Food resources of the bivalve Astarte elliptica in a sub-Arctic fjord: a multi-biomarker approach
B Gaillard, T Meziane, R Tremblay, P Archambault, Martin E. Blicher, Laurent Chauvaud, S Rysgaard, Frédéric Olivier

To cite this version:
B Gaillard, T Meziane, R Tremblay, P Archambault, Martin E. Blicher, et al.. Food resources of the bivalve Astarte elliptica in a sub-Arctic fjord: a multi-biomarker approach. Marine Ecology Progress Series, 2017, 567, pp.139-156. 10.3354/meps12036. hal-01510351

HAL Id: hal-01510351
https://hal.univ-brest.fr/hal-01510351
Submitted on 23 Sep 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Food resources of the bivalve *Astarte elliptica* in a sub-Arctic fjord: a multi-biomarker approach

Blandine Gaillard¹,², Tarik Meziane², Réjean Tremblay¹, Philippe Archambault¹,³, Martin E. Blicher⁴, Laurent Chauvaud⁵, Søren Rysgaard⁴,⁶,⁷, Frédéric Olivier²

¹Institut des Sciences de la mer, Université du Québec à Rimouski, 310 Allée des Ursulines, Rimouski, Québec G5L 3A1, Canada
²Biologie des Organismes et Ecosystèmes Aquatiques, UMR-MNHN, CNRS, UPMC, IRD, UCN, UA, Muséum National d'Histoire Naturelle, 61 rue Buffon, CP 53, 75231 Paris Cedex 05, France
³Québec-Océan, Département de Biologie, Université Laval, Québec G1V 0A6, Canada
⁴Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, Box 570, 3900 Nunk, Greenland
⁵Unité Mixte de Recherche ‘Laboratoire des sciences de l’environnement marin’ (LEMAR, UMR 6539), Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, rue Dumont d’Urville, 29280 Plouzané, France
⁶Centre for Earth Observation Science, CHR Faculty of Environment Earth and Resources, University of Manitoba, 499 Wallace Building, Winnipeg, Manitoba R3T 2N2, Canada
⁷Arctic Research Centre, Aarhus University, Ny Munkegade 114, Bldg. 1540, 8000 Aarhus C, Denmark
⁸Present address: Biologie des Organismes et Ecosystèmes Aquatiques, UMR-MNHN, CNRS, UPMC, IRD, UCN, UA, Muséum National d'Histoire Naturelle, 61 rue Buffon, CP 53, 75231 Paris Cedex 05, France

ABSTRACT: It is generally agreed that pelagic−benthic coupling is tight on Arctic shelves, i.e. that organic matter produced in the surface layers supports the seafloor and benthos. However, this paradigm is mainly based on the assumption that phytoplankton and ice algae are the main sources of carbon for the benthic communities. Climate change is expected to alter the relative contribution of food sources for benthic organisms. Macroalgal biomass is predicted to increase in near-shore systems in response to increased temperature and reduced sea ice cover. Thus, a better understanding of the relative contribution of benthic and pelagic components in benthic food webs in the Arctic is needed. In this study, a multi-biomarker approach (stable isotopes, fatty acid trophic markers, and compound-specific stable isotope analysis) was applied to link potential sources of carbon, including particulate organic matter from subsurface and bottom waters, sediment organic matter, and 6 macroalgal species to the diet of the bivalve *Astarte elliptica* collected below the euphotic zone in a sub-Arctic fjord (Kobbefjord, Greenland). Results showed that *A. elliptica* feeds on particulate and sediment organic matter and that brown macroalgae significantly support the Arctic benthic food web. Multi-biomarker approaches can be used to determine the diet of benthic organisms and track temporal variability in sources of food. It therefore appears to be an interesting method to study food regime strategies in response to changing primary production dynamics.

KEY WORDS: Trophic ecology · Stable isotopes · Fatty acid trophic markers · Compound-specific stable isotope analysis · Sub-Arctic fjord · Bivalve
quently may have effects on the trophic pathways supporting pelagic and benthic consumers (Wassmann & Reigstad 2011). In Arctic environments, benthic communities can be sustained by direct sedimentation of ice algae and phytoplankton cells and/or through the sinking of organic material processed by pelagic secondary consumers (pelagic–benthic coupling; Piepenburg 2005). Ice algae, largely dominated by pennate diatoms (Hsiao 1980, Poulin et al. 2011), live both attached to the bottom of sea ice and within the ice column and bloom during spring, while phytoplankton live in the water column and bloom after the ice melts in early summer (Hsiao 1992). Ice algae may be important as early season food sources for the benthos when reduced grazing pressure in the water column increases the amount of organic matter reaching the seafloor (Ambrose & Renaud 1995). Based on the assumption that phytoplankton and ice algae are the 2 main primary producers in Arctic systems, a future scenario for pelagic–benthic coupling is largely accepted. The paradigm is that, in response to the decline in sea ice extent and thickness, a shift from the present ice algae–benthos dominance to a predicted phytoplankton–zooplankton prevalence could lead to a weaker pelagic–benthic coupling (Carroll & Carroll 2003, Carmack & Wassmann 2006).

To date, macroalgae have been sparsely considered in Arctic food web studies. However, it has been shown that they can substantially contribute to the total primary production and even exceed pelagic primary production in shallow depths in the Arctic (Glud & Rysgaard 2007, Krause-Jensen et al. 2007). Recent studies (McMeans et al. 2013, Renaud et al. 2015) indicate that macroalgae-derived material can substantively supply the diet of Arctic benthic organisms in coastal areas and also filter-feeders traditionally considered relying completely on phytoplankton. This macroalgal primary production enters food webs through direct grazing (Steneck et al. 2002, Wessels et al. 2012), exudation of dissolved organic carbon, and as detritus, and could be especially beneficial to growth of benthic suspension feeders (Duggins et al. 1989, Perez et al. 2013). The role of macroalgae as potential sources of carbon for higher trophic levels is important to determine since warming of the Arctic is expected to favor some macroalgal communities (Krause-Jensen & Duarte 2014). Cold temperate and sub-Arctic macroalgae are predicted to extend their distribution to the Arctic Ocean with global change (Hop et al. 2012, Krause-Jensen et al. 2012, Krause-Jensen & Duarte 2014). Changes in macroalgal community composition have already been noted in fjords of the Svalbard archipelago. The dominance of calcareous algae, well adapted to low-light and cold-water regimes, has been replaced by a rapid expansion of erect boreal macroalgae in response to increased sea surface temperature and improved light availability (Kortsch et al. 2012). In addition, warming of the Arctic will likely allow macroalgal growth to start earlier and extend the growing season in response to the longer ice-free period (Krause-Jensen & Duarte 2014). Yet, it remains unclear how benthic communities will respond to those changes in food sources. There are few studies on changes in Arctic benthic systems (e.g. Wassmann et al. 2011), and no shifts in benthic macrofaunal communities have been reported on west Greenlandic coasts in response to shifts in primary producers.

Carbon (C) and nitrogen (N) stable isotopes are particularly useful to trace pathways of organic matter in food webs and to determine the contribution of various food items to diets of organisms (Fry 2007). δ^{13}N is used to assess the mean trophic position of organisms in a food web (DeNiro & Epstein 1981, Peterson & Fry 1987, Hobson & Welch 1992), while δ^{13}C values can provide information on major carbon sources of consumers (Peterson & Fry 1987, Vander Zanden & Rasmussen 2001, Post 2002). The transfer of carbon isotopic compositions (<1‰) to the animal from its diet can be useful in tracing food webs in systems where food sources show large differences in δ^{13}C values, such as marine versus terrestrial systems, or coastal versus oceanic systems (DeNiro & Epstein 1978, Peterson & Fry 1987, Vander Zanden & Rasmussen 2001).

