
HAL Id: hal-01497632
https://hal.univ-brest.fr/hal-01497632

Submitted on 28 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Distributed Consensus-based Clock Synchronization
Protocol for Wireless Sensor Networks

Habib Aissaoua, Makhlouf Aliouat, Ahcène Bounceur, Reinhardt Euler

To cite this version:
Habib Aissaoua, Makhlouf Aliouat, Ahcène Bounceur, Reinhardt Euler. A Distributed Consensus-
based Clock Synchronization Protocol for Wireless Sensor Networks. Wireless Personal Communica-
tions, 2017, 95 (1). �hal-01497632�

https://hal.univ-brest.fr/hal-01497632
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

A Distributed Consensus-based Clock Synchronization
Protocol for Wireless Sensor Networks

Habib Aissaoua1,3 · Makhlouf Aliouat2 ·
Ahcène Bounceur3 · Reinhardt Euler3

Received: date / Accepted: date

Abstract The birth of computer networks and distributed systems has led to
the appearance of the clock synchronization problem. This issue has gained in-
creasing importance with the emergence of new resource constrained networks
such as wireless sensor networks. In this paper, we propose a new distributed
clock synchronization algorithm, referred to as Weighted Consensus Clock Syn-
chronization (WCCS), whose objective is to achieve a consensus clock among
network nodes. In this distributed approach and in contrast to centralized
schemes, each node periodically exchanges the local clock reading with its im-
mediate neighbor nodes. Then, each node employs these time informations to
calculate its relative offset and skew with respect to its neighbor nodes using
a weighted average consensus based technique. The effectiveness of WCCS is
proved through both simulations and an experimental study on TelosB mote
using TinyOS.

Keywords Consensus algorithm · Convergence · Clock drift ·Wireless sensor
networks · Distributed algorithms

1 Introduction

Since the advent of computer networks and distributed systems, clock syn-
chronization has attracted intensive interest by researchers. This concern has
recently been increased with the appearance of wireless sensor networks (WSNs)

Habib Aissaoua (�)
E-mail: habib.aissaoua@gmail.com

1Department of Computer Science, University of Abderrahmane Mira, Bejaia, Alge-
ria
2Department of Computer Science, University of Ferhat Abbas Setif 1, Algeria
3Lab-STICC CNRS laboratory, University of Western Brittany, Brest, France

2 H. Aissaoua et all.

which often have resource constrained devices. In fact, clock synchronization
is crucial for a wide range of communication protocols and applications. Data
fusion, MAC protocols and node sleep scheduling are some examples that
require an accurate time to operate correctly. Indeed, the purpose of clock
synchronization schemes is to ensure a common notion of time to the whole
set of network nodes. However, these schemes are challenged by the restricted
resources that typify nodes of such networks, the clock drifting caused by the
imperfect hardware clocks used nowadays by network nodes, and also the un-
certainty caused by message latency during communication between nodes.
Therefore, clock synchronization protocols have to present a best compromise
between synchronization accuracy and the available resources such as energy,
memory storage and computation. In fact, synchronization schemes that have
been designed for wired networks are not suitable for WSNs due to their
particularity. Despite the scalability and robustness of network time protocol
(NTP) [1] and the high accuracy of Global Positioning System (GPS) based
synchronization techniques, these protocols are not appropriate for WSNs [2].
Mainly, the accuracy may be considered as a primary purpose when designing
a synchronization scheme. However, in WSNs, other purposes such as energy
efficiency, scalability, robustness and convergence speed also have to be taken
into consideration.

Recently, the clock synchronization issue in WSNs has received a great
deal of attention and evolved to a topic of considerable research interest. Con-
sequently, numerous algorithms have appeared in the literature (e.g.,[3–8])
addressing the problem of sharing a common notion of time among network
nodes. One particular area of research in distributed algorithms is the agree-
ment or consensus issue which has also gained a lot of attention, particularly
in the field of sensor networks, as a way to achieve a global solution in a totally
decentralized fashion. The main idea behind consensus clock synchronization
algorithms is to employ a linear iteration, in which each node updates its own
local estimate of global clock value based on the time information received
from its direct neighbors. As a result, all of the network nodes asymptotically
converge to the same consensus clock. Based on such a distributed consensus
algorithm, several approaches have been proposed in the literature to solve
the clock synchronization problem in WSNs [6, 7, 9, 10].

In this paper, we propose a new distributed clock synchronization algo-
rithm for WSNs called Weighted Consensus Clock Synchronization(WCCS).
The key novelty of our contribution is to employ the elapsed time on arrival
technique [11] during the synchronization process to deal with the low con-
vergence speed that consensus techniques often suffer from. In addition, we
adapt the exponential smoothing technique to our weighted average consen-
sus algorithm in order to ensure an accurate clock skew synchronization. The
idea of smoothing technique is to control the process that averages the data
using a weighted combination between the previous and the newest data esti-
mations. In fact, we have two reasons that motivate us to use this technique.
First, because of possibly high clock drift variation caused by the change in
ambient conditions, such as temperature for instance, the current estimate can

A Distributed Consensus-based Clock Synchronization Protocol 3

introduce more effect on the clock skew estimation than the prior ones [12].
Second, the authors of [13, 14] prove that allowing nodes to use their previous
estimates at each iteration can enhance the robustness against frequent topo-
logical changes. Consequently, our proposed solution exploits such a technique
by considering the current and previous skew estimations at each clock skew
compensation process, in order to accurately estimate the relative clock skew,
and to improve the robustness when the network topology changes dynami-
cally. Also, our algorithm is fully distributed, where nodes communicate only
with their direct neighbors in a very simple manner and without any prior
knowledge of the network topology.

