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Abstract—Finding the polygon hull in a connected Euclidean
graph can be considered as the problem of finding the convex
hull with the exception that at any iteration a vertex can be
chosen only if it is connected to the vertex chosen at the previous
iteration. One of the methods that can be used for this kind of
problems is Jarvis’ algorithm which allows to find the convex
hull and which must be adapted because it does not take into
account the connections of the nodes. In this paper, we propose
a new algorithm that chooses for a current node and among its
neighbors in the graph the nearest polar angle node with respect
to the node found in the previous iteration. Its complexity is
O(gh2), where g is the maximum degree of the graph and h
the number of the nodes on the hull. For ease of presentation,
we first identify some specific graph-structures whose presence
may lead a basic version of the algorithm to fail, and we then
show how to modify that version to obtain a procedure of the
given complexity. Finally, we present some practical applications
that can be resolved using the proposed algorithm.

Index Terms—Connected Euclidean graph, Planar graph,
Boundary nodes, Polygon hull, Computational geometry, Shape
reconstruction.

I. INTRODUCTION

Many real life applications can be modelled as a connected
Euclidean graph, like Wireless Sensor Networks (WSNs),
pixels of an image, cities of a country, personal computers,
etc. Finding the polygon hull of this kind of graphs can help
to resolve real problematics like for example:
• Monitoring sensitive sites: [23] uses an algorithm detect-

ing faulty nodes during the monitoring process,
• Anomaly detection: [22] uses the polygon hull of the

copula of the data to separate the faulty data from the
correct ones,

• Region of interest localization: [24] uses an algorithm
based on detecting surface’s extremities,

• Shape recognition: [19] presents many applications in the
area of image processing,

• Medical and biological images: [37] uses a polygon hull
to calculate the number of red cells in a swear images,

and the work of [12] allows to remove the geometric
distortions between referenced and sensed images,

• Computer vision: in [25] many applications in visual
feature detection have been presented,

• Etc.

In this paper, we propose a new algorithm allowing to find
the boundary vertices of a connected Euclidean graph, where
we try to find a set of vertices allowing to represent the
geometric shape of the graph in the form of a polygon hull, i.e.,
a simple polygon formed by edges of the graph such that all
vertices of the graph are either on the polygon or surrounded
by it. More precisely, we are looking for a closed cycle of
minimum length in the graph such that all vertices are either on
or surrounded by that cycle. This problem can be formulated as
follows. We consider an undirected graph G = (V,E), where
V = {v0, v1, ..., vn−1} is the set of vertices of the graph and
E its set of edges. We assume that all the edges of G are
represented as straight lines. A Polygon Hull may be given by
a set of vertices BV and a set of edges BE as follows:

BV = {v0, v1, ..., vi−1, vi, vi+1, ..., vh} ⊆ V,

BE = {{v0, v1}, {v1, v2}, · · · , {vh−1, vh}} ⊆ E

such that,
a) v0 = vh (i.e., v0 is the same as vh),
b) the vertices in V \BV represent the set INT(BV ),
i.e., the set of vertices lying inside the cycle.

To solve this problem we propose an algorithm called Least
Polar-angle Connected Node (LPCN) which allows to find a
polygon hull (or a boundary) of a given Euclidean graph. The
main advantage of this algorithm is the way it defines the
boundary. Its main idea is given as follows. In each iteration i
the next boundary vertex vi+1 is determined by the vertex
that has the minimum angle ϕmin(vi−1, vi, vi+1) formed by
the edges {vi, vi−1} and {vi, vi+1} (cf. Figure 1), where vi is



the boundary vertex selected in the current iteration i and vi−1
is the boundary vertex found in the previous iteration i− 1.

Fig. 1. Angle formed by three vertices of a graph.

Our objective is to determine a simple closed polygon, but
it turns out that it may be sufficient to obtain a walk which is
not closed. Our algorithm works under the assumption that
some particular subgraphs do not exist, for example, boat
graphs (as represented in Figure 5), anchor graphs (given in
Figure 10), or vertices of degree 1. These graphs require a
special treatment, and non-closed walks could be sufficient
in case we just want to visit their vertices. We will show
later how to overcome these limitations in the presence of
such structures. Our first algorithm determines in each iteration
the next boundary neighbor of the currently found boundary
vertex. Its complexity is O(gh2), where g is the degree of the
graph and h the number of the vertices on the hull.

The structure of this paper is as follows. In Section II, we
present the related work. In Section III, we review Jarvis’
algorithm [18] and the basic version of the proposed LPCN
algorithm. Section IV will present the different limitations
caused by sub-graphs that lead our first algorithm to fail and
the ways to overcome them. This section also includes the
final version of the proposed LPCN algorithm. The validation
of the algorithm is done in Section V. Simulation results and
complexity are presented in Section VI. Some applications will
be presented in Section VII. Finally, Section VIII concludes
the paper.

II. RELATED WORK

In the following, we review some useful algorithms allowing
to find either a convex or a polygon (concave) hull for a given
set of points in the plane. Sometimes, a convex hull algorithm
can be modified to determine a polygon hull as is the case in
this paper, where we propose a polygon hull algorithm based
on Jarvis’ convex hull algorithm [18] which also uses the angle
based search.

A. Convex Hull

1) Graham’s Algorithm [17]: This algorithm starts from
an extreme point called pivot, which can be the point with
minimum x-coordinate. The remaining points will be sorted
in the order of increasing angles with respect to the pivot.
The algorithm stops with a star-shaped polygon. Finally, the
hull will be built by marching around the star-shaped polygon,
adding edges when we make a left turn, back-tracking when
we make a right turn. The complexity of this algorithm is
O(n log n), where n is the number of the given points.

