows the base image with the negative noise superimposed.

Dotsch and Todorov 563

 at PRINCETON UNIV LIBRARY on November 5, 2012spp.sagepub.comDownloaded from 

Reverse correlating social faces reveals internal templates 
(Dotsh & Todorov, Social Psychological and Personality Science 2012)

“neutral” noise

+	
Reverse-correlation 	

Mental representations of social faces 
(in the US)



Cultural differences of emotions

Figure 1. Illustration of the reverse correlation (RC) technique used to estimate observer-specific internal repre-
sentations. Design: Stimulus generation and task. On each trial, we added to a neutral face a white noise. Naı̈ve
observers categorized each stimulus according to the six basic facial expressions of emotion (i.e., happy, surprise, fear,
disgust, anger, and sad), plus a “don’t know” response. Analysis: Reconstruction of cultural internal representations.
For each observer and facial expression separately, we averaged the set of noise templates associated with the
observer’s categorization responses (e.g., sad color-coded in red and anger color-coded in green) to reconstruct their
internal representation. Averaged noise templates are outlined in black and illustrated for two expressions: sad for
Western Caucasian (WC) observer CLM and East Asian (EA) observer FF and anger for WC observer AG and EA
observer SW. Results: Cultural internal representations. Each row represents the cultural internal representations of
the six basic facial expressions of emotion (i.e., happy, surprise, fear, disgust, anger, and sad) estimated using RC.
Each internal representation is selected from a different observer (i.e., labeled in capital letters for WC observers and
EA observers) and is presented to illustrate the effectiveness of the RC technique.
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Reverse-correlation in audition



Historically: with low-level stimuli

•  Both in auditory and visual domains to explore low-
level mechanisms using (very) basic stimuli (since the 
seminal work of Ahumada et al. in the 70’s)

•  Various examples can be shown, ranging from linear to 
second-order nonlinear analyses

•  Models can be used to simulate human behavior, 
serving as a basis for comparing groups’ / observers’ 
processing differences



Pure Tone Detection Task
Biol Cybern (2012) 106:465–482 467

Fig. 1 Stimulus design for the
two-tone experiments (see
Sect. 3.1 for more details).
Rayleigh distributed noise (b, e)
is added to a target signal (a)
containing a temporally
localized low-frequency sound,
as well as to a non-target signal
(d) containing a high frequency
sound. The resulting probes are
shown in (c, f). Observers heard
both probes on each trial in
random order, and were asked to
select the interval containing the
target probe (2AFC protocol).
Reverse correlation was applied
to the noise probes in order to
retrieve spectrotemporal
perceptual filters (PF); see
Fig. 3a for an example and
Sect. 2.2 for details on how PFs
are computed. The trace
immediately above panel a
shows the actual sound pressure
waveform that corresponds to
the spectrogram in (a), while the
trace above it magnifies only the
section of waveform
corresponding to the time
window spanned by the target
signal (indicated by orange
dashed lines). The same
conventions are used for the
remaining panels in this figure

Time (ms)

F
re

qu
en

cy
 (

H
z)

A

Target

0 100 200

2K

4K

6K

8K

120 140 160

S
ou

nd
 p

re
ss

ur
e

B

Noise

C

Target probe

D

Non−target

E

Noise

F

Non−target probe

+

+

=

=

percentage of correct responses should be at chance if the
output of the system is the same for target and non-target),
limx→−∞ !(x) = 0, limx→∞ !(x) = 1, and ! is monoton-
ically increasing (Falmagne 1985). We can therefore model
the human observer using the following equation:

pi = ![H(s[1]
i ) − H(s[0]

i )] (1)

The above decisional rule, based on the difference
between r [1]

i and r [0]
i , is the most reasonable approximation to

the way human observers are regarded to operate in a 2AFC
task (Green and Swets 1966; Pelli 1985), however, it is not
in general an optimal rule.

2.2 Linear observer models

We start by assuming the simplest possible form for H, i.e.,
a linear operator with kernel h:

r [q]
i = ⟨h, s[q]

i ⟩ (2)

where ⟨., .⟩ is inner product (⟨a, b⟩ = ∑
j a( j)b( j)). The

most established model in the psychoacoustics literature,
the envelope-weighted average of instantaneous frequency
(EWAIF) model (Feth 1974), can be subsumed under Eq. 2.
In order to make this link, we first note that the EWAIF model
is equivalent to the intensity-weighted average of instanta-
neous frequency (IWAIF) model (Anantharaman et al. 1993);
the latter operates on the power spectrum of the incoming
sound and consists of a centroid estimation over frequency
(Anantharaman et al. 1993). If we denote the power spectrum
as s, the response of the IWAIF model can be written as:

r = ⟨s, x⟩
⟨s, 1⟩ (3)

where x is the vector specifying the frequencies at which the
spectrum is sampled. This expression differs from Eq. 2 only
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Fig. 7 Simulated PFs for IWAIF (a–d), MAX (e–h), and Hammerstein
(i–l) models. These were obtained by challenging the IWAIF model (see
Sect. 2.2) and the two models in Fig. 6 (see Sect. 2.3) with stimuli like
those used with the human observers and by applying the same data
analysis. First column shows PFs obtained from all noise fields, second

column shows target PFs, third column non-target PFs, fourth column
marginal averages collapsed across time (red for target PFs, green for
non-target PFs). Plotting conventions similar to Fig. 3 except Z scores
were calculated using SD across simulations instead of SEM (this dis-
tinction is indicated by Z∗)

frequencies (see Fig. 6). The weighting function reflects the
aggregate non-target PF (Fig. 3c). Finally, the largest of the
weighted responses is selected via a MAX operation (green
diagram in Fig. 6) and this value is used to decide which of
the presented stimuli contained the target signal (see Sect. 2).
As shown in Fig. 7e–g, this simple model is able to replicate
the structure of the empirical PFs (Fig. 3).