The rest of this paper is organized as follows. Section 2 describes some
leading clock synchronization protocols found in the literature. In section 3,
we will give some technical preliminaries followed by basic concepts and the
problem definition, that are useful to understand our proposal. The design
details of the proposed clock synchronization scheme are presented in Section 4.
Simulation and experimental results followed by discussion and comparison of
the proposed work with the most relevant work proposed in the literature are
given in Section 5. Finally, Section 6 concludes the paper. Some of our proofs
are presented in appendices A, B, C, and D.

2 Related Work

Clock synchronization in WSNs has been extensively studied, and thus many
algorithms and protocols have been designed to address this issue. Generally,
we can classify synchronization schemes into two categories: reference-based
and distributed synchronization protocols. In the first category, the network
nodes receive the time information from a reference node. Then, each node has
to adjust its clock based on the clock information received from the reference
node. In order to deal with the growth of the network size that typifies WSNs,
a reference-based technique uses a hierarchical structure where the root node
usually acts as a reference node. Indeed, this category of protocols remark-
ably enhances scalability and also has a better convergence speed compared
to distributed synchronization protocols. However, it suffers from the frequent
changes of topology and from node failures, and the synchronization error also
grows exponentially with the size of the network [15]. In distributed synchro-
nization schemes, however, each node performs synchronization with its direct
neighbor nodes, and thus all node clocks will gradually converge to a common
global time value. A distributed-based technique can thoroughly handle scal-
ability without any prior knowledge of the network topology. Consequently,
protocols using this technique are robust to node failures and network topol-
ogy changes. Now, we briefly describe some of the most relevant work proposed
in the literature. Authors in [3] have introduced a new clock synchronization
scheme, called Reference Broadcast Synchronization (RBS), based on the as-
sumption that neighboring nodes receive the same signal at nearly the same
time. In RBS, the arrival time of a message broadcasted from a selected node

4 H. Aissaoua et all.

is recorded at every node, and then exchanged with neighboring nodes to es-
timate the relative clock offsets. The Timing-sync Protocol [4], called TPSN,
uses a round trip synchronization technique in order to achieve a global time
synchronization. To this end, after electing one node as the root node, a span-
ning tree will be built in which every node can synchronize itself with its parent
node one level higher up in the tree. The Flooding Time Synchronization Pro-
tocol (FTSP) [5] is one of the most popular clock synchronization protocols in
WSNs. In FTSP, the nodes collaborate to dynamically form an ad-hoc struc-
ture from which the root node floods the time information into the network.
In order to achieve a high level of accuracy, it employs a customized MAC
layer timestamp and uses the linear regression technique to estimate both the
offset and the skew error with respect to the root node. In [11], authors have
proposed a proactive time synchronization where nodes record the appear-
ance time of any event of interest based on their local clocks. Hereafter, nodes
that have perceived the event send the appearance time of that event while
internodes carry out time transformation from the sender node to the corre-
sponding local time, and thus the elapsed time from the event source til the
arrival at the sink node will be computed. A broadcast gossip consensus algo-
rithm has been proposed in [9] to achieve consensus among all network clocks.
Using MAC layer timestamps, each node periodically broadcasts a synchro-
nization packet that contains its local time, offset and drift estimates to its
neighbors. Upon receipt, both the offset and clock drift compensation will be
carried out using the gossip average scheme. In [16], the authors have pro-
posed a maximum time synchronization protocol by which the fastest clock
among neighbor nodes is elected to be a reference clock. As a result, all net-
work clocks will asymptotically converge to the maximum clock value. The
PulseSync protocol is proposed in [8] to deal with growth of the clock skew
error relative to an enlargement of the network diameter. The basic idea of
PulseSync is to rapidly disseminate the time information over the network in
order to minimize the potential negative effects of clock drifting and the overall
message latency. Authors in [17] have employed a clustering technique, based
on the LEACH [18] protocol, to deal with the problem of high communication
traffic and low convergence speed of distributed consensus time synchroniza-
tion protocols. In [19], the authors have designed a scheme that employs the
measured temperature to assist network nodes to automatically compensate
the effect of the clock skew. In order to increase the interval between two syn-
chronization periods without losing synchronization accuracy, the authors of
[20] have conducted measurements during several months to prove the cor-
relation of clock frequency and temperature. Then, the estimated correlation
between the crystal frequency and the working temperature is used to directly
remove the clock skew during a clock synchronization process. In [21], a new
scheme based on clustering topology is proposed. Its basic idea is that during
the synchronization process between the cluster-head and the reference node,
all neighboring nodes can overhear the exchanged synchronization messages
which are timestamped by the two nodes’ local clocks. Therefore, the cluster
members will take advantages of such synchronization traffic to adjust their

A Distributed Consensus-based Clock Synchronization Protocol 5

local clocks. In [22], a distributed receiver to receiver protocol is provided to
cope with the need of a fixed reference which is the major drawback of the
scheme introduced by RBS [3]. In [23], a fully-distributed synchronization al-
gorithm has been proposed for WSNs under unknown exponential delays. The
authors have exploited the round trip synchronization mechanism and the joint
maximum likelihood estimator of clock skew, and the clock offset problem is
cast into a linear programming problem.