2) Jarvis’ Algorithm [18]: This algorithm starts with the
point having minimum x-coordinate, for example. Then re-
peatedly, it adds the point having the least polar angle with
respect to the previous point. This algorithm is detailed in
Section III-A since our proposed algorithm is based on it.
The complexity of Jarvis’ algorithm is O(nh) where h is the
number of points on the hull.

3) Quick-hull [6]: The Quick-hull algorithm starts with
computing the points with minimum and maximum x-
coordinates and minimum and maximum y-coordinates.
Clearly, these points will be on the hull. Connecting these four
points will lead to a convex quadrilateral. All the points within
this quadrilateral can be eliminated from further consideration.
The remaining points are classified into four remaining corner
triangles and those lying inside these triangles are discarded.
The same procedure will be repeated for the newly obtained
triangles until there is no point outside the triangles. The
complexity of this algorithm is O(n2).

4) Incremental algorithm [20]: This algorithm can be used
in a multidimensional space. It operates by inserting points one
at a time and by incrementally updating the hull. If the new
point is inside the hull then there is nothing to do. Otherwise,
all the edges that the new point can see must be deleted. Then,
the new point will be connected to its two neighbor points and
the hull updated. By repeating this process for the remaining
points outside the current hull, a convex hull will finally be
constructed. The complexity of this algorithm is O(nd+1/2)
where d is the dimension of the considered space.

5) TORCH algorithm [16]: The Total ORder heuristic-
based Convex Hull (TORCH) algorithm is a sorting-based
algorithm that starts by sorting all points in the x-direction.
Then, it determines the four extremal points which are left-
most, rightmost, bottommost and topmost points in order to
find the four lateral hulls between turning points. As a result
of such a sorting procedure, we immediately obtain an approx-
imate convex hull that contains all the extreme vertices of the
real convex hull together with a few concave vertices. Then,
by eliminating these concave vertices from the approximate
convex hull using the geometric operation counterclockwise
(CCW), just as in Andrew’s Monotone method [5], we get the
final convex hull. The TORCH algorithm has O(n log n) time
complexity.

6) Xing et al.’s algorithm [40]: This algorithm aims to
compute the convex hull of the planar point set. The algorithm
starts by constructing an initial convex polygon (ICP) by
computing eight extreme points, and measures the width and
the length of the ICP. Then, it maps the point set into a new
space using an affine transformation where most of the new
points stay inside the new initial convex polygon (NICP). Next,
it removes the inner points that are near the boundary of the
NICP and applies Quick-hull to the remaining points. Then,
it will map the vertices of the found convex hull to their
original coordinates in order to obtain the final convex hull.
This algorithm has O(n+ n log n) time complexity.

7) Mei’s algorithm [27] : In this paper, a GPU-accelerated
convex hull algorithm is presented. The algorithm starts by



eliminating the points that are inside a quadrilateral formed
by the four extreme points. Then, the remaining points will be
distributed into four sub-regions. The points that are situated
in the same region will be sorted in parallel according to
their coordinates. Then, a novel Sorting-based Preprocessing
Approach (SPA) is performed to eliminate the inner points.
After that, for each sub-region, it forms a simple chain with
the remaining points. By connecting the four obtained chains
in CCW, it forms a simple polygon. Finally, Melkman’s
algorithm [28] is applied to calculate the convex hull of the
formed simple polygon. This approach has O(n log n) time
complexity.

8) Ruano et al.’s algorithm [35]: This is a randomized
approximation algorithm for high-dimensional datasets. The
algorithm starts by scaling each dimension to the range [−1, 1],
and then identifies the minimum and the maximum samples
with respect to each dimension. These samples are considered
as vertices of the initial convex hull. Then, it generates a
population of k facets based on the current vertices of the
convex hull and identifies the points furthest from each facet
in the current population as the new vertices of the convex hull.
This operation is repeated iteratively until there are no newly
found vertices. Finally, we obtain the convex hull. The time
complexity of this algorithm is not given, but it depends on
the number of samples and features, the population size (input
parameter k), the number of iterations, the number of vertices
of the convex hull, and on the distribution of the samples in
the dataset.

9) S-CH algorithm [38]: The Smart Convex Hull (S-CH)
algorithm starts by applying a space subdivision method in
order to eliminate a maximum of the initial points. Then,
it determines the convex hull over the remaining points by
applying, for instance, any standard convex hull algorithm.
The time complexity of this algorithm is O(n log n).

B. Polygon or Concave Hull

1) Split and Merge [14]: This algorithm starts with a
convex hull of points and obtains the final boundary in two
steps: splitting followed by merging. During splitting, one or
more sides of the points of the convex hull will be deleted and
new sides are added to take care of the inherent concavity. To
obtain a smooth polygonal boundary, two or more sides are
merged into a single one. The complexity of this algorithm is
O(nh).

2) Shape of a set of points [10]: In this work the authors
introduce the concept of an α-shape which represents an
external shape (convex or not) of a set of points. They describe
an algorithm that allows to find the value of α. For a finite
set P of points in the plane, the α − hull for α 6= 0 is the
intersection of all closed disks of radius 1/α containing the
points of P (where for negative values of α a closed disk of
radius A/α is interpreted as the complement of an open disk of
radius −1/α). When α approaches 0, the α−hull approaches
the ordinary convex hull. Therefore, the 0− hull is stipulated
to be the convex hull. The α− shape is a straight-line graph
(usually a polygon) derived in a straightforward manner from

the α − hull. When α = 0, it is the convex hull. For large
negative values of α, it represents the initial set of points P .
The complexity of this algorithm is O(n log n).