The use of fatty acid (FA) trophic markers (FATMs) is based on the observation that marine primary producers lay down certain FA patterns that may be conserved and transferred through aquatic food webs. Thus, they can be recognized in lipids of their primary consumers (Dalsgaard et al. 2003, Bergé & Barnathan 2005). Marine animal cells can synthesize de novo saturated FAs (SFAs) and monounsaturated FAs (MUFA)s, but biosynthesis of major polyunsaturated FAs (PUFAs) is considered very limited due to the low or non-existent activity of the specific enzymes required (Glencross 2009). Consequently, trophic resources must provide the needed PUFAs and can be traced to the primary consumers. The presence and combinations of particular FAs can be therefore used as taxonomic signature to differentiate primary producers, such as diatoms from dinoflagellates (Ackman et al. 1968, Víso & Marty 1993, Zhukova & Aizdaicher 1995). Diatoms are rich in eicosapen-
tis was previously extracted for it. Just return the plain text representation of this document as if you were reading it naturally.

MATERIALS AND METHODS

Study site

The study was conducted in the sub-Arctic Kobbe-
fjord, in southwest Greenland (Fig. 1). This sill fjord is a part of the Godthåbsfjord system and is ca. 17 km long, 0.8 to 2 km wide and has a maximum depth of 150 m. It is subject to important exchange of coastal
water driven by a tidal range of 1 to 4.5 m (Richter et al. 2011) and receives freshwater from a river in the innermost part of the fjord, leading to a salinity gradient in the surface water. The outer part of the fjord is permanently ice free, whereas sea ice usually covers the innermost part of the Kobbefjord, with extensive interannual variation (Mikkelsen et al. 2008). Sea surface temperatures range from ca. −1.5°C during winter to ca. 8°C in late summer (Blicher et al. 2009). The stratification of the water column begins in late spring and lasts throughout the summer, when atmospheric heating and freshwater inputs from melting glaciers increase (Sejr et al. 2014, Sørensen et al. 2015). Phytoplankton is the main primary producer in the central parts of the fjord (Sejr et al. 2014). Generally, diatoms (particularly the genera *Chaetoceros* and *Thalassiosira*) dominate the microplankton assemblage during the spring bloom in late April/early May in the Godthåbsfjord system and are complemented by haptophytes (Juul-Pedersen et al. 2015, Krawczyk et al. 2015). Large brown macroalgae (*Agarum clathratum* and *Laminaria* spp.) form subtidal productive benthic habitats along the shores to water depths of ca. 40 m (Krause-Jensen et al. 2012). Communities of intertidal macroalgae are dominated by *Ascophyllum nodosum* but also with high abundance of *Fucus* spp. (Krause-Jensen et al. 2015). Subtidal and intertidal macroalgal communities form important habitats for sea urchins and bivalves (e.g. blue mussel *Mytilus edulis*) (Blicher et al. 2009, 2013, Krause-Jensen et al. 2012).

Field sampling

Sampling of the bivalve *Astarte elliptica*-complex and its potential sources of food were carried out on 15 May and 2 September 2013. Live *A. elliptica* were collected using a triangular dredge at a depth of 50 to 60 m in the outer regions of Kobbefjord (64°07’ N, 51°38’ W; Fig. 1) in a shell substrate bottom with high densities of scallops *Chlamys islandica* and sea urchins *Strongylometrus droebachiensis*. Specimens were frozen at −80°C shortly after being collected and kept at −80°C until further analysis. In total, 50 and 49 specimens were collected in May and in September, respectively. For each sampling period, 17 individuals were randomly selected and were dissected on ice to separate soft tissues (digestive gland and foot) from shells. As different tissues show different isotopic enrichment from food source to consumer, depending on the tissue turnover rate (e.g. Lorrain et al. 2002, Deudero et al. 2009), we used the digestive gland (high metabolic activity) to elucidate recent bivalve diet and foot (a tissue with lower metabolic activity) to provide an ‘average’ of dietary source over a longer period of time (Paulet et al. 2006).

To characterize suspended particulate organic matter (POM), both from the subsurface waters at 5 m depth (s-POM) and from 5 m above the bottom (b-POM), we collected 10 l water samples (*n* = 3 during both sampling periods) at the study site using Niskin bottles. Three sub-samples for each type of analysis (FAs, stable carbon isotopes of specific FAs and bulk stable isotopes) were made from the initial 10 l samples. On average, 2 l sub-samples were filtered onto pre-combusted (450°C for 4 h) 47 mm diameter Whatman GF/F glass-fiber filters (pore size 0.7 µm). All POM filters were kept at −80°C until analyses.

Because sediment sampling was impossible using a hand corer on *A. elliptica* habitat, we collected sediment cores (*n* = 3 for both sampling periods) at a depth of 110 m in a sedimentation basin in the middle section of the fjord (64°10’ N, 51°31’ W; Fig. 1) using a Kajak sampler (KC-Denmark). The upper 1 cm was retained and frozen at −80°C until further analysis. Given the large tidal amplitude and the strong mixing in the entire outer Godthåbsfjord area (Mortensen et al. 2011), we expected that small particles...
would be transported over large distances and thus similar food source conditions are expected at the bivalve location and the nearby sediment station (J. Mortensen pers. comm.). Since bivalves and sediment were collected below the euphotic zone, we did not specifically sample microphytobenthos.

Lastly, the most abundant macroalgae were collected in May using a grab hook from the boat for subtidal species (brown macroalgae: _Agarum clathratum_, _Laminaria spp._) or by hand on the rocky shores for intertidal communities (brown macroalgae: _Ascophyllum nodosum_, _Dictyosiphon foeniculaceus_, _Fucus vesiculosus_; green macroalgae: _Ulva lactuca_). All these species were fixed on hard substratum. Three specimens were collected for each species. Salt and epibionts were then removed with Milli-Q and samples were frozen at −80°C until further analysis.

As sea ice cover was very limited in Kobbefjord in winter 2013 (Jensen & Christensen 2014), biomass of sea ice algae was nearly zero and sampling was difficult. We did not have enough material to characterize this source of food.

Analysis of stable carbon and nitrogen isotopes

Bulk stable isotope analyses were performed on potential sources of food available at the time of sampling (i.e. pelagic s-POM and b-POM, sediment and macroalgae) and on the digestive gland of _A. elliptica_. All samples were freeze-dried before treatment and analysis. Digestive glands were then ground to a homogeneous powder and ca. 1 mg weighed in tin capsules for analyses. POM filters, sediments and macroalgal samples were duplicated: one untreated, and one acid-fumed or acid-washed to remove carbonate (Harris et al. 2001). POM filters were treated by the acid fume method, while sediment and macroalgal samples were treated by the acid washing method. Both acidified and non-acidified samples were analyzed for C and N. Samples were then dried at 60°C for 24 h and weighed in tin capsules before analyses. δ^{13}C and δ^{15}N composition were determined at the UC Davis Stable Isotope Facility (Department of Plant Sciences, University of California at Davis, CA) using a PDZ Europa ANCA-GSL elemental analyzer interfaced with a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon). Isotopic ratios for carbon and nitrogen were expressed using the standard δ notation according to the following equation:

\[\delta X = \left[\frac{R_{\text{sample}}}{R_{\text{reference}}} - 1 \right] \times 1000 \]

where X is the ^{13}C or ^{15}N of the sample, and R is the corresponding ratio ^{13}C/^{12}C or ^{15}N/^{14}N. The reference for C was Vienna Pee Dee Belemnite (VPDB), and atmospheric N\textsubscript{2} was the reference for N. The analytical precision was 0.2 and 0.3‰ for C and N, respectively.