4.3 Hammerstein model

The third model we consider is the Hammerstein model, sum-
marized by the bottom diagram in Fig. 6. This model is argu-
ably simpler than the MAX model and easier to implement in

neural hardware (Hunter and Korenberg 1986; Neri 2010b).
Like the MAX model detailed earlier, it operates by apply-
ing a fine-scale filter (Fig. 6d) followed by a spectrotemporal
weighting function (Fig. 6e). However, the late MAX nonlin-
ear stage is now replaced by an early expansive nonlinearity
(akin to a spike threshold (Priebe and Ferster 2008) applied
to the stimulus before the fine-scale filter (orange diagram
in Fig. 6. Please refer to Sect. 2.3 for the relevant equations).
As shown in Fig. 7i–k, this model is also able to replicate
various aspects of the empirical PFs. More specifically, the
target PF generated by this model presents a sharp peak at
target location (Fig. 7j), while the non-target PF does not
(Fig. 7k). However, we can rule out the Hammerstein model

123

Biol Cybern (2012) 106:465–482 473

Time (ms)

F
re

qu
en

cy
 (

H
z)

A
2080

2K
5.5K

All

B

Target

13−13 Z

C

Non−target

Time (ms)

F
re

qu
en

cy
 (

H
z)

D
2080

2K
5.5K

All

E

Target

7−7 Z

F

Non−target

Fig. 4 Aggregate PFs from all noise fields (first column), target noise fields (second column) and non-target noise fields (third column) in the one-
tone experiments. Top row (a–c) refers to low-pitch (2K Hz) target tone, bottom row (d–f) to high-pitch (5.5K Hz) target tone. Plotting conventions
like in Fig. 3

3.3 Assessment of filter structure using scalar metrics

So far, our assessment of filter structure in Fig. 3 has been of
a qualitative nature based on visual inspection of aggregate
data. It is critically important to draw quantitative conclu-
sions based on individual observer analysis (Neri and Levi
2008; Neri 2010b). Because we found a significant degree
of variability across observers, it is difficult to draw con-
clusions from simply inspecting individual PFs. We there-
fore performed additional analyses that captured the relevant
aspects of PF structure, and quantified each aspect using a
single value (scalar metrics) for each PF (before applying a
given metric to the PF, we normalized each PF to unit root-
mean-square; we applied normalization to make estimates
comparable across observers). This made it then possible to
perform simple population statistics in the form of two-tailed
t tests, and confirm or reject specific hypotheses about the
overall shape of the PFs. Our conclusions are therefore based

on individual observer data, not on the aggregate observer.
This distinction is important because there is no generally
accepted procedure for generating an average PF from indi-
vidual images for different observers (see Neri and Levi 2008
for a detailed discussion of this issue).

Previous studies (Ahumada and Lovell 1971; Shub and
Richards 2009) have relied on qualitative inspection of the
PFs; this approach is inadequate to draw robust conclusions,
in fact we have shown in previous work that effects observed
via qualitative inspection of the PFs may not survive quan-
titative inspection using metric analysis (Paltoglou and Neri
2012). In the study by Shub and Richards (2009), the option
of probing the dataset at the level of individual observer struc-
ture by performing the kind of in-depth metric analysis used
here was not available due to the limited amount of data col-
lected: two participants per condition, as opposed to eight
in our study. We performed two-tailed t tests across eight
observers for data relating to the two-tone experiments (the
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Fig. 6 MAX and Hammerstein models. In the MAX model (top), the
input stimulus (a) is initially convolved with a fine-scale filter (b) that
resembles spectrotemporal receptive fields from auditory neurons. The
output of the 2D convolution is weighted by a smooth filter (c) that
emphasizes the top subregion of spectrotemporal space; this operation
is implemented by Hadamard (i.e., pixelwise) product (◦). A MAX
operation (green) is then applied to the resulting matrix to generate a
scalar decision variable. The Hammerstein model (bottom) has a simi-

lar structure, except the late nonlinear MAX operation is removed (and
replaced by simple sum so that the Hadamard product is turned into
inner product •), and an early nonlinear operation (orange) is applied
to the stimulus before convolution with the fine-scale filter (d). The
specific choice of convolution filters (b, d) and weighting functions (c,
e) shown here generated the simulation results in Fig. 7. Please refer to
Sect. 2.3 for more details on these two models and Sect. 4 for details on
their implementation

involved remapping the audio trace from the headphones into
a spectrogram. For each model, we selected SNR values cor-
responding to model performance ∼75 % to match average
human performance, and challenged the model with the same
stimuli used with human observers. On each trial, the model
generated a correct/incorrect response just like the human
observers, allowing us to apply the same analysis for PF
derivation. We performed extensive simulations using both
Max and Hammerstein models for a wide range of f, w, and
φ choices. The specific choices shown in Fig. 6 and their cor-
responding simulations in Fig. 7 offer representative exam-
ples of the best results we could obtain from both models
in terms of approximating the structure we measured from
human data, but our conclusions are in no way dependent
upon those choices. The reader should be able to replicate
our results and confirm our conclusions for a wide range of
model parameters.