3) Perceptual boundary extraction [8]: This approach is
based on a new definition called the s − shape, which is
obtained by partitioning the plane into a lattice of square cells
of side-length s. The s− shape is simply the union of lattice
cells containing all the points of P . To obtain a polygonal
boundary, another r − shape is defined, where r is obtained
from s. To find the r−shape, the union of all disks of radius r
centered around the points of P is taken. For points p, q ∈ P ,
the edge {p, q} is selected if and only if the boundaries of the
disks centered on p and q intersect in a point which lies on
the boundary of the union of all the disks. The r − shape of
P is then the union of the selected edges. The complexity of
this algorithm is O(n).

4) k-nearest neighbor [30]: This algorithm is used to
compute a concave hull of a set of points in the plane. It
assumes that the currently chosen point is connected to the
k nearest points. Then it selects the point that has the least
polar angle with respect to the current point, as in Jarvis’
algorithm (Section II-A2). A concave hull is not obtained for
any point set, and the value of k must be adapted to each case.
Its complexity is O(kh+ gh2). Our proposed algorithm uses
the same concept except that the graph is connected. However,
in our case, the number k is known and may be different for
each point. Also, the k nearest neighbors are not necessarily
connected.

5) Concaveness Measure [32]: This algorithm aims to
identify an n-dimensional concave hull. It is composed of
four steps. First, a set of convex hull edges is selected
and a threshold value N is chosen. Then, the inner points
nearest to the convex hull edge are identified. The shortest
distance, called decision distance, between these nearest inner
points and the edge’s points is identified. Third, a decision of
searching or not is made by comparing N with the decision
distance. If (length of edge)/(decision distance) > N , then
the search process is executed. Finally, the second and the
third steps are repeated until there is no inner point to find.
The complexity of this algorithm is O(n log n + rn) where
r depends on the dimension d of the considered space. For
example, for a 3-dimensional space, r is equal to d/2.

6) Braune et al.’s algorithm [7]: This algorithm finds
clusters in a given dataset based on the notion of concave hull.
The main idea is to start from the convex hull of the entire
dataset and to iteratively shrink the convex hull by replacing
edges that are too long with new edges that fit the data more
accurately, and then, to recursively split the convex hull path
into two separate closed paths as soon as it converges into one
point. The time complexity of this algorithm is O(n log k),
where k is the number of points on the convex hull and n the
total number of points.

7) Gheibi et al.’s algorithm [15]: A shape reconstruction al-
gorithm which finds a concave hull is presented. The algorithm
starts from the convex hull of input samples and concaves it
gradually to achieve the real polygonal output. Thereby, in



each step, each selected edge will be replaced with two new
constructed edges in such a way that the shape remains a
polygon. The selection criterion of these new edges is based
on a combination of the following visual perception factors:
Voronoi diagram, closeness of points, length of edges, etc. This
process is repeated until the stopping condition is satisfied. The
time complexity of this algorithm is O(n log n) time.

8) Ec-shape algorithm [29]: This algorithm aims to find a
concave hull which best approximates the geometric shape of
a given set of points in the plane. It starts by constructing the
Delaunay Triangulation graph G [39] of these points. Then, it
constructs a Priority Queue (PQ) of the external edges (EEs)
of G in descending order of edge lengths.

Then it removes, repeatedly, the external edge (EE) of the
external triangle (ET ) from the head of (PQ) and from the
current graph G, but only if it satisfies the defined circle
constraint and that G − EE (G without the edge EE) is
regular. Once the extrernal edge EE is removed from G, the
adjacent sides of the external triangle (ET ) are added to (PQ)
by maintaining the descending order of the edge lengths. This
process is repeated until there is no possibility of removing
any external edges from the graph G. The time complexity of
this algorithm is O(n log n).

9) Gift Opening algorithm [34]: The idea of this algorithm
is to find the convex hull using any known algorithm and then
to transform it into a concave hull. To do this, the algorithm
starts by adding all external edges to a list sorted by their
lengths. The longest edge will be selected and removed from
the list. Then, a new point will be selected so that it forms the
smallest angle with the endpoints of the removed edge. After
that, two new edges will be created from this new point and
the endpoints of the removed edge. These two edges will be
added to the list. The algorithm stops when no more edge in
the list has a length larger than a predefined threshold. The
time complexity of this algorithm is O(n).

10) RGH algorithm [21]: The Regularized Geometric Hull
(RGH) algorithm is used mainly for biomedical image seg-
mentation. It transforms the points of a dataset into a set
of triangles. Each triangle having its maximal edge length
greater than a given parameter ζ will be removed. The value
of ζ regularizes the convexity or concavity of the geometric
hull. The time complexity of this procedure is O(n3) in the
usual case. However, in case that the triangulation is based on
Delaunay’s algorithm, the time complexity will be O(n log n).

Further literature can be found in [9], [11], [13], [31], [33].
Table I summarizes all proposed approaches in the related
work section regarding convex or polygon hull determination
algorithms, also, in terms of complexity, optimality and di-
mensionality, where n is the total number of points, k a fixed
number of the considered nearest neighbors of a point, g the
maximum degree of the graph, h the number of points on
the convex hull, d the dimension of the considered space, and
where r is a number that depends on the dimension d of the
considered space, which is equal to d

2 for a 3-dimensional
space.

III. LPCN ALGORITHM

In this section, we will present the first version of our LPCN
(Least Polar-angle Connected Node) algorithm. We will show
how to modify Jarvis’ algorithm, initially described to find a
convex hull, for the purpose to find the polygon hull of a set
of nodes of a connected graph.

A. Jarvis’ Algorithm

Jarvis’ algorithm [18] determines the convex hull of a finite
set of points. It cannot be used directly in our work since we
are searching for a polygon hull. However, we can modify it
by considering in each iteration only nodes that are connected
to the current one instead of taking any node.