3 Preliminaries and basic definitions

3.1 Network model

Generally, a WSN can be modeled as an undirected graph G(t) = (V, E(t)),
consisting of a set of nodes V = {1, ..., n} and a set of edges set E(t) ⊆ {{i, j} |
i, j ∈ V} representing the available communication links which means that
nodes i and j can reliably communicate with each other at time t. The symbol
Ni(t) = {j ∈ V | {i, j} ∈ E(t), i 6= j} denotes the set of neighbors of node
i ∈ V, and di(t) its degree, i.e., its number of neighbors where di(t) , |Ni(t)|.

Assumption 1 At any time t, the graph G(t) is connected (i.e., there is a
path between any pair of distinct nodes in the network).

Assuming G(t) to be connected, guarantees that each pair of its nodes can ex-
change messages within G(t). A weighted graph is a triple G(t) = (V, E(t), w(t)),
where w : E −→ R>0 is a function assigning to each edge {i, j} ∈ E(t) a strictly
positive real number wij called its weight.

3.2 Distributed average consensus

In WSNs, we can define a distributed consensus problem as the problem of
making the individual nodes of a network to reach a consensus (or agreement)
upon a common value of a quantity of interest allowing all the network nodes
to cooperate in a coordinate fashion [24, 25]. A widely studied class of consen-
sus issue is the average consensus problem in which each node holds a value or
measurement in the aim to compute the average of all the values in the net-
work using distributed linear iterations. Indeed, averaging algorithms employ
a straightforward mechanism in a completely distributed manner. At every it-
eration, neighbor nodes exchange their local states (informations) and update
their state based on the received data using a simple linear weighted average.

In order to describe the average consensus algorithm, let us assume that
it progresses on a weighted graph G. Further, we associate with each node
i ∈ V some scalar value xi ∈ R that defines its state. The goal of an average
consensus algorithm is to compute the consensus value m = 1

n

∑n
i=1 xi in

a distributed way. We suppose that the state of each node i at time slot
t is denoted by xi(t), and the state of the network is a vector denoted as

6 H. Aissaoua et all.

x(t) = [x1(t), ..., xn(t)]T . Therefore, the iterative average consensus algorithm
at iteration t can be written as [26, 27]:

xi(t+ 1) =
∑
j∈Ni

wij(t)xj(t) (1)

where
∑
j∈Ni

wij(t) = 1 and

{
wij > 0 if j ∈ Ni

0 otherwise

or equivalently as:
x(t+ 1) =W(t)x(t) (2)

where W (t) gives the weight matrix at iteration t. The square matrix W (t) is
nonnegative if wij(t) > 0 for all i and j, and row-stochastic if it is nonnegative
and the entries of each row sum up to 1. According to [28, 29], if W (t) is row-
stochastic and G connected, the iterative algorithm described by equation(2)
asymptotically solves the average consensus problem, namely:

lim
t→∞

x(t) = m1

where 1 is a column vector with all components equal to 1.

3.3 Clock model

Before delving into the details of our work, we first define the clock model that
will be used in this paper. Each sensor node i ∈ V has its own local hardware
clock consisting of an oscillator frequency that defines the rate f at which the
clock progresses. As it is widely adopted, we associate with each node i a local
clock τi(t) in order to implement an approximation of the hardware clock. An
ideal clock i can be modelled as τi(t) = t for all t; thus, the first derivative of
τ(t), that defines the rate f , has always to be equal to 1 (i.e., ∂τ(t)/∂t = 1).
Unfortunately, the clock rate will deviate over time due to possible ambient
condition changes such as temperature, and as usual we call this deviation the
drift rate (ρ). Consequently, the local clock of a node i can be modelled as
follows [30]:

τi(t) = ait+ bi (3)

where ai is the clock speed (rate), and bi is the local clock offset at real time
t. In fact, the parameters ai and bi cannot be calculated as the real time
t is unavailable to network nodes. In order to cope with this problem, each
node i has to measure its local time with respect to another node j. Thereby,
assuming that τi(t) and τj(t) are the local clocks of nodes i and j, respectively,
we can define the relative clock between them as:

τi(t) = âijτj(t) + b̂ij (4)

The parameters âij and b̂ij represent the relative rate and the relative offset
between the clocks of node i and j, respectively.

A Distributed Consensus-based Clock Synchronization Protocol 7

3.4 Problem definition

Sharing a common notion of time among network nodes is a crucial issue for
most distributed systems. To achieve this purpose, each node has to exchange
its local clock reading with its neighbor nodes or with a reference node. The
process applied to serve the purpose of having a common time among network
nodes is well known as clock synchronization. Unfortunately, due to the con-
tinuous clock drifting and the error introduced by the message delivery time,
there is no algorithm that can exactly synchronize the node clocks [31, 32];
meaning that the goal of any synchronization scheme is to have the clocks
quite closely synchronized. Therefore, if the offset between clocks is globally
bounded by some specific constant δ, namely:

|τi(t)− τj(t)| ≤ δ ∀i, j ∈ V, i 6= j (5)

we can declare that the network clocks are δ-synchronized.