FA analysis

Table 1 is a summary of the FAs used as dietary tracers in our study. FA analyses were performed on potential sources of food and on digestive gland and foot of _A. elliptica_ following the method of Bligh & Dyer (1959), as slightly modified in Meziane & Tsuchiya (2002). Briefly, samples were freeze-dried overnight and lipids extracted via ultrasonication for 20 min in distilled water:CHCl\textsubscript{3}:MeOH (1:1:2 v:v:v) after addition of an internal standard (23:0). Lipids were concentrated under N\textsubscript{2} flux and saponified with a mixture of NaOH:MeOH (1:2 v:v) at 90°C during 90 min to separate FAs. Saponification was stopped with HCl (35%) and CHCl\textsubscript{3} was added to recover

<table>
<thead>
<tr>
<th>Source</th>
<th>FATM</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copepods</td>
<td>18:3ω3, 18:4ω3, 16:4ω3</td>
<td>Dalsgaard et al. (2003), Lee et al. (2006)</td>
</tr>
<tr>
<td>Chlorophyta (green macroalgae)</td>
<td>18:2ω6, 20:4ω6, 20:5ω3, 18:1ω9</td>
<td>Graeve et al. (2002), Khotimchenko et al. (2002), Kelly & Scheibling (2012), this study</td>
</tr>
<tr>
<td>Phaeophyceae (brown macroalgae)</td>
<td>18:2ω6, 20:4ω6, 20:5ω3, 18:1ω9</td>
<td>Graeve et al. (2002), Kelly & Scheibling (2012), Wessels et al. (2012), this study</td>
</tr>
</tbody>
</table>

Table 1. Selected fatty acid trophic markers (FATMs) used as dietary tracers in the study of food resources of _Astarte elliptica_ in Kobbefjord, southwest Greenland.
FAs. FAs were concentrated under N₂ flux and converted to methyl esters by incubation with BF₃-MeOH at 90°C for 10 min. FA methyl esters (FAMEs) were extracted with addition of mixture distilled water:CHCl₃ (1:1 v:v) and concentrated under N₂ flux. The methylated FAMEs were extracted with addition of mixture distilled MeOH at 90°C for 10 min. FA methyl esters (FAMEs) were identified by comparison of the retention time with analytical standards (Supelco® 37 Component FAME Mix) and analysis of the sample in a gas chromatograph coupled to a mass spectrometer (GC–MS, Varian 450GC with Varian 220-MS). Each FA concentration was given as a percentage of total FAs (TFAs).

Stable carbon isotope analysis of specific FAs

Carbon stable isotope ratios of FAME samples (expressed as δ¹³CFA values in ‰) were analyzed at the UC Davis Stable Isotope Facility. Isotopic analyses of individual FAMEs were carried out under a continuous helium flow using a GC (Agilent 6890N) equipped with a BPX70 column (60 m × 0.25 mm outside diameter, 0.25 µm film thickness) coupled to an isotope ratio mass spectrometer (IRMS) (Thermo Finnegan MAT 253). Once separated, samples were converted to CO₂ in an oxidation reactor at 950°C, and CO₂ entered the IRMS. FAME δ¹³C were corrected for the methyl group addition during methylation according to the following formula:

\[
δ^{13}C_{FA} = \frac{(x+1)×δ^{13}C_{FAME} - δ^{13}C_{MeOH}}{x} \tag{2}
\]

where δ¹³C_FAME and δ¹³C_MeOH are the δ¹³C values of the measured FAME and methanol used during methylation, respectively. δ¹³C_FA represents the δ¹³C of the given FA prior to methylation, and x is the number of carbon atoms in the (non-methylated) FA. In this study, the δ¹³C value of the methanol used for the FAME preparation was equal to ~38.43 ‰. All δ¹³C_FA values are reported relative to VPDB using standard δ notation.

Data analysis

The effect of acid treatment on bulk carbon isotopic ratios of sources of food was tested using paired Student’s t-test. Effects of ‘Season’ (fixed with 2 levels) and ‘Depth’ (fixed with 2 levels) on δ¹³C and δ¹⁵N in POM were assessed with 2-way crossed ANOVA. Effects of ‘Season’ (fixed with 2 levels) on δ¹³C and δ¹⁵N in sediment samples and in digestive glands were tested with 1-way ANOVA. Differences in isotopic signatures between the 6 macroalgal ‘Species’ (fixed with 6 levels) were identified using 1-way ANOVA followed by Tukey’s HSD post hoc tests. δ¹³C_FA values of 7 FAs in tissues of *A. elliptica* were analyzed with 3-way crossed ANOVA to assess the effect of ‘Fatty acid’, ‘Tissue’, ‘Season’, and their interactions. Normality and homogeneity of variance of the residuals were assessed using the Shapiro-Wilk test and explanatory checks of plots of residuals against predicted values as suggested by Quinn & Keough (2002), respectively. When required, a logarithmic transformation was applied to the data.

Sampled sources of food were analyzed to determine discriminant FAs for each source in order to trace them in tissues of *A. elliptica* afterwards. To investigate FA composition between the 2 sampling periods and among the different samples, permutational multivariate ANOVA (PERMANOVA, 9999 permutations) was conducted using PRIMER 6 (Clarke 1993, Clarke & Gorley 2006) and PERMANOVA+ (Anderson et al. 2008). Multivariate homogeneity of group dispersion was verified before each analysis (PERMDISP, 9999 permutations) and data were transformed when necessary. In case of significant PERMANOVA tests, *a posteriori* pairwise multiple comparison tests were used to identify differences among levels of source of variation. Multivariate analyses on TFA composition of *A. elliptica* tissues, POM, sediments and macroalgal species, including *a posteriori* pairwise comparisons, were performed using a distance-based PERMANOVA (9999 permutations) based on Bray-Curtis dissimilarities. The number of replicates varied between 3 and 7. Variations in FA composition, expressed in percentages, were visualized using non-metric multidimensional scaling ordination, based on Bray-Curtis dissimilarities between samples after standardization of data. The similarity percentages (SIMPER) procedure (Clarke 1993) was performed on untransformed data to identify FAs explaining the most dissimilarity between significant different levels. We grouped brown macroalgae in order to seek FA markers of major taxa (i.e. brown macroalgae versus green macroalgae) through the SIMPER analysis. To seek differentiation in FATM contents between the 2 seasons and among the
digestive gland samples and the potential sources of food, a 2-way PERMANOVA with ‘Sample’ (fixed with 4 levels) and ‘Season’ (fixed with 2 levels) as sources of variation was performed on 12 selected FATMs (see Table 1, all FAs were used except for 16:4ω3). A significance threshold of $\alpha = 0.05$ was adopted for all statistical tests.

RESULTS

Seasonal δ^{13}C and δ^{15}N variability

No significant difference in δ^{13}C was observed between acid-treated and untreated samples of sediment and macroalgae (paired t-test, $p > 0.05$). However, paired t-tests showed significant differences in δ^{13}C between acidified and non-acidified samples of POM (both s-POM and b-POM, $p < 0.05$) collected in September. Statistical tests were therefore performed on acid-treated samples for δ^{13}C and on untreated samples for δ^{15}N.