We recall that Jarvis’ algorithm selects in each iteration
the node that has the minimum angle with the left horizontal
segment passing through the current node. This can work only
on one side of a set of finite nodes. In [3], an improvement
of Jarvis’ algorithm is proposed by dividing the set of nodes
into two sets and by changing the orientation of the angles
in each set. Another improvement of Jarvis’ algorithm uses
the polar angle ϕ(Pp, Pc, Pj) formed by the next node Pj , the
current node Pc and the one found in the previous iteration
Pp. Hence, Jarvis’ algorithm can be described as Algorithm 1
as follows:

Algorithm 1 Jarvis’ algorithm
1: procedure JARVIS(V )
2: Pc ← point having the minimum x-coordinate
3: Pfirst ← Pc

4: Pp ← fictive point situated on the left of Pc

5: B← {Pc}
6: repeat
7: Pk = argmin

Pj∈V
{ϕ(Pp, Pc, Pj)}

8: B← B ∪ {Pk}
9: Pp ← Pc

10: Pc ← Pk

11: until (Pk = Pfirst)
12: return B
13: end procedure

Let V be a set of n points and h be the number of points
defining the convex hull of V . The algorithm finds the points
P0, P1, ..., Ph−1 of the convex hull, ordered one at a time,
where P0 is the point with the minimum x-coordinate. Given
the point Pi, we wish to find the point Pi+1, consecutive to Pi

on the hull, for each 1 ≤ i ≤ (n− 2). This point is such that
the edge {Pi, Pi+1} has the least polar angle with the edge
{Pi, Pi−1}. The algorithm stops once we come back to point
P0. Figure 2 shows an example illustrating this algorithm. We
consider a set of 8 points (cf. Figure 2(a)) and we start from
point A. The least polar angle point with respect to A is point
C (cf. Figure 2(b)). Next, we define the least polar angle point
with respect to C and A which is point E (cf. Figure 2(c)).
In the same way, we define the least polar angle point with
respect to E and C which is point H . The last point defined



TABLE I
COMPARISON WITH EXISTING ALGORITHMS.

Algorithm Convex Polygon Complexity Optimality Dimension Observations
Hull Hull

Graham [17] X O(n logn) - 2D
Jarvis [18] X O(nh) - 2D
Quick-hull [6] X O(n2) - 2D

Incremental [20] X O(n(d+1)/2) - Multidimensional
TORCH [16] X O(n logn) - 2D
NICP [40] X O(n+ n logn) - 2D Requires the Quick-hull algorithm
Mei [27] X O(n logn) - 2D GPU-accelerated convex hull algorithm
Ruano et al. [35] X [not given] - Multidimensional Complexity depends on many parameters
S-CH [38] X O(n logn) - 3D Requires a standard convex hull algorithm
Split and Merge [14] X O(nh) Not Optimal 2D Starts from the convex hull of points
Alpha-Shape [10] X O(n logn) Not Optimal 2D Depends on a parameter α
PBE [8] X O(n) Not Optimal 2D
KNN [30] X O(nh2) Not Optimal 2D
CM [32] X O(n logn+ rn) Not Optimal Multidimensional
Braune et al. [7] X O(n log h) Not Optimal 2D Starts from the convex hull of points
Gheibi et al. [15] X O(n logn) Not Optimal 2D Starts from the convex hull of points
EC-Shape [29] X O(n logn) Not Optimal 2D Requires Delaunay Triangulation (DT)
Gift Opening [34] X O(n) Not Optimal 2D Starts from the convex hull of points
RGH [21] X O(n3) Not Optimal 2D
LPCN X O(gh2) Optimal 2D Best complexity

(a) (b) (c) (d)

Fig. 2. Jarvis’ algorithm for (a) point set in free plane, (b) iteration 1, (c) iteration 2, (d) last iteration.

after H is A which was the starting point for the first iteration.
Hence, the convex hull is found (cf. Figure 2(d)).

B. LPCN1: the first version

Given a Euclidean connected graph G = (V,E), the first
version of our algorithm LPCN (Least Polar-angle Connected
Node) differs from Jarvis’ algorithm in the selection of that
point (or node) which follows the current one: the next point
can only be a neighbor in G of the current one. It only works
either for planar graphs or for non-planar graphs without some
problematic subgraphs that will be presented in Section IV. It
starts from a node that belongs to the boundary and can be
outlined as follows. Let V be the set of n nodes of G and h
be the number of points of the final polygon hull of V . The
algorithm first finds the points P0, P1, ..., Ph−1 of the polygon
hull, where P0 is a point with the minimum x-coordinate.
Given the point Pi, we wish to find the next consecutive point
Pi+1 on the hull, wichi is connected to Pi, for each 1 ≤ i ≤
k−1, which is connected to Pi. This point Pi+1 is the one that
has the least polar angle with respect to Pi. When we reach
the last point Ph−1, we have constructed a polygon hull of V .

The algorithm stops as soon as we come back to the point P0.
It is presented as Algorithm 2, in which N(Pc) represents the
neighborhood of Pc in G.

Algorithm 2 LPCN1: the first version of the LPCN algorithm
1: procedure LPCN1(V,E)
2: Pc ← point having the minimum x-coordinate
3: Pfirst ← Pc

4: Pp ← fictive point situated on the left of Pc

5: BV ← {Pc}
6: BE ← ∅
7: repeat
8: Pv ← argmin

Pj∈N(Pc)

{ϕ(Pp, Pc, Pj)}

9: BV ← BV ∪ {Pv}; BE ← BE ∪ {{Pc, Pv}}
10: Pp ← Pc

11: Pc ← Pv

12: until (Pv = Pfirst)
13: return BV , BE

14: end procedure



Figure 3 shows how the algorithm works. Let us consider
the graph of Figure 3(a) where V = {A,B,C,D,E, F,G,H}.
First, we choose the node with the minimum x-coordinate Pc.
In this example, this node is A (Pc = A) which is also the
first node of the boundary BV = {A}.