3.5 Problem of interest

According to Inequality (5), the goal of clock synchronization algorithms is to
ensure that, at any time, the node clocks may differ by at most δ. Therefore,
our aim is to offer a distributed consensus-based synchronization scheme where
each node strives to agree with its neighbors on the current time, thus allowing
the whole set of network clocks to asymptotically converge to the consensus
clock. Otherwise, the objective of our algorithm is to synchronize all network
clocks with respect to a virtual consensus clock, given as:

τv(t) = αvt+ βv (6)

In fact, to maintain the continuity of the local clock τi(t), its value should not
be modified directly. Consequently, our algorithm has to derive at each node
i ∈ V a virtual compensated clock Ci(t) based on its local clock readings τi(t)
and the received timing messages from its neighbors, namely:

Ci(t) = α̂iτi(t) + β̂i (7)

= α̂iait+ α̂ibi + β̂i (8)

As a result, from Equations (6)and(7), each node i has to find both values α̂i

and β̂i in order to converge its virtual compensated clock Ci(t) to the consensus
clock τv(t) which means that:

lim
t→∞

Ci(t) = τv(t) ∀i ∈ V (9)

or equivalently:  lim
t→∞

aiα̂i(t) = αv

lim
t→∞

α̂i(t)bi + β̂i(t) = βv
(10)

8 H. Aissaoua et all.

Indeed, having the exact time information of other node clocks during the
synchronization process is challenged by the uncertainty in communication la-
tency. That is, each synchronization message will experience some delay before
reaching the destination which may introduce some error. To cope with the
error caused by message latency, we will adopt the elapsed time on arrival
technique used in [11] that will be discussed in section 4.

4 The weighted consensus clock synchronization algorithm

In this section, we describe our proposed clock synchronization algorithm.
The main idea of the algorithm is to employ a distributed iterative scheme
based on linear consensus algorithms, where each node updates its own virtual
compensated clock Ci(t) based on the time information received from its direct
neighbors. Accordingly, all nodes will asymptotically converge to the same
consensus clock τv(t). To this end, each node i tries to estimate both α̂i and

β̂i with respect to all its neighbor nodes j ∈ Ni. Appropriately, our algorithm
has to perform two basic stages for each synchronization round, which are
skew error compensation and offset compensation.

4.1 Skew error compensation

The purpose of this stage is to force all network clocks to converge their clock
rates to the virtual consensus clock rate. For that reason, each node i has to
broadcast a synchronization packet that contains the timestamps of its own
local clock τi(t) and the corresponding virtual compensated clock Ci(t) which
are recorded at the application layer. Once node i begins to send the packet,
after some delay in the MAC layer, it updates the field that contains the local
clock τi(t) by subtracting it from the actual local clock reading. Now, the
synchronization packet contains Ci(t) and the elapsed time since it has been
recorded at the application layer, will be denoted by age. Just after the first
byte has arrived, each receiver j records the arrival time using its local clock
τj(t) , that we denote by arvT, and updates the field that contains the age
value by subtracting it from the arrival time (i.e., arvT -age). As a result, this
field contains the value that expresses the local clock τj(t) of node j when the
received packet has been created and timestamped at node i. Indeed, such a
technique is useful when a node detects an event of interest and a neighbor
node wants to know the time of this event. Thus, as long as the node clocks of
the whole network have not achieved synchronization, each node may benefit
from this technique in order to estimate its clock offset with respect to its
neighbors. Therefore, each node i will receive from all its neighbor nodes j ∈ Ni

a synchronization packet that contains the virtual compensated clock Cj(t) of
a neighbor j and its local clock τi(t) that represents the time at which Cj(t)
has been recorded. Using these two time informations, node i can calculate its
relative clock rate α̂ij or clock skew error αij (αij = α̂ij − 1) with respect to
node j.

A Distributed Consensus-based Clock Synchronization Protocol 9

Lemma 1 Let offset ij = Cj(t) − τi(t), and let t1, t2 ∈ R>0, with t2 > t1,
two time instances at which node i receives a synchronization packet from a
neighbor node j. Then

αij =
offset t2ij − offset t1ij
τi(t2)− τi(t1)

For a proof, see Appendix A

In our scheme, as opposed to most consensus clock synchronization schemes
(e.g.,[7, 9, 10]) that require all nodes to communicate their estimated clock
skew and clock offset to their neighbors, communicating these two time infor-
mations is not necessary and as a result, the size of the synchronization packets
is reduced. Since packet size has a direct impact on the power consumption of
transmission and reception , the consumed energy during communication will
be reduced in our scheme. Hence, during a synchronization period, each node i
computes its relative clock skew error αij using the time informations received
from each neighbor j, and then calculates and updates its clock skew αi with
respect to all its neighbors using the following iterative consensus algorithm:

αi(k + 1) =
∑
j∈Ni

wij(k)αij(k) (11)

where αi(k+ 1) represents the updated state of the clock skew error of node i
and wij denotes a weighting factor that has to be chosen at each synchroniza-
tion round k. In our scheme, we adopt a time-varying weighting factor as the
communication topology among nodes may dynamically be changed due to
the unreliable nature of wireless links or to the limited range of radio commu-
nication. Namely, node j is a neighbor for i at time t only if they are within
communication range. Therefore, if j ∈ Ni(t), then wij(t) > 0; otherwise,
wij(t) = 0. Also, we employ a simplified strategy to compute the weights, in
which nodes with high degree are assigned high weights. Thus, each node can
distributively compute the weights as follows:

wij(t) =


dj(t)∑

l∈Ni

dl(t)
if j ∈ Ni

0 otherwise

(12)

Clearly, the weighting factor in our strategy can easily be computed since it
is only based on the exchange of local information; that is, a simple way to
know the neighbors’ degrees is that each synchronization packet has to carry
the sender’s degree information.