A significant interaction between season and depth was observed in POM δ^{13}C (2-way ANOVA, $p < 0.01$; Fig. 2). δ^{13}C values were similar in May between subsurface and bottom samples ($−22.00 \pm 0.06‰$, mean \pm SE), while s-POM was more enriched in 13C ($−24.26 \pm 0.11‰$) than b-POM ($−25.49 \pm 0.21‰$) in September. No significant effect of season and depth or interaction was observed in POM δ^{15}N (2-way ANOVA, $p > 0.05$; Fig. 2). Surface sediment δ^{13}C and δ^{15}N values were similar between May and September (1-way ANOVA, $p = 0.36$ and $p = 0.82$, respectively; Fig. 2). Mean δ^{13}C and δ^{15}N values were $−20.87 \pm 0.04‰$ and $6.08 \pm 0.03‰$, respectively. δ^{13}C values of 6 macroagal species were determined and these significantly differed (1-way ANOVA, $p < 0.001$; Fig. 2) from one another. *Ulva lactuca* was the macroalga most enriched in 13C (δ^{13}C $= −16.44 \pm 0.05‰$), while *Dictyosiphon foeniculaceus* was the most depleted in 13C (δ^{13}C $= −22.44 \pm 0.37‰$). δ^{15}N in macroalgae also differed significantly among species (1-way ANOVA, $p < 0.001$; Fig. 2). δ^{15}N values were highest in *Laminaria* spp. and *U. lactuca* (7.12 \pm 0.30‰), lowest in *Ascophyllum nodosum* and *Fucus vesiculosus* (3.73 \pm 0.12‰), and intermediate in *Agarum clathratum* and *D. foeniculaceus* (5.56 \pm 0.59‰). Isotopic signatures of the digestive glands of *Astarte elliptica* were not significantly different between May and September (1-way ANOVA, $p = 0.48$ and $p = 0.13$ for δ^{13}C and δ^{15}N, respectively; Fig. 2). δ^{13}C of *A. elliptica* digestive gland was $−21.23 \pm 0.17‰$ and δ^{15}N was $5.54 \pm 0.13‰$.

FA analysis

Sources of food

FA profiles of macroalgae were significantly different (PERMANOVA, $p < 0.001$; Table 2, Fig. 3). Each of the 6 species had a specific FA composition (pairwise tests, $p < 0.05$). Table 3 presents detailed FA compositions for each species and the 5 major FAs contributing to explain more than 60% of the average similarity within each species group. SIMPER analysis on major taxa indicated that 16:4ω3, 18:3ω3, 18:4ω3 were more abundant in the green alga *U. lactuca*, whereas 14:0, 18:2ω6, 20:4ω6, 20:5ω3 were present in higher proportion in brown macroalgae (Table 3). These 7 FAs explained more than 60% of average similarity between the 2 taxa.

Detailed FA compositions in POM are given in Table S1A in the Supplement at www.int-res.com/articles/suppl/m567p139_supp.pdf. SFAs were largely dominant in POM samples ($>85\%$ of TFAs), but sig-
significant differences in FA compositions were observed between s-POM and b-POM, and between May and September (PERMANOVA, \(p < 0.01 \); Table 2). SIMPER analysis showed that the same set of FAs explained the differences among depths and among seasons. Levels of SFAs (16:0 and 18:0) were more important in b-POM and in September, while UFAs (especially 16:1\(\omega_7\), 16:4\(\omega_3\), 20:5\(\omega_3\), and 22:6\(\omega_3\)) showed higher proportions in s-POM and in May (Table S1A).

No significant differences were found in sediment TFA composition between the 2 sampling periods (PERMANOVA, \(p = 0.07 \); Table 2), with 16:1\(\omega_7\) (17.2 \(\pm\) 0.7%), 16:0 (14.1 \(\pm\) 0.3%), 20:5\(\omega_3\) (10.2 \(\pm\) 0.4%), and 18:1\(\omega_7\) (7.2 \(\pm\) 0.5%) as major FAs (Table S1B).

SIMPER analysis on all sampled sources of food indicated the large influence of 18 carbon UFAs (18:1\(\omega_7\), 18:3\(\omega_3\) and 18:4\(\omega_3\)) in *U. lactuca* and the importance of SFAs (16:0 and 18:0) in POM, and the isolation of sediment samples was based primarily on the presence of 16:1\(\omega_7\) and 20:5\(\omega_3\) (Fig. 3). The other macroalgae (brown macroalgae) were divided into 3 groups. The first one included *A. nodosum* and *F. vesiculosus*, mainly due to higher proportions of 18:1\(\omega_7\) and 18:2\(\omega_6\) compared to all the other groups. The second cluster included *D. foeniculaceus* and *Laminaria* spp., presumably due to their higher 20:4\(\omega_6\) and 20:5\(\omega_3\) contents. The third group included *A. clathratum*, with appears to be distinct based on its higher 16:0, 16:1\(\omega_7\) and 18:1\(\omega_9\) contents (Fig. 3).

A. elliptica tissues

Complete FA compositions of the digestive gland and feet of *A. elliptica* (see Table S1C) showed significant differences between tissues and seasons (PERMANOVA, \(p < 0.01 \); Table 4) but no interaction between tissues and seasons (Table 2). SIMPER analysis showed the influence of long-chain PUFAs (20 and 22 carbons) in the feet of *A. elliptica*, while UFAs with 16

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>A. elliptica</th>
<th>Source of variation</th>
<th>POM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue (T)</td>
<td>1 1489.300</td>
<td>48.856***</td>
<td>Depth (D)</td>
</tr>
<tr>
<td>Season (S)</td>
<td>1 299.030</td>
<td>9.816**</td>
<td>Season (S)</td>
</tr>
<tr>
<td>T × S</td>
<td>1 39.719</td>
<td>1.304</td>
<td>D × S</td>
</tr>
<tr>
<td>Residual</td>
<td>22 30.463</td>
<td>3.308</td>
<td>Residual</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sediment</th>
<th>df</th>
<th>MS</th>
<th>Pseudo-F</th>
<th>Macroalgae</th>
<th>df</th>
<th>MS</th>
<th>Pseudo-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Season</td>
<td>1</td>
<td>136.130</td>
<td>3.241</td>
<td>Species</td>
<td>5</td>
<td>2829.200</td>
<td>43.228***</td>
</tr>
<tr>
<td>Residual</td>
<td>4</td>
<td>42.001</td>
<td></td>
<td>Residual</td>
<td>12</td>
<td>65.449</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Results of PERMANOVA on total fatty acid (FA) composition of *Astarte elliptica* tissues and potential sources of food (i.e. POM, sediment, and macroalgae) collected in Kobbefjord, southwest Greenland in May and September 2013, based on the Bray-Curtis dissimilarity matrix. Data for *A. elliptica* were log(\(x+1\)) transformed prior to analysis. Significant values (\(p < 0.05 \)) are in **bold**: **\(p < 0.01 \)**, ***\(p < 0.001 \)**. Analyses were based on 48 FAs with 2 sources of variation: ‘Tissue’ (fixed with 2 levels: digestive gland and foot) and ‘Season’ (fixed with 2 levels: May and September) for *A. elliptica*; 27 FA with 2 sources of variation: ‘Depth’ (fixed with 2 levels: subsurface and bottom) and ‘Season’ (fixed with 2 levels) for pelagic POM; 52 FAs with 1 source of variation: ‘Season’ (fixed with 2 levels) for sediments; 45 FAs with 1 source of variation: ‘Species’ (fixed with 6 levels) for macroalgae.