4.1 EWAIF/IWAIF model

We have implemented the EWAIF model in the form of
the IWAIF model. These two models are essentially iden-
tical (Anantharaman et al. 1993), but the IWAIF formula-
tion presents the following advantages: (1) it is easier to
implement in software (Anantharaman et al. 1993); (2) in
the context of our experiments and theoretical treatment, it

transparently translates into the linear model discussed in
Sect. 2.2 (Murray et al. 2005; Neri 2010c). For an input stim-
ulus s, the latter model simply involves inner product with
a weighting function h, ⟨h, s⟩, followed by a decisional rule
(see Sect. 2). This model is the most commonly assumed in
the interpretation of PF structure (Murray 2011) so its pre-
dictions are well-known: both target and non-target PFs are
expected to resemble h (Ahumada 2002; Neri 2010c; Murray
2011), as already discussed in Sect. 2.2. We have simulated
the IWAIF for our experiments and have confirmed that this
model predicts no difference between target and non-target
PFs (Fig. 7b, c and marginal traces in d), contrary to our
empirical observations (Fig. 3b, c).

4.2 MAX model

The second model we consider is the MAX uncertainty model
(Pelli 1985; Neri 2010b) summarized by the top diagram in
Fig. 6. As detailed in Sect. 2.3, this model can be approxi-
mated by a Korenberg cascade (Neri 2010b) and operates by
applying a fine-scale filter (Fig. 6b) to the spectrogram of the
stimulus (Fig. 6a); the fine-scale filter is meant to reflect the
properties of single cortical neurons (Bitterman et al. 2008;
deCharms et al. 1998). The output from this bank of front-end
filters is then weighted across time and frequency (Fig.6c)
so that more weight is placed on later responses and lower
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Joosten, E.R. M., & Neri, P., Biological Cybernetics (2012)



•  Only a few very recent studies in the auditory domain
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Vowel Mental Representations

This study adapted the reverse-correlation method from neurophysiology but
used a noise stimulus to investigate the perceptual phenomenon of vowel identity.
Reverse correlation has been used previously in an auditory behavioral study (Shub
and Richards, 2009); unlike that study, however, listeners in the current experiment
were not provided with actual signals embedded in the noise. The stimuli used were
white noise on long-term average, but their instantaneous spectral content varied in a
controlled manner. Listeners were asked to respond with a key press when they per-
ceived a particular vowel in the noise (either [a] or [i:]). The average of the stimulus
spectra immediately prior to each key press is taken as the measure of a listener’s inter-
nal vowel representation.

2. Methods
Using inverse Fourier transforms, we generated 120-s noise stimuli that changed ran-
domly in their frequency content every 0.5 s (each stimulus, containing 240 “frames,”
is referred to as a “block”). For each frame, the spectrum was divided into 60 logarith-
mically spaced bins from 0.1 to 22 kHz. The levels in each bin were assigned one of six
values (0, !4, !8, !12, !16, !20 dB) [Fig. 1(a)]. The level values applied to the
frequency bins in each of the 240 frames were assigned in a pseudorandom shuffling
process to ensure that over the course of the whole stimulus all the frequency bins con-
tained the same total energy, i.e., all bins had 40 repetitions of each of the 6 levels.
This process created a noise whose long term average was perfectly uniform, but whose
spectrum at any given instant was shaped in a defined manner [Fig. 1(b)]. Each full
signal was presented to listeners over headphones (ES55, Audio Technica, Tokyo
Japan) at a comfortable listening level ["75 dB SPL (sound pressure level)].

Listeners were university students with self-reported normal hearing, ranging in
age from 18 to 24 years old, and were all Scottish native speakers of English. Data were
collected from a total of 18 listeners (10 male and 8 female). Each listener completed
one hour of listening consisting of 30 blocks, each block consisting of a newly generated
120-s random noise. For 15 of the blocks, listeners were asked to press a key whenever
they heard the vowel [a], but in the other 15 blocks they were asked to respond when
they heard the vowel [i:]. These two vowels were chosen because they are spectrally dis-
similar from one another, having a peak and a trough, respectively, at around 1000 Hz.

Listeners received no training in the task, but were familiarized with the stimu-
lus in the instructions they received. They were told they would hear a rushing sound
and were asked to respond as quickly as they could whenever they heard the vowel in
the stimulus. These instructions were given verbally by one of the authors (a Scottish

Fig. 1. (a) Amplitude spectrum for a given 0.5-s frame, showing the spectrum divided into 60 logarithmically
spaced bins from 0.1 to 22 kHz. The individual bins were each randomly assigned one of six levels from !20 to
0 dB. (b) Schematic spectrogram of an example 120-s noise stimulus, created by combining 240 sequential
frames of 0.5-s each. The final stimuli were continuous noises whose frequency content changed every 0.5 s but
whose long-term spectra were uniform.
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female) and were accompanied by onscreen text reminders of which vowel they were
listening for on a given block. The stimulus properties and the times of each key press
were recorded in MATLAB (Mathworks, Natick MA) and stored for subsequent anal-
ysis. Frequency/time spectrograms of the stimulus (dB values in 60 frequency bins and
300 time bins) in the 3.0 s window immediately prior to each key press were computed
and summed for each block. These were then summed over all 15 blocks for each
vowel, and then normalized to span a range from 0.0 to 1.0.