Theorem 1 Using lemma 1 and according to the updated value of αi on Equa-
tions (11)and(12), and under Assumption 1, all clock rates converge to the
same clock rate αv meaning that:

lim
k→∞

aiα̂i(k) = αv ∀i ∈ V

For a proof, see Appendix B

10 H. Aissaoua et all.

Indeed, the change in ambient conditions may cause a high clock drift
variation; thus, the current clock skew estimate can be more affected than the
prior ones. To deal with such a problem, we perform the exponential smoothing
technique on the previous and the newest clock skew estimations to accurately
estimate the relative clock skew.

αi(k) = λαi(k) + (1− λ)αi(k − 1) (13)

where λ denotes the weight factor that must be chosen between 0 and 1, and
αi(k), αi(k− 1) define the newest and the previous clock skew error estimate,
respectively, which are the outputs of Equation (11).

4.2 Offset compensation

During the skew error compensation stage, the local clock of each node is
advanced and then, it is also necessary to compensate the possible offset errors.
In order to minimize the communication overhead among network nodes, the
offset compensation will be combined with the skew error compensation stage.

Lemma 2 Let offset tij = Cj(t)− τi(t) be the offset at time t, and let t, told ∈
R>0, with t > told, be two time instances at which node i receives a synchro-
nization packet from a neighbor node j. Then

Cj(t) = α̂ijτi(t) + offsetoldij − (α̂ij − 1)τi(told)

For a proof, see Appendix C

As a result, once node i receives all synchronization packets from neighbor
nodes, that hold Cj(t) and τi(t), it can update its compensated clock Ci(t) as
follows:

Ci(t) = α̂iτ i(t) + offsetoldi − (α̂i − 1)τ i(told) (14)

where offsetoldi and τ i(t) can be computed using the same iterative algorithm
as used to calculate the clock skew error αi. Thus:

offsetoldi =
∑
j∈Ni

wijoffset ij =
∑
j∈Ni

wij(Cj(t)− τi(t)) (15)

τ i(t) =
∑
j∈Ni

wijτi(t) (16)

Theorem 2 Under Assumption 1 and according to the update algorithms
based on Equations (14),(15)and(16), all clock offsets converge to the same
offset βv meaning that:

lim
k→∞

α̂i(k)bi + β̂i(k) = βv

For a proof, see Appendix D

A Distributed Consensus-based Clock Synchronization Protocol 11

5 Validation of the Algorithm

5.1 Simulation results

In order to evaluate the WCCS algorithm, we show some simulation results
based on the Castalia simulator for WSNs [33]. Indeed, the choice of such a
simulator is not trivial since it is typified by many characteristics that allow
the user to ideally test new protocols and/or algorithms before real experi-
ments take place. For instance, Castalia features the most advanced wireless
channel and provides an accurate radio model; it also considers clock drift,
offers the possibility to measure CPU power consumption, and it can be easily
extended in order to add new components [34]. In fact, Castalia randomly as-

-2000

-1000

 0

 1000

 2000

 10 20 30 40 50 60 70 80 90

S
y
n
ch

ro
n
iz

a
ti

o
n
 e

rr
o
r

µ
s

Iterations

Node
0
1
2
3
4
5
6
7
8
9

Fig. 1: Synchronization error with λ = 0.1

signs the clock drift to each node using a Gaussian distribution with zero mean
and standard deviation of 30 × 10−6, meaning that each clock can loose up
to ±30µs in one second. In order to accomplish the adopted elapsed time on
arrival technique, we have introduced a MAC layer stamping into the Castalia
simulator. To this end, the sender has to take a timestamp, and calculates the
age in the radio layer once the Start Frame Delimiter (SFD) byte of the syn-
chronization packet has been sent. Similarly and immediately after receiving
the SFD byte, each receiver has to record its arrival time and to estimate its
local clock value, that defines the time when the received packet has been cre-
ated at the sender node, by subtracting the age value from the arrival time.
We consider offset and skew errors, scalability, and convergence speed met-
rics to evaluate the performance of WCCS. The simulation parameters that
we have used are shown in Table 1. First, we perform a simulation for one
hour in which the synchronization algorithm starts after 45 minutes, and we

12 H. Aissaoua et all.

Table 1: Simulation parameters

Parameter name Value

Number of nodes 10, 25, 200
Node deployment Random
Radio transceiver CC2420
Simulation time 1 hour, 2 hours
Simulation runs 50
Synchronization period 10s

use ten nodes, randomly deployed within an area of 20 × 20 meters, with a
synchronization period equal to 10 seconds and a weight factor λ equal to
0.1. Upon receipt of the synchronization packet, each node i computes the
current error between its virtual compensated clock and that of the sender
node. In Figure 1, we have plotted the instantaneous mean synchronization
error(1