Fig. 3. Non-metric multidimensional scaling ordination based on a Bray-Curtis dissimilarity matrix calculated on untransformed data for potential sources of food of *Astarte elliptica* in Kobbefjord, southwest Greenland: particulate organic matter from subsurface (s-POM) and bottom waters (b-POM) collected in May (open triangles) and September (black triangles), sediment (Sed), and 6 macroalgae species (see Fig. 2 for abbreviations). The factor ‘Season’ is not shown for sediment data since no significant difference was found (PERMANOVA, Table 2). Arrows and fatty acids indicate the main component explaining the group dissimilarities (SIMPER outputs). Dashed ellipses represent samples similar at 70%.
Table 3. Fatty acid composition, with concentrations expressed as percentage of mass of total fatty acids (MTFA), of 6 macroalgal species (see Fig. 2 for abbreviations) collected in Kobbefjord, southwest Greenland in May 2013. Values are means (SE). Only values >3% are shown. MTFA content, expressed in mg g⁻¹, is shown at the foot of the table, along with average similarity within each species group. The main FAs responsible for similarities (SIMPER outputs) are given in bold in the table. SFA: saturated FA; MUFA: monounsaturated FA; PUFA: polyunsaturated FA. ‘−’ indicates not determined

<table>
<thead>
<tr>
<th>AGA</th>
<th>ASC</th>
<th>DIC</th>
<th>FUC</th>
<th>LAM</th>
<th>ULV</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>5.0 (0.6)</td>
<td>12.7 (0.3)</td>
<td>7.0 (0.5)</td>
<td>12.9 (0.3)</td>
<td>10.3 (0.4)</td>
</tr>
<tr>
<td>16:0</td>
<td>28.7 (3.0)</td>
<td>13.3 (0.6)</td>
<td>18.0 (0.4)</td>
<td>11.5 (0.0)</td>
<td>20.6 (1.2)</td>
</tr>
<tr>
<td>Σ SFA</td>
<td>36.4 (3.4)</td>
<td>28.1 (1.0)</td>
<td>27.1 (1.0)</td>
<td>26.0 (0.3)</td>
<td>33.2 (0.5)</td>
</tr>
<tr>
<td>16:1ω7</td>
<td>11.9 (3.2)</td>
<td>1.3 (0.0)</td>
<td>1.7 (0.1)</td>
<td>1.6 (0.1)</td>
<td>2.2 (0.2)</td>
</tr>
<tr>
<td>17:1ω9</td>
<td>0.1 (0.0)</td>
<td>0.2 (0.0)</td>
<td>0.1 (0.0)</td>
<td>0.3 (0.0)</td>
<td>–</td>
</tr>
<tr>
<td>18:1ω9</td>
<td>8.2 (1.1)</td>
<td>–</td>
<td>8.9 (0.5)</td>
<td>14.8 (0.8)</td>
<td>–</td>
</tr>
<tr>
<td>18:1ω7</td>
<td>0.6 (0.1)</td>
<td>28.2 (0.7)</td>
<td>0.2 (0.1)</td>
<td>7.0 (0.4)</td>
<td>11.0 (0.6)</td>
</tr>
<tr>
<td>Σ MUFA</td>
<td>24.0 (2.7)</td>
<td>32.7 (0.8)</td>
<td>13.4 (0.7)</td>
<td>28.3 (0.4)</td>
<td>15.0 (0.6)</td>
</tr>
<tr>
<td>16:4ω3</td>
<td>0.3 (0.0)</td>
<td>–</td>
<td>0.2 (0.1)</td>
<td>0.2 (0.0)</td>
<td>–</td>
</tr>
<tr>
<td>16:4ω1</td>
<td>3.8 (0.9)</td>
<td>–</td>
<td>0.0 (0.0)</td>
<td>0.1 (0.0)</td>
<td>–</td>
</tr>
<tr>
<td>18:2ω6</td>
<td>5.7 (2.1)</td>
<td>8.7 (0.2)</td>
<td>8.6 (0.1)</td>
<td>12.2 (0.3)</td>
<td>7.2 (0.6)</td>
</tr>
<tr>
<td>18:3ω3</td>
<td>2.9 (0.9)</td>
<td>3.9 (0.3)</td>
<td>9.2 (0.6)</td>
<td>6.0 (0.2)</td>
<td>6.3 (1.1)</td>
</tr>
<tr>
<td>18:4ω3</td>
<td>1.3 (0.4)</td>
<td>3.3 (0.2)</td>
<td>9.6 (1.2)</td>
<td>4.3 (0.2)</td>
<td>9.5 (2.8)</td>
</tr>
<tr>
<td>20:4ω6</td>
<td>7.1 (0.6)</td>
<td>9.0 (0.6)</td>
<td>17.8 (0.7)</td>
<td>9.8 (0.2)</td>
<td>11.0 (2.6)</td>
</tr>
<tr>
<td>20:5ω3</td>
<td>7.2 (2.4)</td>
<td>9.7 (0.6)</td>
<td>12.0 (0.6)</td>
<td>9.2 (0.1)</td>
<td>15.2 (0.8)</td>
</tr>
<tr>
<td>22:5ω3</td>
<td>3.1 (0.5)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Σ PUFA</td>
<td>39.6 (6.1)</td>
<td>39.2 (1.5)</td>
<td>59.6 (1.7)</td>
<td>45.8 (0.2)</td>
<td>51.8 (1.1)</td>
</tr>
<tr>
<td>MTFA</td>
<td>6.5 (1.9)</td>
<td>3.0 (0.4)</td>
<td>9.1 (0.8)</td>
<td>7.6 (1.2)</td>
<td>7.5 (0.9)</td>
</tr>
<tr>
<td>Average similarity</td>
<td>80%</td>
<td>95%</td>
<td>94%</td>
<td>96%</td>
<td>88%</td>
</tr>
</tbody>
</table>

and 18 carbons were more abundant in digestive glands. Higher proportions of 18:4ω3, 16:4ω1, and 16:1ω7 were observed in May, while 18:2ω3, 20:4ω6, and 20:1ω9 showed higher levels in September (Fig. 4). We looked at variations of the 12 FATMs between seasons and between the digestive gland of A. elliptica and its potential sources of food (Table 4). Proportions of 18:1ω7 and 18:3ω3 were similar between May and September for all groups. Sums of 20:1ω9 and 22:1ω11 and levels of 16:4ω1, 18:2ω6, 20:4ω6, and 20:5ω3 significantly differed between May and September for all groups (PERMANOVA, p < 0.05; Table 4). Proportions of 20:1ω9, 22:1ω11, and 20:4ω6 significantly increased between May and September, while levels of the 3 other FATMs (16:4ω1, 18:2ω6, and 20:5ω3) decreased (Table 4). Proportions of 16:1ω7 significantly decreased between May and September in POM (both s-POM and b-POM, from 4.9 ± 0.7 to 1.4 ± 0.2% and from 4.4 ± 0.3 to 0.5 ± 0.1%, respectively) and in sediment (from 18.5 ± 0.5 to 15.9 ± 0.8%) (Table 4). Proportions of 18:4ω3 in b-POM, sediment and digestive glands of A. elliptica were significantly lower in September compared to May, while they were similar in s-POM (Table 4). Levels of 18:1ω9 were the same in
Table 4. Values (%) of the 12 fatty acid (FA) trophic markers used as dietary tracers for comparison between the digestive gland of *Astarte elliptica* and its potential sources of food, and between seasonal values. Values are means (SE). Results were analysed by 2-way PERMANOVA with 2 sources of variation: 'Sample' (fixed with 4 levels: particulate organic matter from subsurface (s-POM) and bottom waters (b-POM), sediment and digestive gland (DG) of *A. elliptica*) and 'Season' (fixed with 2 levels: May and September). Superscript letters indicate significant differences between groups (samples) in May and September; and *' *indicates significant differences among seasons (pairwise tests, p < 0.05). ‘–’ indicates not determined.