The algorithm stops when the next boundary node Pk is
equal to the first boundary node Pfirst, in this example, node
A (i.e., Pfirst = A). In the first iteration, Pc is always equal to
Pfirst. To start the algorithm, we may consider a fictive node
A′ that has an x-coordinate smaller than that of A (Pp = A′).
Note, that other fictive nodes can be considered. Figure 3(b)
shows the different starting nodes and their fictive neighbors
designed by gray points.

Next, we have to find the minimum polar angle formed by
the edge {Pc, Pp} (i.e., {A,A′}) and the edges formed by Pc

with each of its neighbors (i.e., {A,B}, {A,C}, {A,D} and
{A,G}). In this example, the obtained neighbor is Pk = C
(cf. Figure 3(c)). Then, the first edge of the searched boundary
is BE = {{A,C}}. Therefore, BV = {A,C}.

In the next iteration, we will apply the same procedure by
searching the minimum polar angle formed by the edge {C,A}
and the edges formed by C with its neighbors, i.e., {C,B}
and {C,D}. The obtained node is D (cf. Figure 3(d)) and
the current boundary is now given by BV = {A,C,D} with
BE = {{A,C}, {C,D}}. In the same way, we determine the
other nodes. We found E (cf. Figure 3(e)), H (cf. Figure
3(f)), G (cf. Figure 3(g)) and finally A (cf. Figure 3(h)).
Since A = Pfirst, we stop the algorithm. The obtained
boundary is given by BV = {A,C,D,E,H} and BE =
{{A,C}, {C,D}, {D,E}, {E,H}, {H,A}} (cf. Figure 3(i)).

This algorithm does not work in the presence of the follow-
ing cases:
• Nodes of degree one,
• Anchor and Boat graphs (Figures 5 and 10).
These two cases may lead to a situation of an infinite loop.

In the next section, we will describe all situations leading our
first algorithm to fail, and we will show how to avoid them.

IV. PROBLEMATIC SUBGRAPHS AND LPCN2

LPCN1 presented as Algorithm 2 in the previous Section
III-B is only working correctly when the considered graph
does not contain some problematic subgraphs which may lead
either to a blocking step or to a non-optimal solution.

1) Case 1: zero degree angle: To find the next node on the
polygon hull, angles are calculated between edges {Pi, Pi−1}
and {Pi, Pi+1}, with Pi+1 ∈ N(Pi), and the node for which
the calculated angle is the smallest one will be chosen as the
next one. Since the previous node is among the neighbors
of the current node, it will be the one to be chosen because
the angle formed by the corresponding edges is equal to
zero. This leads to a blocking situation. To overcome this
limitation, we will consider this angle to be 360o instead
of 0o. The same solution can be used for the case of nodes
having one neighbor only. Figure 4 shows this situation. By
taking account of the proposed modification, the obtained

boundary is then given by BV = {A,B,C,E,D} and
BE = {{A,B}, {B,C}, {C,E}, {E,C}, {C,D}, {D,A}}.

Fig. 4. From 0o to 360o angles.

2) Case 2: Boat graph: Figure 5 shows an example of a
Boat Graph formed by the edges {A,C}, {A,D} and the
triangle BCD. A Generalized Boat Graph is obtained in the
same way if we consider a subdivision of {A,D}.

When we execute the LPCN1 algorithm presented above
by starting from or arriving at point B then some problematic
situations will arise.

(a) (b)

Fig. 5. Boat Graph with possible nodes between A and D.

To explain how this kind of graphs can be disturbing, let us
take two examples with Boat Graphs. Figure 6 shows the first
example of a boat graph which is formed by the edges {E,C},
{E,D} and the triangle BCD. The algorithm starts from node
B and then goes to D. From D it goes to E and then to C.
From C it goes again to D. However, this time it will not
go to E but to B again. Because we start from the node B
the algorithm will stop and, unfortunately, it will not visit the
edge {E,F} nor the nodes and edges that are between F and
B. Hence, in this case, the polygon hull cannot be found.

Figure 7 shows the second example where the algorithm
starts with the left node A and then goes to B, which is a
starting node of a Boat graph formed by the edges {E,C},
{E,D} and the triangle BCD. From B the algorithm goes
to D, to E and then to C. From C it goes again to D. From
D, this time, it goes to B and then to C and to E again.
Finally, it continues to F and to the other nodes. In this
case, there is no blocking situation but the solution is not
optimal. It is given by BV = {A,B,D,C,E, F} and BE =
{{A,B}, {B,D}, {D,E}, {E,C}, {C,D}, {D,B}, {B,C},
{C,E}, {E,F}} with 6 nodes and 9 edges whereas the
optimal solution given by BV = {A,B,D,E, F} and
BE = {{A,B}, {B,D}, {D,E}, {E,F}} has 5 nodes and 4
edges.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. LPCN algorithm illustration.

Fig. 6. Boat graph (example 1).

The previous solution can be improved by eliminating the

Fig. 7. Boat graph (example 2).

edge {E,C} which is justified by its intersection with the edge
{B,D} which itself leads to a point C inside the boundary
{A,B,D,E, F}, as shown by the example of Figure 8. This



last boundary will be considered as an improved solution with
respect to the previous one. Then, this solution is optimal and
there is no better solution since B is not connected to E.

We can note that if distances must be taken into account
and the total distance has to be minimized then we can take
the solution BV = {A,B,C,E, F} if the length of the path
[B,D,E] is shorter than the one of the path [B,C,E]. Note,
that in this case, the rule of the least polar angle is not
respected.

Fig. 8. Boat graph (solution).

We conclude from this first case that any edge of the
polygon hull must not intersect with any other [2].