Ni

∑
j∈Ni

(Cj(t) − Ci(t))) at the end of every synchronization round. We

can observe that the synchronization is achieved asymptotically and the error
decreases progressively to zero after 40 rounds. Also, we can clearly see that
the plotted data are smoothed by the exponential smoothing technique. In

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

 10 20 30 40 50 60 70 80 90

S
y
n
ch

ro
n
iz

a
ti

o
n
 e

rr
o
r

µ
s

Iterations

Node
0
1
2
3
4
5
6
7
8
9

Fig. 2: Synchronization error with λ = 0.3

Figure 2, the weight factor λ is changed to 0.3, and as a result, the convergence
speed is enhanced and the synchronization is achieved after just ten rounds.
Indeed, the exponential smoothing technique efficiently reduces the impact of
the possibly high clock drift variation, especially when ambient conditions are
not suitable, by smoothing out the short-term fluctuations in frequency. How-
ever, this technique can be prejudicial to the convergence speed, especially,
when we take a small value of λ as shown in Figure 1. To cope with such a

A Distributed Consensus-based Clock Synchronization Protocol 13

-200

-100

 0

 100

 200

 10 20 30 40 50 60 70 80 90

S
ke

w
 e

rr
o
r
α

Iterations

Node
0
1
2
3
4
5
6
7
8
9

Fig. 3: Skew error with λ = 0.1

Fig. 4: Synchronization of clock rates with λ = 0.1

problem, neighboring nodes can estimate accurately their instantaneous offset
error using the elapsed time on arrival technique while waiting the synchro-
nization of all the network clocks to be achieved. In Figure 3, we can see that
the skew error of each node decreases progressively and then remains stable af-
ter 40 rounds. The reason is that all node clocks have reached synchronization,
as we have seen in Figure 1, and thus each node will maintain an error level

14 H. Aissaoua et all.

with respect to all node clocks. As claimed in Theorem 1, the Figure 4 shows
the convergence of all clock rates to a unique one. Until now, all simulations

-10000

-5000

 0

 5000

 10000

 10 20 30 40 50 60 70 80 90

S
y
n
ch

ro
n
iz

a
ti

o
n
 e

rr
o
r

µ
s

Iterations

Node
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Fig. 5: Synchronization error with λ = 0.1

-20000

-15000

-10000

-5000

 0

 5000

 10000

 15000

 20000

 10 20 30 40 50 60 70 80 90

S
y
n
ch

ro
n
iz

a
ti

o
n
 e

rr
o
r

µ
s

Iterations

Fig. 6: Synchronization error with λ = 0.1

have been carried out for the case that all communicating nodes are one-hop
away from each other. In order to perform multi-hop synchronization, we have
run a simulation with 25 nodes randomly deployed in an area of 120×120 me-
ters. From Figure 5 we can see that, during 40 rounds, the clock error of each

A Distributed Consensus-based Clock Synchronization Protocol 15

node gradually decreases and converges to zero. As a result, the convergence
speed is not affected and does not decrease with an increase of the number of
nodes. To further prove the scalability of our scheme, we increase the number
of nodes to 200 and we randomly place them in an area of 350× 350 meters.
According to Figure 6, we can observe that the convergence speed is not really
affected by the network size which means that our scheme is scalable.

5.2 Experimental results

In order to verify that our theoretical and simulation results can also be ap-
plied to real sensor networks, we present experimental results for our algo-
rithm WCCS. To that end, we have implemented our proposed protocol on
the TelosB platform, a research oriented mote, developed by UC Berkeley. Each
TelosB mote is powered by a Texas Instruments MSP430 micro-controller, an
internal digitally controlled oscillator running at 1 Mhz, an external oscillator
running at 32kHz, and a USB port for programming and communication. In
addition, TelosB motes are equipped with a Chipcon CC2420 radio module
compatible with IEEE 802.15.4 (ZigBee) standard that operates at 2.4 GHz
band. The Radio chip CC2420 offers a data rate of 250 kbps, and it is char-
acterized by the capability to timestamp the sent and received packets at the
MAC layer. The implementation of our protocol on the TelosB platform is done

-10000

-5000

 0

 5000

 10000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

S
y
n
ch

ro
n
iz

a
ti

o
n
 e

rr
o
r

(t
ic

s)

Iterations

0
1
2
3
4
5
6
7

Fig. 7: Synchronization error with λ = 0.1

using TinyOS 2.1.2, an open source operating system designed for WSNs. As
the 32kHz external clock runs even in idle mode, we have attached all node
times to that clock in order to obtain a clock source. However, the resolution of
32kHz crystal is 30.5µs (one clock tick), which means that the maximum clock

16 H. Aissaoua et all.

accuracy will be limited to 30.5µs. Indeed, TinyOS allows to apply the elapsed

-25

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 50 60 70 80 90 100 110 120 130 140

S
y
n
ch

ro
n
iz

a
ti

o
n
 e

rr
o
r

(t
ic

s)