<table>
<thead>
<tr>
<th>FA</th>
<th>May</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>s-POM</td>
<td>b-POM</td>
</tr>
<tr>
<td>Σ i-FA + ai-FA</td>
<td>0.6 (0.2)a</td>
<td>0.5 (0.1)a</td>
</tr>
<tr>
<td>16:1o7</td>
<td>4.9 (0.7)a</td>
<td>4.4 (0.3)a</td>
</tr>
<tr>
<td>18:1o9</td>
<td>1.0 (0.1)a</td>
<td>1.1 (0.0)a</td>
</tr>
<tr>
<td>18:1o7</td>
<td>0.6 (0.1)a</td>
<td>0.9 (0.1)a</td>
</tr>
<tr>
<td>Σ 20:1o9 + 22:1o11</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>16:4o1</td>
<td>0.9 (0.2)a</td>
<td>1.0 (0.2)a</td>
</tr>
<tr>
<td>18:2o6</td>
<td>0.7 (0.1)a</td>
<td>0.4 (0.0)b</td>
</tr>
<tr>
<td>18:3o3</td>
<td>0.2 (0.1)a</td>
<td>0.1 (0.0)b</td>
</tr>
<tr>
<td>18:4o3</td>
<td>0.8 (0.2)ab</td>
<td>0.7 (0.0)a</td>
</tr>
<tr>
<td>20:4o6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>20:5o3</td>
<td>1.8 (0.3)a</td>
<td>2.8 (0.5)a</td>
</tr>
<tr>
<td>22:6o3</td>
<td>0.6 (0.1)a</td>
<td>0.6 (0.0)a</td>
</tr>
</tbody>
</table>

POM (both s-POM and b-POM) for the 2 periods, while sediment and digestive glands of *A. elliptica* showed reverse trends with a lower proportion in sediment and a higher proportion in digestive glands in May compared to September (Table 4). Levels of 22:6o3 were significantly higher in s-POM and digestive gland of *A. elliptica* in September compared to May (Table 4). Levels of 22:6o3 decreased in b-POM between May and September and remained constant in sediment. Seasonal differences in proportions of branched FAs, used as markers of bacteria, were only found in b-POM (Pairwise test, t = 3.82, p = 0.02), with higher proportions in May (0.5 ± 0.1%) compared to September (0.1 ± 0.0%) (Table 4).

As result of significant interactions between the 2 factors ‘Season’ and ‘Sample’ (PERMANOVA, p < 0.5), branched FAs, sums of 20:1o9 and 22:2o11, 16:1o7, 18:4o3, and 22:6o3 varied differently between b-POM, s-POM, sediment, and the digestive glands of *A. elliptica* in May and in September (Table 4). A higher variability was observed in September compared to May since the 4 groups were often significantly different from one another, with the exception of the sum of 20:1o9 and 22:2o11 which was significantly higher in digestive gland than in sediment in May. In September, the percentages of 20:1o9 and 22:2o11 were similar in sediment and in digestive glands, but significantly higher than percentages found in May (Table 4). Relative proportions of 18:1o9, 18:1o7 and 16:4o1 remained the same among the 4 groups (s-POM, b-POM, sediment and digestive glands) in May and September, with the lowest proportions in POM, intermediate proportions in digestive glands and the highest proportions in sediment (Table 4). Levels of 20:5o3 remained low in POM, intermediate in sediments and higher in the digestive glands. Levels of 18:2o6 were intermediate in s-POM, lower in b-POM and sediment and higher in the digestive glands, and proportions of 20:4o6 were significantly higher in sediment than in the digestive glands of *A. elliptica* (Table 4).

Carbon stable isotope of individual FA

Isotopic signatures of 7 FAs in tissues (digestive glands and feet) of *A. elliptica* are shown in Fig. 5. A significant effect of the interaction between the 2 factors ‘Fatty acid’ and ‘Tissue’ was observed on δ13C values, while no effect of the factor ‘Season’ was detected (3-way ANOVA, p < 0.01; Table 5). The highest δ13C values (−25.0 ± 0.4‰) were found for the FA 22:6o3 and the lowest δ13C values (−37.2 ± 0.8‰) were obtained for 18:3o3, both in foot samples (Fig. 5). The range of δ13C values in digestive glands was smaller, from −25.4 ± 1.0‰ for 22:6o3 to −31.0 ± 0.6‰ for 18:2o6 (Fig. 5). 18:2o6 and 18:3o3 were significantly more depleted in 13C than the other FAs in the foot, while they had δ13C values about equal to the other FAs in the digestive gland (Fig. 5). Whether in digestive gland or in foot, δ13C values of 20:4o6, 20:5o3 and 22:6o3 tended to decrease with unsatura-
tion, although no significant difference was observed (Fig. 5). δ¹³C values of 10 FAs used as FATMs are shown in Fig. 6. In A. elliptica, mean δ¹³C values in feet widely varied, from −37.2 ± 0.8‰ for 18:3ω3 to −25.0 ± 0.4‰ for 22:6ω3. Among all sources of food, δ¹³C values ranged between −32.2‰ for 20:4ω6 in POM and −19.1 ± 1.5‰ for 20:5ω3 in the green macroalgae U. lactuca.

DISCUSSION

In accordance with our first hypothesis, trophic resources (organic matter from the water column and the sediment, and macroalgae) were distinguishable in terms of FA compositions and isotopic signatures (bulk stable isotopes, and carbon isotopic ratio on individual FAs). Thus, these biological and chemical segregations allowed us to trace these resources in the benthic food web and to accurately identify the diet of the bivalve Astarte elliptica in a sub-Arctic fjord. However, contrary to our second hypothesis, the multiple biomarker approach showed that A. elliptica did not feed only on microalgae, but rather on a mixture of POM, including microalgae and macroalgal (mainly brown algae) material. Moreover, δ¹³C signatures in A. elliptica tissues suggest that isotopic composition was not the most appropriate tool to track seasonal variability in its diet, whereas TFA profiles and FATMs showed marked differences between the 2 sampling periods. Thus, a combination of these 2 tools seems to be a useful method to understand trophic strategy in response to

<table>
<thead>
<tr>
<th>Sources of variation</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatty acid (FA)</td>
<td>6</td>
<td>161.139</td>
<td>22.416***</td>
</tr>
<tr>
<td>Tissue (T)</td>
<td>1</td>
<td>14.205</td>
<td>1.976</td>
</tr>
<tr>
<td>Season (S)</td>
<td>1</td>
<td>27.199</td>
<td>3.884**</td>
</tr>
<tr>
<td>FA × T</td>
<td>6</td>
<td>3.210</td>
<td>0.447</td>
</tr>
<tr>
<td>FA × S</td>
<td>6</td>
<td>7.355</td>
<td>1.023</td>
</tr>
<tr>
<td>T × S</td>
<td>1</td>
<td>7.188</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Results of 3-way ANOVA testing the effect of 'Fatty acid' (fixed with 7 levels: 18:1ω9, 18:2ω6, 18:3ω3, 18:4ω3, 20:4ω6, 20:5ω3, and 22:6ω3), 'Tissue' (fixed with 2 levels: digestive gland and foot), and 'Season' (fixed with 2 levels: May and September) and their interactions on the carbon isotopic ratio of 7 fatty acids in Astarte elliptica. Significant values are in **bold**: **p < 0.01; ***p < 0.001

![Graph](image-url)
changing primary production dynamics as proposed in our third hypothesis.