3) Case 3: Intersecting edges: We conclude from Case 2
that two edges of the polygon hull must not intersect outside
the endpoint corresponding to the next vertex chosen by the
algorithm. As an example, Figure 9(a) shows that accepting
the intersecting edges {A,B} and {E,F} of the polygon hull
will lead to non-visited vertices on the polygon hull, which
are I , J and G. However, if this intersection is considered
then, as shown by Figure 9(b), all the vertices of the polygon
hull are visited (i.e., A, B, C, D, E, G, H , I , J). In addition,
since the next chosen point is B, this intersection must not
consider the endpoint B of the edge {D,B}. That is to say, if
we have two edges {A,B} and {C,D} and if the intersection
with B results in one of the vertices A, B, C or D then it will
not be considered as an intersection. This situation is justified
by Figures 9(c) and (d). In the first one, if we accept the
normal intersection {B,C} ∩ {D,B} = {B}, the algorithm
will choose a vertex which is different from B. Then, it will
choose the next vertex C, which will lead to an infinite loop
B, C and D. However, if we consider intersection without the
endpoints of the edges, then when the algorithm comes back
to B, no intersection is detected and the algorithm will choose
vertex A as shown by Figure 9(d).

4) Case 4: Anchor graph: Figure 10 shows an example of
an Anchor Graph formed by the edge {A,C} and the triangle
BCD. It just differs from the Boat Graph by the missing edge
{A,D}. Executing the LPCN1 algorithm presented above in
graphs containing an Anchor graph my lead to a non-optimal
solution as we are going to show now.

As a first example, let us consider the case where the graph
is itself an Anchor Graph. If the algorithm starts from the
point B, the solution that will be found by our algorithm is

(a) (b)

(c) (d)

Fig. 9. Edges’ intersection.

Fig. 10. Anchor graph.

BV = {B,D,C} and BE = {{B,D}, {D,C}, {C,B}}. One
can see that in this solution, as illustrated by Figure 11(a),
point A cannot be reached. However, if we start from point
A, as shown by Figure 11(b), it can be reached. Note, that the
edge selected at one iteration does not have to intersect with
the edges of the polygon hull obtained in previous iterations.

(a) (b)

Fig. 11. Anchor graph (problematic situation 1).

A second example related to an Anchor Graph is shown by
Figure 12. We can see that if we start from node H , A cannot
be reached. But if we start from node A, Figure 13 shows that



it is possible to find the correct polygon hull coming back to
A. We conclude from this situation that the algorithm must
start from all the boundary nodes having one neighbor.

Just note that at iteration 3, we will not go from node D
to node B because edge {D,B} intersects with edge {A,C}.
In this case, our solution is obviously correct. However, if on
the boundary there is another Anchor Graph, as shown by
Figure 14, then node J cannot be reached by the algorithm. If
another part of the graph starts from the node J as shown by
Figure 15, then this part will not be reached by the algorithm.
We conclude that all vertices of edges that intersect with the
edges of the found polygon hull can be reached by running
the algorithm another time on the non-visited vertices and by
connecting node J to the other part of the anchor.

Fig. 12. Anchor graph (problematic situation 2).

Fig. 13. Anchor graph (problematic situation 3).

Fig. 14. Anchor graph (problematic situation 4).

Fig. 15. Anchor graph (problematic situation 5).

5) Case 5: First and last boundary node (Stopping condi-
tion): We have previously assumed that the algorithm stops
when the last chosen node is equal to the starting node. This
means that the algorithm terminates when the first chosen node
is selected a second time. However, the two cases presented in
Figure 16 (the presence of an Anchor Graph) and Figure 17
(the presence of several descending branches from the starting
node) show that it is possible to come back to the starting
node without visiting all the boundary nodes. As we can see,
in the first figure, the set of nodes situated between nodes A
and B are not reached by the algorithm. In the second figure,
only the boundary nodes of the first descending branch are
reached. Hence, the stopping condition is not based on the
starting node but on the second visited boundary node, since
each node cannot select the same minimum angle twice, as is
proven by Corollary 1 in Section V.

Fig. 16. First and last boundary node (Stopping condition): case 1.

6) Case 6: Three points on the same line: If in addition, the
three points of the triangle of an anchor graph are situated on
the same line (cf. Figure 18) then from point B both points D
and C can be chosen. In this case, the point with the minimum
distance must be chosen. In the case of Figure 18, for instance,
point C must be selected. However, if these three points do not
belong to an anchor graph then the point with the maximum
distance must be chosen in order to guarantee the minimum
cardinality of BV . This situation is illustrated by Figure 19



Fig. 17. First and last boundary node (Stopping condition): case 2

where in (a), when the vertex C is chosen, four boundary
vertices are obtained. Nevertheless, in (b), only three boundary
vertices are chosen if the vertex D is directly chosen from B,
because it is further away from B than C from B.

(a) (b)

Fig. 18. Anchor graph (a) and Boat graph (b) with three points of the triangle
on the same line.

(a) (b)

Fig. 19. Three points on the same line.

We will complete this section by discussing another example
dealing with the Anchor Graph. Figure 20 shows this example.
As we can see, the obtained walk is unfortunately not closed.
Geometrically, this solution is not correct, but if we assume
that the objective is just to visit the vertices of a polygon
hull instead of finding its geometric form, this solution can
be considered acceptable and therefore, the algorithm LPCN2
(Algorithm 3) can be used in this case.

However, if we want to find the geometric polygon, we
will consider the solution indicated in Figure 21. In this case,
LPCN2 must be modified as follows. We execute the same
iterations from 1 to 8 as in Figure 20. The next node will
be C which leads to an edge {A,C} that intersects with the
boundary edge {B,D}. Now, instead of eliminating this edge
and searching for another edge as in the previous algorithm,

Algorithm 3 LPCN2: the second version of the LPCN algo-
rithm.