Iterations

0
1
2
3
4
5
6
7

Fig. 8: Synchronization error with λ = 0.1

time on arrival technique by using TimeSyncAMSend and TimeSyncPacket in-
terfaces. The send command provided by the TimeSyncAMSend interface has
a parameter event time that holds the timestamps of an event expressed on
the local clock of the caller. Each receiver uses the eventTime command pro-
vided by the TimeSyncPacket interface in order to get the time of this event
expressed in its own local clock. Our testbed is composed of 8 nodes deployed
within a single broadcast domain with one node plugged into the PC in order
to collect the experimental results. The weight factor λ is chosen to be equal
to 0.1 and the synchronization period is 10 seconds. Every 9 seconds, the node
plugged into the PC will broadcast a request packet asking all nodes to report
the arrival time of this packet using their virtual compensated clocks. Upon
receipt of their responses, the instantaneous clock errors between nodes will be
computed by subtracting the average of all virtual compensated clocks from
that of each node i (error= Ci(t) − 1

n

∑n
j=1 Cj(t)). As we have articulated in

Theorems 1 and 2, we show in this experiment the convergence of our algo-
rithm and the steady state of all virtual compensated clocks. Figure 7 shows
the convergence of WCCS, meaning that consensus is asymptotically achieved
and the synchronization error decreases progressively to zero. Also, we can see
the influence of the exponential smoothing technique: the potential clock drift
variation caused by oscillator’s instability, change in supply voltage, tempera-
ture, etc. is reduced, and thus the plotted data are smoothed. Figure 8 plots
the instantaneous clock errors between all nodes starting from round 50. We
can clearly see that the synchronization error over all nodes remains bounded,
which means that all virtual compensated clocks have reached a steady state.

A Distributed Consensus-based Clock Synchronization Protocol 17

We also observe, that the error is bounded within ±2 clock ticks, i.e., ±61µs,
which implies the stability of our proposed synchronization scheme.

5.3 Discutions and comparison between WCCS and FTSP

In fact, the design of clock synchronization protocols for WSNs is challenging
because it is typified by various network constraints. As a result, it is practi-
cally infeasible to design a totally efficient scheme. For instance, to achieve a
high accuracy level we have to increase the number of timing messages when
performing synchronization [3]. Unfortunately, this high level of precision is
obtained to the detriment of energy efficiency and communication overhead as
the number of synchronization messages is increased. Another important chal-
lenge is scalability, meaning that the synchronization shceme has to operate in
large networks without losing its performance. Generally, it can be handled by
adopting a hierarchical topology based technique. However, such network orga-
nization is prejudicial to the robustness when the topology changes frequently,
and to the synchronization accuracy for the faraway nodes in the hierarchy
structure. For that raison, each clock synchronization scheme has its distinc-
tive advantages and drawbacks. Consequently, researchers have to investigate
possible trade-offs between different approaches in order to achieve a reason-
able synchronization scheme. Now, we compare our approach with FTSP [5],
a standard benchmark clock synchronization protocol, to show its effective-
ness and weaknesses. The FTSP is a popular reference-based synchronization
scheme that also employs the MAC layer timestamp. The experimental results
reported by the authors of FTSP show that the achieved average error is 3µs,
whereas the experimental results, which have been shown in Figure 8, indicate
an average synchronization error of 61µs achieved by WCCS. Therfore, we can
clearly see that the accuracy of FTSP is better than our scheme. Nevertheless,
both of FTSP and our scheme achieve a high level of accuracy as it is in the
order of micro-seconds. In addition, both of FTSP and WCCS have been de-
signed with the assumption that the propagation delays among sensor nodes
is negligible. As a result, they are unsuitable for high latency networks (e.g.,
underwater sensor networks UWSNs) due to the slow propagation speed that
characterizes such networks. Besides, FTSP uses the method of least square
linear regression to estimate both the offset and skew error with respect to
the reference clock. In order to achieve a better clock drift estimation with
the linear regression method, the number of the collected timing data has to
be increased. Clearly, such a method is not suitable for networks with limited
memory, such as wireless sensor networks. Also, the least square regression
requires significant amount of computation time [35]. In addition, least-square
regression exhibits a poor performance since sensor nodes which are far away
from the reference node collect the estimated reference time with large devia-
tions due to the waiting times at each sensor node [36]. As a result, the slopes
of their least-square line exhibit large errors when compared to that of nearby
nodes to the reference. Thus, such a problem affects negatively the scalability of

18 H. Aissaoua et all.

FTSP. On the contrary, the storage overhead in our algorithm is related to the
number of neighbor nodes as each node has to store only the last received clock
value from each neighbor. Since the size of neighboring nodes is usually small
even for large networks, our algorithm requires little memory. Also, compared
to the least square regression, our algorithm adopts a simple calculation meth-
ode to compute both the offset and skew error, and thus, the time and space
complexities are quite small. The dynamic topology changes including node
mobility, the death of a root or a non-leaf node, link failure or link addition
when the network upgrades, have been treated by the FTSP authors by using
periodic flooding of timing messages, and implicit dynamic topology update.
On the other hand, a new root-election or parent-discovery procedure should
be done once a change in the network occurs. The drawback of such a solution
is that it requires large communication overhead especially when the network
topology changes frequently. Also, [8] confirms that the synchronization error
is accumulated quickly as the size of the network grows, and the delay at each
node caused by the waiting time at the MAC layer may markedly decrease its
accuracy and scalability. In contrast, our algorithm is fully decentralized, and
thus, robust against node failure and dynamic topology changes, and it op-
erates without any predetermined network topology and any reference clock.
However, as WCCS belongs to the family of consensus-based approaches which
are characterized by a low convergence speed, the convergence speed of FTSP
is better than that of WCCS. To deal with the low convergence speed, we have
involved the elapsed time on arrival technique [11] during the synchronization
process. Thus, each node may benefit from this technique in order to estimate
its clock offset with respect to its neighbors as long as the node clocks of the
whole network have not achieved synchronization.