3. Results
A spectrogram of the reverse-correlated [a] vowel is shown in the Fig. 2(a), which we
will refer to as a “vowel primitive.” This figure represents data averaged from all [a]
responses from all 18 listeners, each responding on average 384 [6 43.0 SEM (standard
error of the mean)] times. The brightest region of the vowel primitive indicates that
energy around 1 kHz was often found roughly 0.5 s prior to a response. But there was
rarely energy found at this frequency 1 s prior to a response, suggesting that listeners
were most likely to respond after a sudden increase in signal level at 1 kHz. The time
bins from !1.5 to !3.0 s contained no discernible features, indicating that signals more
than 1.5 s prior had no impact on the likelihood of response. Figure 2(b) plots the av-
erage spectrum across 0.4 to 0.1 s prior to each response as a solid black line. There
are two distinct peaks in energy, one at 1030 Hz and a second at 1370 Hz. The dotted
gray line shows the spectrum of a synthetic vowel [a] created with a Klatt synthesizer

Fig. 2. (a) This [a] vowel primitive represents the mean reverse-correlated vowel spectrogram for n¼ 18 listen-
ers. (b) The mean spectrum between 0.4 and 0.1 s prior to response (solid line) and the spectrum of a Klatt syn-
thesized vowel (dotted line). The black arrows indicate the first three formant frequencies for male whispered [a]
vowels. (c) The [i:] vowel primitive spectrogram. (d) The mean [i:] vowel spectrum (solid line), Klatt spectrum
(dotted line), and whispered vowel formant frequencies (black arrows).

Brimijoin et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4778264] Published Online 17 January 2013
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[a] / [i:] ? Press a key

Brimijoin, W. O. et al., JASA, 2013



 “Bubbles” for speech intelligibility 
•  Speech embedded in noise containing wholes reveals the « minimal 

window » for intelligibity in the spectro-temporal structure

Mandel, M., et al,  JASA, 2016

Venezia, J. H., et al.,  JASA., 2016

•  Speech filtered in its modulation power spectrum (MPS)

group correctly identified more than half of keywords on
50.7% of trials (SD¼ 0.9%). The mean number of bubbles
for the UC group was 53.7 (SD¼ 8.5), and the mean number
of bubbles for the 2" group was 90.7 (SD¼ 11.0). These
data indicate that the up-down tracking procedure generally
converged on the target performance criterion. The distribu-
tion of responses (0–5 keywords correctly identified) is
shown in Fig. 5 for each group. Both groups identified either
zero or five keywords correctly in a large proportion of trials,
with the remainder of responses distributed rather evenly
across 1–4 keywords correct. The UC group on average had
a larger number of trials with zero or five keywords correct.

2. Classification images

Representative CImgs (unthresholded) from four partici-
pants in the UC and 2" groups are displayed in Figs. 6
and 7, respectively. These CImgs are plotted in the space of
the upper right quadrant of the MPS, with the x axis reflect-
ing temporal modulation rate in Hz and the y axis reflecting
spectral modulation rate in cyc/kHz. The right quadrant
of the MPS reflects downward-sweeping spectrotemporal
ripple components, while the left quadrant reflects upward-
sweeping components. Because the stimuli were filtered
symmetrically in the left and right quadrants, the classifica-
tion results are essentially averaged over both quadrants.
Large positive values in the CImg occur at pixels for which
modulation energy tended to be removed on trials with poor
performance (no or few keywords identified) and preserved
on trials with good performance (many or all keywords
identified). Thus, pixels with large positive values mark the
spectrotemporal modulations that contribute most to speech
intelligibility. The opposite interpretation can be given to
pixels with large negative values, namely, that modulation
energy at such pixels hinders intelligibility, although signif-
icant negative-valued pixels were never observed. Also,
significant positive values were only observed within a
restricted range of spectrotemporal modulations (<20 Hz
and <3 cyc/kHz). Therefore, CImgs are plotted over a sub-
space of the MPS ranging from 0 to 25 Hz on the temporal
modulation axis and 0–5 cyc/kHz on the spectral modula-
tion axis.

A cursory examination of Figs. 6 and 7 reveals some
general features of the measured CImgs. The CImgs consis-
tently display a single “hot spot” near the origin correspond-
ing to combinations of low spectral (<3 cyc/kHz) and low
temporal (<20 Hz) modulation rates. This region of the MPS
has been identified previously as contributing significantly to
intelligibility (Elliott and Theunissen, 2009). However, the
current classification technique provides a high-resolution
depiction of relative contributions to intelligibility within the
“hot spot,” as evidenced by the consistent “bull’s-eye” shape

FIG. 5. Distribution of responses in the UC (grey bars) and 2" (white bars)
groups. Responses are binned by number of keywords correctly identified
(i.e., performance; x axis). Height of bars gives the average number of trials
for which a given level of performance was achieved. Error bars reflect 1
SEM.

FIG. 6. (Color online) Individual participant CImgs for the UC group.
Colormap reflects the normalized magnitude (z-score) of the CImg, where
larger z-scores indicate a greater contribution to intelligibility. Temporal
modulation rate (Hz) is plotted along the x axis and spectral modulation rate
(cyc/kHz) is plotted along the y axis. Individual CImgs are labeled with par-
ticipant codes.