1: procedure LPCN(V,E)
2: P0 ← Pc ← point having the minimum x-coordinate
3: Pp ← fictive point situated in the left of Pc

4: BV ← {Pc}
5: BE ← ∅
6: once← true
7: repeat
8: A← {P ∈ N(Pc)/BE ∩ {{Pc, P}} = ∅}
9: Pmin ← argmin

P∈A
{ϕ(Pp, Pc, P )}

10: BV ← BV ∪ {Pmin}
11: BE ← BE ∪ {{Pc, Pmin}}
12: Pp ← Pc

13: Pc ← Pmin

14: if (once = true) then
15: once← false
16: Pfirst ← Pmin

17: end if
18: until ((Pc = P0) and (Pmin = Pfirst))
19: return BV ,BE

20: end procedure

Fig. 20. A special case involving an Anchor graph (solution 1).

we test whether these two edges form an Anchor Graph. If this
is the case, we will go back to the first node of this Anchor
Graph, in this case node B. And then, we will choose node
C of the Anchor Graph instead of node D. Finally, we will
continue with iteration 9 as shown in Figure 21. Indeed, this
will add an insignificant complexity in case we consider an
application from the field of WSNs, where this situation is
very rare.

We finish this section with some additional problematic
subgraphs that we call Pseudo-Boat Graph and Pseudo-anchor
Graph as shown by Figures 22(a), 22(b), 22(c) and 22(d).
These graphs lead to the same results as those presented above
for the Boat Graph and the Anchor Graph. However, if we
replace the Anchor Graph of Figure 20 by the Pseudo-anchor
Graph of Figure 22(b) then neither the geometric polygon
hull nor the solution shown by Figure 21 can be obtained (cf.
Figure 23). However, for this case it is possible to consider
the solution of Figure 20.



Fig. 21. A special case involving an Anchor graph (solution 2).

(a) (b)

(c) (d)

Fig. 22. Pseudo-anchor ((a), (b)) and Pseudo-Boat ((c), (d)) graphs.

V. ALGORITHM VALIDATION

In this section, we will validate the correctness of the
proposed algorithm regarding convergence and optimality.

Theorem 1.

1) The Algorithm LPCN1 never calculates the same polar
angle more than once.

2) The Algorithm LPCN2 never calculates the same polar
angle more than once.

Proof.

1) We assume that the algorithm starts from the vertex
Pfirst and at iteration i, without loss of generality,
we can represent the current set of boundary nodes
Bi
V = {Pfirst, ..., Pi} by a vertex P i

BV
. On the other

hand, we assume that angles are calculated only in a
clockwise direction. Hence, any angle, as given by two
specific edges, will be calculated only once. Otherwise,
if an angle is calculated a second time then it must pass
a second time through the vertex P i

BV
. This means that

we pass a second time through the starting vertex Pfirst

which represents the stopping condition of LPCN1 (cf.
line 12 of Algorithm 2). This leads to a contradiction

Fig. 23. A special case involving a pseudo-anchor graph.

and therefore it is not possible to calculate any angle
more than once.

2) For planar graphs, LPCN2 behaves in the same manner
as LPCN1. For non-planar graphs and in the case
where edge crossing is detected (cf. Figure 9), the
condition added in line 9 of the LPCN2 (Algorithm 3),
prevents the algorithm to return to an already visited
angle.

Corollary 1.

1) Either Algorithm LPCN1 or Algorithm LPCN2 never
selects the next boundary node from the same boundary
node more than once.

Proof.

1) This is a direct consequence of Theorem 1, since any
boundary node is selected based on the calculation of
an angle. Assume, that the point v is selected twice
from the point vc by calculating the minimum angle
ϕ(vp, vc, v). This means that this angle is visited twice,
whichi contradicts Theorem 1.

Corollary 2.

1) The algorithm LPCN1 visits the point vi at most d(vi)
times.

2) The algorithm LPCN2 visits the point vi at most d(vi)
times.

Proof.

1) Any vertex vi ∈ V has d(vi) polar angles. Since
LPCN2 calculates an angle at a given node at most
once, by Theorem 1 the number of times the algorithm
scans node vi cannot exceed the number of polar angles.
Therefore, the algorithm visits any vertex vi at most
d(vi) times.

2) In the absence of crossing edges (i.e., if G is planar),
LPCN1 behaves in the same manner as LPCN2.



Corollary 3. Either LPCN1 or LPCN2 finds a solution in
a finite number of steps.

Proof. The proof results directly from Theorem 1. In fact,
since the graph is connected and since it contains a finite
number of nodes to form a finite number of angles which
are calculated at most once by LPCN1 and LPCN2, by
Theorem 1 the number of iterations of both algorithms is
finite.

Theorem 2. Either LPCN1 or LPCN2 finds a polygon hull
with a minimum number of nodes, without encountering any
Anchor Graph.

Proof. Let us consider the solution given by BV . If this
solution is not optimal, then there is another polygon hull B′V
containing less vertices than BV . Therefore:

BV = B′V ∪ χ

For a vertex υ ∈ χ two cases are possible:
• Case 1: υ is not a boundary vertex. This case is im-

possible because υ must satisfy the condition υ =
argmin
Pj∈N(Pc)

{ϕ(Pp, Pc, Pj)} since it is an element of BV ,

where Pc is a neighbor vertex of υ. Thus, υ is also a
boundary vertex.

• Case 2: υ is a boundary vertex. Since, υ is not an element
of B′V , this latter is not a polygon hull of the network.

Therefore, the set BV represents a polygon hull of G with a
minimum number of nodes.