Characterization of trophic resources

Our study included 9 potential sources of food available at the time of samplings (i.e. pelagic POM, including s-POM and b-POM, surface sediment and 6 macroalgal species) that showed distinct FA compositions and isotopic signatures. As observed by Khotimchenko et al. (2002) and Li et al. (2002), the green macroalgae (*Ulva lactuca*) showed typical FA composition containing higher concentrations of PUFAs with 18 carbons (especially 18:3ω3 and 18:4ω3) and lower levels of PUFAs with 20 carbons than brown macroalgae. Furthermore, we found high levels of 16:4ω3 (up to 15%), which are characteristic in the order Ulvales (Fleuronce et al. 1994, Khotimchenko et al. 2002), making this FA a relevant biomarker of *U. lactuca* in the diet of primary consumers. Brown algae were distinguishable from the green macroalgae by relatively high levels of 20:4ω6, 20:5ω3, 18:2ω3 and 18:1ω9, as already shown in previous studies (Graeve et al. 2002, Khotimchenko et al. 2002, Li et al. 2002). The clear differences between the 2 macroalgal groups (brown vs. green) and also between species, since the 6 algae species had distinct FA compositions, make these lipids a suitable tracer of algal resources in studies of benthic food webs. However, considerable variability in FA composition has been shown in macroalgae among species, sites and seasons (Nelson et al. 2002, Dethier et al. 2013). Sampling for FA characterization ideally should span all seasons to capture this variation and how it propagates up through consumers in food webs. Despite these variations, FATMs could readily distinguish macrophyte phyla (Dethier et al. 2013).

Stable isotope compositions of POM were in the range of values observed in other Arctic studies (Hobson et al. 1995, Renaud et al. 2011, Oxtoby et al. 2013). Although POM isotopic composition is affected by the type of settling material (e.g. phytodetritus, faeces of pelagic grazers or marine snow; Mintenbeck et al. 2007), we found no significant depth effect on δ15N. In particular, increased POM δ15N values with depth may be a consequence of zooplankton grazing and microbial degradation (Ostrom et al. 1997). POM also showed variations in δ13C and more 13C-depleted values in September than in May (see ‘Seasonal variability’ below). Although macroalgal species were not identified in POM samples, the algal class composition can be partially deduced using FATMs (e.g. reviewed in Dalsgaard et al. 2003, Kelly & Scheibling 2012). POM FA composition was largely dominated by SFAs. This dominance of SFAs, markers of *Phaeocystis* spp., is consistent with observations conducted during the monitoring program of Godthåbsfjord, since *Phaeocystis* spp. dominated the phytoplankton community from March to June (86% on average) and in September (78%) 2013 (Jensen & Christensen 2014). Alternatively, it has already been shown that marine detritus contains significant quantities of SFAs with between 14 and 18 carbons (Fahl & Kattner 1993). Higher levels of SFA and lower levels of UFAs in b-POM compared to s-POM could explain depth-related differences in FA composition of POM samples related to degradation processes (Reemtsma et al. 1990, Fileman et al. 1998). The more rapid degradation of PUFAs with increasing depth compared to SFAs and MUFAs is well established, although lower degradation rates have been shown in cold environments (Fileman et al. 1998). Lower levels of PUFAs likely denoted degradation of pelagic organic matter during transfer through the water column.

Sediment had higher δ13C values than POM, likely related to sinking phytodetritus that may be slightly 13C-enriched due to microbial degradation (Hobson et al. 1995). The relatively high δ13C values in sediment may also result from the influence of macro-algae (especially *Fucus vesiculosus* and *Agarum chlathratum*), which were mostly enriched in 13C. The 13C composition of the sediment indicates therefore that phytoplankton and material from brown algae both contribute to the organic material buried in the sediment of the Kobbefjord. Alternatively, with regard to FA composition, relatively high levels of 16:1ω7 (17.2 ± 0.7%), 16:4ω1 (1.3 ± 0.1%) and 20:5ω3 (10.2 ± 0.4%) in sediment may reflect the presence of diatoms, which are major taxa of micrplankton during the blooms (Krawczyk et al. 2015), and in microphytobenthos (Wulff et al. 2009 and references therein, but see discussion about 20:5ω3 origin below), although we did not isolate this trophic source. Microphytobenthos can be assumed to be of minor importance since the sampling depth of *A. elliptica* is below the euphotic zone (ca. 40 m; Jensen & Christensen 2014). Two other potential sources may contribute to Arctic food webs: terrestrial carbon and ice algae. Since the POM analysed clearly had a marine δ13C signature (marine δ13C from −22 to −25‰, terrestrial δ13C from −27 to −31‰; Dunton et al. 2006) and ice algae contributes less than 1% of total (sympagic plus pelagic) primary production annually in Kobbefjord (Mikkelsen et al. 2008), ter-
restrial and sea ice associated sources can be excluded as food significantly contributing to the diet of *A. elliptica*.

Diet of *A. elliptica*

Coupled approaches of bulk isotopic, FA and CSIA showed that *A. elliptica* feeds on a mixture of suspended POM and brown macroalgal material. Based on bulk isotope analysis, 3 sampled sources of food (suspended POM, in May, and the 2 brown algae *Dictyosiphon toeniculaceus* and *F. vesiculosus*) are likely to support the bivalve *A. elliptica* in Kobbefjord. FA composition and FATM analyses supported these results since digestive glands of *A. elliptica* contained high levels of FA markers of microalgae, both diatoms and dinoflagellates (16:1ω7, 18:4ω3, 20:5ω3 and 22:6ω3), and brown macroalgae (PUFAs with 18 carbons, 20:4ω6 and 20:5ω3).

The use of FATMs is sometimes limiting since a unique FA tracer assigned to a given taxonomic group is a relatively rare situation. Compound-specific isotope analysis appears to be a more successful method than the use of other trophic markers when different food sources have similar bulk carbon isotope and FA than the use of other trophic markers when different trophic analysis appears to be a more successful method. For example, *Ascoyllum nodosum* completely covers the rocky shore with mean estimated abundance and biomass of 134 ± 13 ind. m⁻² and 15.8 ± 3 kg fresh weight m⁻², respectively (Jensen & Christensen 2014). This supports the notion that even suspension feeders, generally presumed to feed mainly on phytodetritus, incorporate significant amounts of resuspended macroalgal material.

In Arctic food web studies, isotope analysis on individual FAs has been mainly investigated to distinguish diatoms originating from the pelagic and sympagic habitats and to assess their relative contribution in consumer diet (Budge et al. 2008, Wang et al. 2014). It has been established that ice algae δ¹³CFA (especially 16:4ω1 and 20:5ω3, which are common FAs used as diatom markers) values were higher than in phytoplankton (Budge et al. 2008, Wang et al. 2014). In our study, however, high levels of 20:5ω3 in brown macroalgae (>7%, compared to 0.4 to 2.8% in POM) combined with δ¹³CFA values in tissues of *A. elliptica* (following application of the fractionation constant) indicated that the bivalve incorporates 20:5ω3 from brown algae rather than diatom-derived organic matter from sediment or pelagic primary production (POM). Sampling and characterization of all trophic resources in a given study site seems to be essential since δ¹³CFA can be similar between 2 resources. For instance, our results showed that the green algae *U. lactuca* had a carbon isotopic ratio of the FA 20:5ω3 (−19.1 ± 1.5‰) within the range of that in ice algae (−18.3 ± 2.0‰, Budge et al. 2008).