FIG. 7. (Color online) Individual participant CImgs for the 2" group.
Colormap reflects the normalized magnitude (z-score) of the CImg, where
larger z-scores indicate a greater contribution to intelligibility. Temporal
modulation rate (Hz) is plotted along the x axis and spectral modulation rate
(cyc/kHz) is plotted along the y-axis. Individual CImgs are labeled with par-
ticipant codes.
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Figure 6 shows time-frequency importance functions
(described in Sec. II B 1) of the word /AdA/ computed for each
of the five listeners using the same exp. 2 mixtures used to
construct Fig. 5. The sixth TFIF is derived from the consensus
intelligibility results. In this consensus, a mixture was consid-
ered to be intelligible if all five listeners correctly identified it
and was considered unintelligible if at least two listeners
could not correctly identify it. Mixtures that were correctly
identified by all but one listener were ignored for the purposes
of the consensus analysis. This grouping of “votes” resulted
in approximately equal numbers of mixtures categorized as
intelligible and unintelligible. These plots show that the TFIFs
derived from the responses of each listener are quite similar.

Table II shows the percentage of mixtures correctly
identified for each clean utterance in exp. 2. Note that many
of these percentages are above the target value of 50%. As
discussed in Sec. II B 2, the effect of this is to reduce the
number of mixtures per utterance that can be utilized in
some of the analyses. There is some variation in intelligibil-
ity across different listeners, especially listener 1, which
might explain some of the inter-subject differences identified
by Cohen’s j and shown in Table I.

C. Experiment 3: Assessing importance

The importance assessment of exps. 3a and 3b employed
more clean utterances (six productions of each word) and
presented each mixture to only a single listener. Table III
shows the percentage of mixtures correctly identified for
each clean utterance, averaged across subjects. Note that, as
in Table II, many of these percentages are above the target
value of 50%. Note also that there is a large degree of varia-
tion in intelligibility across different utterances, and across
talkers. Talker W2 appears to be less intelligible than the
others at this particular number of bubbles per second.

1. Correlational analysis

Figure 7 shows the time-frequency importance functions
for all of the utterances used in exps. 3a and 3b. Each impor-
tance function was derived from 200 mixtures involving
each word (4 listeners! 50 mixtures each). Of these 36
TFIFs, 18 were derived from the same-talker utterances in
exps. 3a and 18 from the different-talker utterances in exp.
3b. Each row shows a different word and each column a dif-
ferent utterance. The spectrogram of the original utterance is
shown in color, with the importance represented as the level
of the “value” in the hue-saturation-value color model, i.e.,
the colors are darkened in unimportant regions.

2. Predictive analysis

The first analysis involved a baseline in which the
machine-learning classifiers were trained and tested on the
same utterance (a given production of a given word by a
given talker) and had to generalize to only new bubble-noise
mixtures. Table IV shows the accuracy of the classifiers
when trained and tested on mixtures from exp. 3 involving
the same clean speech utterance, using fivefold cross-
validation. The classifiers were trained on 80% of the mix-
tures and tested on the remaining 20%, with the training and
testing divisions rotated through the five possibilities and the
accuracies averaged. Approximately half of the accuracies
for individual mixtures in Table IV are significantly above
chance levels of 50% at a 0.05 level according to a one-sided
binomial test. The averages across talkers, however, are sig-
nificantly above chance for each word according to the same
test. This analysis shows the accuracy that classifiers can
achieve when required to generalize only across noise
instances and not across speech utterances.

Table V shows the cross-utterance classification accu-
racy of the classifiers. In contrast to Table IV, the accuracy
of these classifiers is measured when predicting the intelligi-
bility of novel mixtures that include both noise instances and

TABLE I. Cohen’s j (as a percentage) measuring consistency between pairs

of subjects (subj.) on responses (six-way) on the 1200 mixtures from exp. 2.
These results again show a large amount of agreement between subjects,
especially among subjects 2–5, with subject 1 only showing moderate agree-

ment with the others.

Subj. 1 2 3 4 5

1 46.3 52.6 50.9 51.1

2 46.3 58.3 56.1 56.8

3 52.6 58.3 64.0 68.8

4 50.9 56.1 64.0 61.2

5 51.1 56.8 68.8 61.2

FIG. 6. (Color online) Time-frequency importance functions [as in Fig. 3(d)] of /AdA/ computed for five different listeners, each hearing the same mixtures in
exp. 2, and computed from the consensus intelligibility estimate.

TABLE II. Percent of mixtures correctly identified by listeners in exp. 2—

inter-subject consistency.

Subject /AtSA/ /AdZA/ /AdA/ /AtA/ /AfA/ /AvA/ Avg.

1 49.5 54.0 67.5 62.5 64.5 65.0 60.5

2 67.0 66.0 59.5 65.0 65.5 69.0 65.3

3 79.5 70.5 79.5 79.5 84.5 74.5 78.0

4 68.5 65.5 65.0 77.5 77.0 71.5 70.8

5 72.0 65.5 64.5 75.0 90.5 83.0 75.1

Consensus 67.3 64.3 67.2 71.9 76.4 72.6 69.9
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Using reverse-correlation to uncover social 
inferences from speech?



Itinéraire d'un enfant gâté (Claude Lelouch, 1988)



•  It is particularly challenging to access mental representations, as one 
needs to design experimental paradigms and stimuli that cover the 
whole range of representations human observers might be exposed to. 

Uncovering social inferences from speech?

Which cues?

a dominant, trustworthy and sad person



C.L.E.E.S.E. �
Combinatorial Expressive Speech Engine 

•  A Matlab toolbox (open-access: cream.ircam.fr) that allows dynamic 
transformations of human voices on 5 dimensions 

•  The main perceptual space is manipulated directly; real-time dynamic, 
parametric, fluctuations in pitch, loudness, timbre, speed, and spectral 
envelope (i.e. prosody).