From Corollary 3, we deduce that the two proposed algo-
rithms are convergent. From Theorem 2, we conclude that
our proposed algorithms determine a boundary with minimum
number of nodes, which altogether validates our algorithms.

VI. SIMULATION RESULTS

Let us consider a graph with n vertices, and a boundary of
h vertices, and let k denote the maximum degree of G. Then
the complexity of LPCN1 is O(gh). For the case of LPCN2,
since in each iteration we are searching for an intersection
with the edges of the polygon found in previous iterations,
we have to include a factor of h. Thus, the complexity of this
algorithm is O(gh2).

All algorithms have been programmed in Java and imple-
mented in CupCarbon [26], a software simulator of Wireless
Sensor Networks (WSNs). This software offers an API that
facilitates the development of algorithms and the visualization
of their results in a realistic WSN environment. It offers the
possibility to simulate mobiles and targets. The source code
is available in [1].

In the following, we will discuss three test examples for
the proposed algorithm LPCN2. The first example represents a
random network with 100 points (cf. Figure 24(a)). The points
represent sensors with a radio range of 100m (meters) that are
located in a rectangular area of 1200m×600m. In the second

example, we use a network with 500 points (cf. Figure 25)
that are located in a rectangular area of 2500m × 1500m. In
the third example, we have 1500 points (cf. Figure 25) under
the same conditions as for the second one. The number of
the obtained nodes on the boundary is 62 in the first network,
202 in the second and 85 in the third one. The maximum
degree is 17 in the first network, 10 in the second and 50 in
the third one. The theoretical complexity in each example is,
respectively, O(17×622) = O(65k), O(10×2022) = O(408k)
and O(50 × 852) = O(361k). The real number of iterations
for each example is, respectively, 9k, 63k and 53k.

Fig. 24. Example with 100 points.

Fig. 25. Example with 500 points.

Fig. 26. Example with 1500 points.



VII. SOME APPLICATIONS

In this section, we will present three examples for which
the presented algorithm can be used. The first example shows
how to find boundary nodes of a Wireless Sensor Network.
The second example shows how to extract complex clusters
in a set of two-dimensional data. The last one shows how to
draw a contour of a zone of interest on a medical image.

A. Finding the boundary nodes of a Wireless Sensor Network

Finding the boundary nodes of a WSN can be done in two
different ways: centralized and distributed. In the following,
we will present the centralized version since the algorithm
is applied as presented in this paper. However, in the dis-
tributed version, the procedure is completely different and it
is presented in [36]. In the centralized version, as shown by
Figure 27(a), each node of the network sends its coordinates
to the sink. The sink will then run the LPCN algorithm to
find the boundary nodes. Once done, it sends to each sensor
node the information whether it is or not a boundary node (cf.
Figure 27(b)).

(a)

(b)

Fig. 27. Boundary nodes of a WSN.

B. Cluster finding and shape reconstruction

To find the clusters of a set of data, we must first connect
the points between them. To do this, many existing methods
can be used, like Voronoi diagrams [4], k-nearest neighbors,
neighbors situated within a certain radius, etc. Second, we start

from the point having the smallest x-coordinate and run the
LPCN until returning to this starting point. This means that
the first cluster is found, which is defined by all the points
of the polygon hull and all the points that are inside it. In
order to find the second cluster, we must remove from the
set of data all the points of the previously found cluster and
then restart the same procedure with the remaining points.
This procedure is renewed until all clusters have been found.
Figure 28 shows an example of a 2-dimensional dataset (cf.
Figure 28(a)), the connection between points (Figure 28(b))
and finally the clusters found (cf. Figure 28(c)). The same
methodology can be used for shape reconstruction. Since the
complexity of the LPCN algorithm depends on the number of
the boundary points, it can be used fors huge datasets, which
makes it very useful in the context of Big Data.

(a)

(b)

(c)

Fig. 28. Finding clusters.

C. Contour drawing

The LPCN algorithm can be used for drawing contours in
images. In the case of zone-of-interest-extraction, it has to be
combined with another algorithm that allows to characterize
such a zone. For illustration, let us consider the extraction
of the gray zone of the image of Figure 29(a). First, we
will transform the region containing this zone to a matrix of



Fig. 30. Contour of a tumor in a real medical image.

pixels. This matrix can be modeled as a Euclidean connected
graph as shown by Figures 29(b) and (c). If we consider a
simple extraction based on the intensity of pixels, then we
will consider only the blue points of the graph, shown by
Figure 29(d), which correspond to the gray pixels in the image.
For this graph, we will run the LPCN algorithm in order to find
the boundary points (cf. Figure 29(e)). Figures 29(f) and (g)
show that these points represent the contour of the gray zone
of the original image. As a more realistic example, Figure 30
shows the contour of a tumor drawn by using the LPCN
algorithm. This picture represents a tumor MRI (Magnetic
Resonance Imaging) taken at the hospital of Brest.

VIII. CONCLUSION

We have presented the LPCN algorithm allowing to find a
polygon hull for a Euclidean connected graph. This algorithm
was inspired by Jarvis’ algorithm which had to be adapted
because it is designed to find a convex hull instead of a
polygon hull. We have proposed a new algorithm that chooses
for each node the nearest polar angle node with respect to the
node found in the previous iteration. Its complexity is O(gh2),
where g is the maximum degree of the graph and h the number
of nodes on the polygon hull. We have shown that running the
algorithm in the presence of specific graph structures can lead
to non-valid and non-optimal solutions, and we have indicated
how to overcome these difficulties. Also, we have proven
the convergence of the algorithm and the optimality of the
solution. Finally, we have presented some applications that can
be resolved using the proposed algorithm. We are now working
on the version where the algorithm can start from any point of
the graph instead of the point having minimum x-coordinate,
and we are also preparing a 3-dimensional version.
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