Seasonal variability

POM showed high seasonal δ¹³C and δ¹⁵N variability. The large range of POM δ¹³C values has been related to several factors, such as phytoplankton growth conditions, changes in species composition,
temperature, water masses and aqueous CO$_2$ limitation (Rau et al. 1992, Ostrom et al. 1997, Michener & Kaufman 2007). In our study, POM δ^{13}C variability is related to the spring phytoplankton bloom and may directly reflect variations in dissolved inorganic carbon (DIC) availability. During the spring bloom, intense phytoplankton growth leads to reduce DIC concentrations. As concentrations of DIC decrease, phytoplankton cells are forced to incorporate 13C-enriched CO$_2$[aq] resulting in higher particulate organic carbon isotopic ratios (Rau et al. 1992, Ostrom et al. 1997). Depletion in 13C in September could, hence, be explained by the replenishment of DIC as a consequence of the decreased primary production combined with a weakening of stratification at the end of the summer (Jensen & Christensen 2014). A seasonal variability has also been observed in POM FA composition despite the dominance of SFAs in this study, likely explained by the high occurrence of *Phaeocystis* spp. in phytoplankton communities during the studied year (Jensen & Christensen 2014). Slightly higher levels of FA markers of microalgae, both diatoms (16:1o7, 16:4o1 and 20:5o3; Viso & Marty 1993, Reuss & Poulsen 2002, Kelly & Scheibling 2012) and dinoflagellates (18:4o3 and 22:6o3; Napolitano et al. 1997, Mansour et al. 1999, Kelly & Scheibling 2012), as well as markers of brown macroalgae (18:4o3 and 20:5o3; Graeve et al. 2002, Kelly & Scheibling 2012, Wessels et al. 2012) were found in May. POM contained more diatoms, dinoflagellates and/or macroalgae-derived organic matter in May, while higher levels of SFAs in September suggest a more degraded material (De Baar et al. 1983, Fahl & Kattner 1993). The lower concentration of TFAs (almost 30%) and the decreased level of UFAs in September compared to May, as well as the δ^{13}C variability, well depict bloom and post-bloom conditions in Kobbefjord.

By contrast, SOM showed similar δ^{13}C and δ^{15}N values and FA composition in May and September. Stability in isotopic composition of SOM may reflect heterogeneity of carbon sources reaching the seafloor and their long-time persistence. This accumulation of phytodetritus can create a sediment ‘food bank’ (Mincks et al. 2005), that is available and can sustain benthic organisms with continuous supplies of food that offset the effects of the strong seasonality of primary production in the Arctic marine system (McMahon et al. 2006, Norkko et al. 2007). As *A. elliptica* were collected in a relatively high-current habitat where a ‘food bank’ is unlikely, stability in isotopic and FA composition of sediment could reflect residual organic matter after a consumption of a large amount of fresh organic matter by pelagic and benthic fauna (including filter-feeders). In areas where macroalgae biomass is relatively important, the pool of phytodetritus can be supplemented by macroalgae-derived material, which can then be exploited by filter-feeders (Hop et al. 2002, Quijón et al. 2008, Legeżyńska et al. 2012).

Digestive glands of *A. elliptica* showed very similar δ^{13}C and δ^{15}N values between the 2 sampling periods. Bulk stable isotope analysis in bivalve tissues therefore integrates the isotopic signature of a very specific source of food with a similar carbon isotopic ratio to the bivalve. Alternatively, the carbon isotopic ratio of *A. elliptica*, as a non-selective feeder, is an average of isotopic signature of food and reflects heterogeneity of available sources of food. This temporal stability of δ^{13}C values in *A. elliptica* suggests, however, that bulk isotopes are not an appropriate approach to characterize seasonal variability in food supply to bivalves. The low (<1‰) or non-existent seasonal variability in benthic organism δ^{13}C has been already recorded in previous Arctic studies (e.g. Dunton et al. 1989, Kędra et al. 2012, Roy et al. 2015). This may be related to slow metabolic rates, slow growth and/or low temperatures (e.g. Kaufman et al. 2008). By contrast, FA profiles and FATMs showed differences between the 2 sampling periods and seem therefore to represent a useful method to look into food regime strategies in response to changing primary production dynamics. More specifically, we tracked changes in relative levels of FATMs between May and September in the digestive gland, which is a tissue with relatively high turnover rates, leading to rapid changes in biochemistry in response to changes in diet quality (Shin et al. 2008, Stead et al. 2013). Overall, seasonal variability in the diet of *A. elliptica* is related to a smaller contribution of microalgae, especially diatoms (lower levels of 16:1o7 and 16:4o1), and macroalgae (general decreased levels of PUFAs with 18 carbons) in September compared with May. In addition, *A. elliptica* showed a higher consumption of zooplankton, more specifically calanoid copepods (associated with increased proportion of 20:1o9 and 22:1o11) and bacteria (due to higher levels of branched FAs) in September. Benthic organisms depend on processes that take place in the water column and affect the organic matter (in terms of quantity and quality) sinking to the seafloor. Exported organic matter from the euphotic zone is strongly dependent upon the timing and the diversity of the primary producers, consumption (grazing by heterotrophs) and biological degradation by bacteria in the water column (Forest et al. 2010, Wassmann &
Reigstad 2011). Hence, A. elliptica seems to rather quickly respond to changes in organic matter reaching the benthos by behaving opportunistically to get its food.

Higher biomass and northward-expanded distribution of macroalgal communities may already be occurring in some Arctic areas in response to increased temperatures and reduced sea ice cover (e.g. Weslawski et al. 2010, Kortsch et al. 2012) and could be beneficial to benthic macrofaunal communities. Nevertheless, further investigations are needed to determine relative contributions of benthic and pelagic components (i.e. macroalgae, microphytobenthos, phytoplankton, ice algae and zooplankton) in benthic coastal food webs and how the diet of suspension feeders could be affected by a changing Arctic environment.

Acknowledgements. The authors thank F. Heinrich for technical assistance and N. Thiney for laboratory assistance. We also thank 2 anonymous reviewers for constructive comments. Financial support was provided by Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant 299100 to R.T. and by the Total Foundation and the Institut polaire français Paul Emile Victor through the Canada Excellence Research Chair program. This work at ISMER-UQAR to F.O. S.R. received financial support from the Ministry of Education, Culture, Research and Church in Greenland. We are grateful to the Fonds de Recherche du Québec – Nature et Technologies (FRQNT) for providing a grant to B.G. for a 4-mo placement in Québec-Océan. The research programs of ArcticNet, Arctic Science Partnership Program and Québec-Océan.

LITERATURE CITED

De Moreno JEA, Moreno VJ, Brenner RR (1976) Lipid metabolism of the yellow clam, Mesodesma mactroides: 2-polyunsaturated fatty acid metabolism. Lipids 11: 561–566

Gladyshev MI, Sushchik NN, Kalachova GS, Makhotova ON (2011) Stable isotope composition of fatty acids in organisms of different trophic levels in the Yenisei River. PLOS ONE 7:e34059

Hsiao SIC (1980) Quantitative composition, distribution, community structure and standing stock of sea ice microalgae in the Canadian Arctic. Arctic 33:768–793

IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

Sound. Vol 58, Meddelelser om Grønland, Bioscience, Copenhagen, p 160–173

Petersen BH (2001) Studies on some Arctic and Baltic Astarte species (Bivalvia, Mollusca). Danish Polar Center, Copenhagen

Wassmann P (2011) Arctic marine ecosystems in an era of rapid climate change. Prog Oceanogr 90:1–17

Submitted: February 15, 2016; Accepted: December 22, 2016

Proofs received from author(s): February 27, 2017