•  It allows us to generate an infinite number of natural-sounding, 
expressive variations around any speech recording

neutral
+noise

trustworthy
happy

dominant
attrative

rich
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How pitch dynamically drives social 
judgments in speech �



Research Questions & Experiments
•  What is the internal pitch contour of a stereotypical dominant / 

trustworthy voice?
•  Are male and female temporal dynamics of processing similar?

! Psychophysical experiments to study social first-impressions on 
the word ‘bonjour’ (hello) using both a male and a female voice
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Pitch contour prototypes in judgments of social 
dominance and trustworthiness 
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dominant

anti-dominant

anti-trustworthy

trustworthy

flattened

Mental pitch prototypes of dominance/trustworthiness



Generalization of these prototypes?
•  Stimuli: 20 two-syllable utterances (10 ‘bonjour’ and 10 novel 

words; from different male and female speakers)
•  Thousands of different intonations of these words were 

randomly presented to novel observers, including pitch 
contour modifications using the (anti-)prototypes from Exp. 1

! Straightforward evaluation task on a Likert scale
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 – “How much dominant this voice is?”
– “How much trustworthy this voice is?”
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Discussion
•  We show how pitch contour dynamically drives dominance and 

trustworthiness in speech

•  Strikingly similar prototypes across both speaker and listener gender 
suggests that humans have developed a common cross-gender 
dynamic code to go beyond the dimorphic characteristic of the voice



Potential applications
•  A real-time vocal “social make-up” that could be the core of next 

audio algorithms in social signal processing 

•  Provide mechanistic accounts for people with auditory processing 
deficits à a step toward more targeted rehabilitation strategies. 

•  Socially-relevant signal-processing strategies for cochlear-implant 
devices 

•  Development of individually-shaped “speech therapies” for individuals 
suffering from dysprosody, such as depressive people, ASDs, 
schyzophrenian or in congenital amusia 



Rehabilitation of SM, an amygdala-
damaged patient

adjacent entorhinal cortex, yet spares all other subcortical and
cortical structures, leaving her with essentially normal basic percep-
tion, memory, language and reasoning insofar as these do not
involve the processing of emotional material7. However, her proces-
sing of emotionally and socially meaningful information is
impaired, as it is in nonhuman animals with amygdala damage.
For example, she does not show normal conditioned fear
responses8, and her social behaviour is indiscriminately trusting
and friendly9. Over more than a decade of testing, she has consist-
ently shown a severe and selective impairment in the ability to
recognize fear from facial expressions1,7, although she is able to
recognize fear from complex visual scenes and tone of voice. So far,
she remains the human subject with the most selective amygdala
damage and with the most selective impairment in fear recognition
from faces; however, no mechanism has yet been provided to link
these two conditions.

We began by exploring SM’s ability to make use of visual
information from specific regions of the face. SM and normal
control subjects were each shown approximately 3,000 trials of
sparsely revealed faces varying in gender and emotional expression
(fear or happiness)10,11. In each trial, random locations on one of the
face images were made visible with gaussian ‘bubbles’ in five one-
octave bands of spatial frequencies (see Supplementary Fig. 1), and
viewers were asked in a two-alternative discrimination task to judge
whether the revealed features expressed fear or happiness. We chose
to contrast these two expressions because SM differs most in her
ability to recognize them (entirely normal recognition of happiness,
severely impaired recognition of fear)1,7, and because they differ
most in terms of the facial features used for their identification12.
For each subject, recognition performance was kept constant at 75%
for each emotion by interactively adjusting the number of bubbles
during the task. This corresponded to an average of 16.5 bubbles
(s.d. ¼ 3.1, range ¼ 13–23.4) per image for the normal controls,
whereas SM required 30.8 bubbles per image. The number of
bubbles required to identify correctly a face as fearful or happy
was equivalent; the difference in number of bubbles (fearful faces
minus happy faces) was 20.03 bubbles for control subjects and
þ0.05 bubbles for SM.

Is SM’s requirement for more bubbles relative to control subjects
due to a decrease in her use of visual information over all facial
features, or can it be attributed to a failure in using information
from specific facial features? We performed a linear regression using
the location of the bubbles on the face images and the subject’s
discrimination accuracy on each trial to reveal the regions of the face
used to discriminate between fear and happiness. Whereas normal
subjects used information predominantly from the eyes in high
spatial frequencies (from 5.59–22.38 cycles per degree), SM failed to
make the same use of eye information (Fig. 1a, b). For the highest
spatial frequency band information from the eyes, SM’s mean
Z-score was equal to 0.59 s.d. below her global mean (that is, her
use of the eyes at high spatial frequency was worse than her mean
use of all face regions across all spatial frequencies), whereas the
Z-scores of control subjects ranged from 0.42 to 1.50 s.d. above the
mean (average ¼ þ0.79). Whereas every normal subject made use
of visual information from the eye region in the highest spatial
frequency band (P , 0.05), SM did not.

Moreover, SM did not use information in the face other than the
eyesmore effectively than control subjects when discriminating fear;
the difference image of the visual information used more by SM
than by control subjects does not reveal any such features (Fig. 1b).
Although SM failed to use information from the eyes in high spatial
frequencies in gaussian bubble trials showing either fearful or happy
faces, she did make normal use of the mouth region (Fig. 1c). This
finding probably explains her intact ability to recognize happiness,
and her equivalent performance at discriminating between fearful
and happy faces in the described task—because we offered her
only two options, her intact ability to use the smile to identify

happiness should result in successful identification of fear by
exclusion.
SM’s failure to use information about the eyes stood out as

abnormal in comparison with every one of the ten normal control
subjects we tested (Supplementary Figs 2 and 3). In order to
establish further the specificity of SM’s deficit, we performed the
same two-alternative discrimination task in 13 subjects with uni-
lateral amygdala damage and with normal fear recognition. All
made normal use of information from the eye region of the faces
(see Supplementary Fig. 4).
Although the large number of trials required precluded testing

SM’s ability to discriminate fear from all other basic emotions on
this particular task, such data have been obtained in a separate study
in normal individuals12. When asked to discriminate between each
of the six basic emotions (happiness, surprise, fear, anger, disgust
and sadness) and neutral expressions in a seven-alternative dis-
crimination task, normal subjects consistently and specifically make
the most use of high spatial frequency information from the eyes for
discriminating fear. It is interesting to note that discrimination of

Figure 1 SM fails to make use of visual information from the eyes in faces. a, Information
from faces used to discriminate fear from happiness in ten control subjects (left panel) or

SM (right panel). b, Difference images showing the facial information used more by
control subjects than by SM (left panel), or more by SM than by control subjects (right

panel). Unlike control subjects, SM does not use high spatial frequency information about

the eyes, nor does she use any information that the controls do not. c, Visual information
used in those trials in which fearful faces were shown (top row) or happy faces were

shown (bottom row). SM fails to make use of the eyes for either emotion, but is able to use

information about the mouth normally.
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two other emotions, sadness and anger, alsomakes substantial use of
the eye region, and that recognition of these two emotions, in
addition to fear, has been most consistently reported to be impaired
after amygdala damage in other patients3. The highly selective
impairment in fear recognition in SM’s case is probably attributable
to her ability to make compensatory use of information outside the
eye region for those other emotions; however, this strategy is
insufficient in the case of fear.
In a control task using identical stimuli and procedure to those

described above, subjects were asked to discriminate the gender of
the faces rather than their emotion. SM’s performance was normal
in all respects for this task: she required the same number of bubbles
(average number required by control subjects ¼ 46.5, s.d. ¼ 9.5;
number required by SM ¼ 39.5) and she used exactly the same
effective visual information (the difference image for control sub-
jects minus SMwas uniformly grey). Notably, both SM and controls

used high spatial frequency information from the eyes andmouth in
the gender discrimination task (see Supplementary Fig. 5), indicat-
ing that SM is indeed capable of using such information, although
she fails to do so spontaneously when judging emotion.

The discrimination task using the gaussian bubbles method
provided an unbiased and homogeneous sampling of all regions
of the face that might be important for fear recognition, but used
rather artificial stimuli that might be processed differently than
actual faces, and was restricted to comparisons between two
emotions (fear and happiness). We thus conducted a further
experiment to assess directly the importance of the eyes within
facial images and broaden the scope of our conclusions. Subjects
were shownwhole facial images expressing the six basic emotions, as
well as the same images with the eyes digitally erased, and we
assessed their accuracy in recognizing the emotion in each image.
Whereas control subjects were significantly less accurate at recog-

Figure 2 SM fails to fixate on the eyes when viewing facial expressions. a, Saccades (red
lines) and fixations (white circles, where circle size corresponds to fixation duration) made

by a typical normal control subject (left column) and SM (right column) when judging the

emotion shown in sample expressions (from top to bottom) of anger, sadness and three

fear faces. A lightly shaded box around the eyes is present in the top left image, showing

the region (defined a priori) used to calculate the proportion of fixations shown in b. b, The
proportion of fixations made by SM (white bars) and normal control subjects (NC, grey

bars, mean ^ s.e.m.) on the eye region of face images when judging different emotions,

calculated as the number of fixations to the eye region divided by the total number of

fixations made on the face. c, The proportion of fixations made specifically to facial
expressions of fear, under the five different viewing conditions detailed in the Methods,

shown in their order of presentation from left to right (Free ¼ passive viewing,

Emot ¼ emotion judging). SM’s proportion of fixations on the eyes is abnormally low for

all conditions.

letters to nature

NATURE |VOL 433 | 6 JANUARY 2005 | www.nature.com/nature70
© 2005 Nature Publishing Group 

 

nizing fear when the eyes had been erased (P , 0.005, paired t-test),
SM showed no change in her performance accuracy (0.33 in both
conditions). No control subject ever approached SM’s performance
in fear recognition for whole faces (lowest control performance of
0.67 accuracy) whereas three out of twelve control subjects were as
impaired as or worse than SM when the eyes had been erased.
Notably, this pattern extended to other emotions (see Supplemen-
tary Table 1), as the recognition accuracy of control subjects
dropped when the eyes were erased, but SM’s accuracy did not.
These findings confirmed that SM fails to make normal use of
information from the eye region of faces when judging facial
emotions.

The findings thus far raised the possibility that SM’s impairment
might result from a failure to direct her gaze to the eyes in the first
place. To test this idea, we monitored eye movements while subjects
viewed prototypical facial expressions of all basic emotions13,14

under five conditions: passive viewing (done twice), emotion
recognition (done twice) and gender recognition (done once).
Normal control subjects reliably explored the face, fixating mostly
on the eyes (Fig. 2a); this is a pattern observed in humans as young
as 7 weeks old15 as well as in nonhuman primates16. SM showed a
highly abnormal fixation pattern: she did not explore the face
normally, and systematically failed to fixate on the eye region.
This impairment was evident for fear as well as other emotions
(Fig. 2b). SM’s fixations on the eyes were fewer than those of any
normal control subject, and were significantly fewer than the
control group for all but one condition (the first emotion judge-
ment task ‘Emot 1’ in Fig. 2c, P , 0.2; all other conditions,
P , 0.05; two-tailed Z-tests).

A control task verified that SM’s abnormal fixations do not arise
from cueing particular locations during the experimental pro-
cedure. Specifically, the fixation cross that preceded each face
stimulus in the above experiments was located in the centre of the
screen, roughly coincident with the subsequent location of the nose

in each face. A further two blocks of trials presented the same faces,
but preceded by a fixation cross coincident with either the left
or right eye rather than the nose, and asked subjects to judge
the emotion. SM’s proportion of fixations to the eyes remained
abnormally low (0.24 for both trial blocks versus 0.49 and 0.48
respectively for the control subjects), and her fear recognition
remained impaired (0.33 and 0.17 correct for the two trial blocks
versus 0.81 and 0.79 for the control subjects).
We interpreted the above findings to mean that SM is impaired in

recognizing fear because she is unable to make use of diagnostic
information from the eye region that is normally essential for
recognizing fear, and that this inability is related to her lack of
spontaneous fixation on the eye region of faces. This interpretation
would predict that manipulating how she inspects faces might
influence her ability to recognize emotion. Accordingly, we re-
assessed her emotion recognition while instructing her specifically
to look at the eye region of faces. As instructed, SM looked at the
eyes in the facial expressions presented (Fig. 3). Her impaired
recognition of fear was completely reversed (that is, attained normal
levels) with this simple instruction. We verified this result on two
separate occasions, counterbalancing the order of the ‘instruction’
task and the previously described free viewing task (Fig. 3 and
Table 1).
However, a single instruction to direct her gaze onto the eye

region of facial images was insufficient to rehabilitate permanently
SM’s impaired fear recognition. When we subsequently showed her
the face stimuli under unconstrained viewing conditions, she failed
to fixate the eye region spontaneously and reverted to her previously
impaired fear recognition. Thus the impairment could be rescued
by instruction to fixate the eye region of faces, but the improvement
lasted only as long as the instruction remained explicit. This finding
opens the possibility for developing a strategy that could consist-
ently direct her gaze to the eye region of faces, perhaps with
additional instruction and training.
In over a decade of repeated testing, SM has not learned to

recognize fear in faces7, and does not appear to have improved her
defective social judgements9. This collection of impairments is
consistent with an inability to search automatically for environ-
mental clues whose presence signifies potential threat or danger.
Not only does the amygdala feed back to the visual cortex17,
modulating even relatively early visual information processing18,19,
but as the present study suggests it might also influence the visual
information that our eyes seek in the first place. This mechanism
could be a component of the amygdala’s role in the resolution
of ambiguity in facial expressions20 and the modulation of atten-
tion18,21,22. Thus, we believe that the impaired fear recognition
arising from damage to SM’s amygdala is not due to a basic
visuoperceptual inability to process information from the eyes,
but is instead a failure by the amygdala to direct her visual system
to seek out, fixate, pay attention to and make use of such infor-
mation to identify emotions. This interpretation entails a revision of

Table 1 Mean accuracies in emotion recognition for SM and control subjects

Emotion Controls SM (free) SM (eyes)
.............................................................................................................................................................................

Happiness 1.00 1.00 1.00
Surprise 0.96 1.00 1.00
Anger 0.82 0.88 0.82
Disgust 0.76 0.85 0.90
Sadness 1.00 0.96 1.00
Fear 0.84 0.46 0.83
.............................................................................................................................................................................

Subjects (SM and ten control subjects) were shown six different exemplars of each of six emotions
using face stimuli13 identical to those used in prior studies1, and were asked to identify the
appropriate emotion by pushing a button. The experiment was conducted twice with controls
and four times with SM: twice when she was allowed to look freely at the images (free), and twice
when instructed to fixate on the eyes (eyes). The only significant difference between SM and control
subjects is in her recognition of fear under the free viewing condition (Z ¼ 22.385, P , 0.01, one-
tailed t-test).

Figure 3 Instructed viewing of the eyes improves impaired fear recognition in SM.
a, When instructed to fixate on the eyes in facial expressions of fear, SM is able to do so.

b, Accuracy of emotion recognition (^s.e.m.) for ten control subjects (white) and SM.

Whereas SM’s recognition of fear is impaired when allowed to look at the stimuli freely

(SM free, black bars), her performance becomes normal relative to control subjects when

instructed to fixate on the eyes (SM eyes, grey bar, red arrow). The impairment is specific

to fear recognition (left panel showsmean recognition accuracy for all emotions other than

fear).
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Eye-tracking measures

Bubbles measures



Mental representations of smile in speech

anti-smile

neutral 

smile

trial

int. noise ~ 1.7 ext. noise à similar to basic sensory tasks! 
  (Neri, Psych. Bull. & Rev., 2010)

colab w/ Pablo Arias (IRCAM/CNRS)
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Human auditory processing has evolved to infer meaningful and 
relevant information from others’ voice through robust filters

à [voice transformation algorithms + reverse-correlation] 
           = an approach to uncover social auditory filtering 

Conclusions



Thank you for your attention �
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