6 Conclusion

In this paper, we have investigated clock synchronization in WSNs and pre-
sented a new fully distributed synchronization algorithm called weighted con-
sensus clock synchronization (WCCS). In WCCS, the nodes periodically broad-
cast a synchronization packet to their neighbors using the elapsed time on
arrival technique. Using a weighted iterative consensus algorithm, each node
computes both skew and offset errors and applies the exponential smoothing
technique to the resulted clock skew in order to smooth out the short-term
fluctuations in frequency caused by the variations in ambient conditions. We
have proved by theoretical analysis that by applying our algorithm, all net-
work clocks converge to a common clock value within a finite time. Using the
Castalia simulator, an appropriate simulator for WSNs, we could emphasize
our theoretical results through extensive simulation results. Furthermore, ex-
periments on the TelosB platform have been carried out to corroborate the
simulation and theoretical results and show the effectiveness of WCCS in re-
alistic scenarios. Our future work includes a comparative study between our
solution and the most relevant work proposed in the literature.

A Distributed Consensus-based Clock Synchronization Protocol 19

Appendix A Proof of Lemma 1 (see page 9)

Proof Once node i receives a synchronization packet at time t1, it tries to syn-
chronize itself with the received virtual compensated clock Cj(t). The relative
clock rate is the ratio of the virtual compensated clock frequency of node j to
the local clock frequency of node i. Thus, from Equations (4) and (7) we have:

Cj(t1) = α̂ijτi(t1) + β̂ij

Subtracting τi(t1) from each side of this equation leads to:

Cj(t1)− τi(t1) = α̂ijτi(t1)− τi(t1) + β̂ij

As a result:

offset t1ij = (α̂ij − 1)τi(t1) + β̂ij (17)

Similarly, at time t2 we have:

offset t2ij = (α̂ij − 1)τi(t2) + β̂ij (18)

and subtracting (17) from (18) gives:

offset t2ij − offset t1ij = (α̂ij − 1)(τi(t2)− τi(t1)) (19)

Consequently,

αij =
offset t2ij − offset t1ij
τi(t2)− τi(t1)

ut

Appendix B Proof of Theorem 1 (see page 9)

Proof According to Lemma 1 and Equation (11), we have:

αi(k + 1) =
∑
j∈Ni

wij(k)

(
offset t2ij − offset t1ij
τi(t2)− τi(t1)

)
(k)

=
∑
j∈Ni

wij(k)

(
(Cj(t2)− τi(t2))− (Cj(t1)− τi(t1))

τi(t2)− τi(t1)

)
(k)

=
∑
j∈Ni

wij(k)

(
Cj(t2)− Cj(t1)

τi(t2)− τi(t1)
− 1

)
(k)

By adding 1 to each side of the equation, we obtain:

αi(k + 1) + 1 = 1 +
∑
j∈Ni

wij(k)

(
Cj(t2)− Cj(t1)

τi(t2)− τi(t1)
− 1

)
(k)

20 H. Aissaoua et all.

As α̂i = αi + 1, the above equation can be written as:

α̂i(k + 1) = 1 +
∑
j∈Ni

wij(k)

(
Cj(t2)− Cj(t1)

τi(t2)− τi(t1)
− 1

)
(k)

From Equation (12), we can easily prove that
∑

j∈Ni

wij = 1, implying:

α̂i(k + 1) =
∑
j∈Ni

wij(k) +
∑
j∈Ni

wij(k)

(
Cj(t2)− Cj(t1)

τi(t2)− τi(t1)
− 1

)
(k)

=
∑
j∈Ni

wij(k)

(
Cj(t2)− Cj(t1)

τi(t2)− τi(t1)

)
(k)

According to (3) and (8), we can substitute the values of both Cj(t) and τi(t)
into the above equation to obtain:

α̂i(k + 1) =
∑
j∈Ni

wij(k)

(
(α̂jajt2 + α̂jbj + β̂j)− (α̂jajt1 + α̂jbj + β̂j)

(ait2 + bi)− (ait1 + bi)

)
(k)

=
∑
j∈Ni

wij(k)
α̂jaj
ai

(k)

If we multiply each side of the equation by ai we obtain:

α̂iai(k + 1) =
∑
j∈Ni

wij(k)α̂jaj(k)

If we denote α̂iai by xi, we can rewrite the above equation as follows:

xi(k + 1) =
∑
j∈Ni

wij(k)xj(k)

which can be rewritten more compactly as:

x(k + 1) =W(k)x(k)

whereW denotes the n×n matrix whose elements are the weights wij defined
by Equation (12), and where x(k) = [x1(k), ..., xn(k)]T defines a column vec-
tor whose elements represent the clock rates of all compensated clocks of the
network at time slot k. According to Equation (12), the elements ofW are non-
negative. In addition, W is row-stochastic since it is nonnegative and the sum
of the elements of each row is equals 1, i.e.,W1 = 1 where 1 = (1, 1, 1, ..., 1)T .
Also, the state of each node i ∈ V will be influenced directly or indirectly by
every node j ∈ V through a sequence of communications as G is connected
according to Assumption 1. Following [28, 29], all this provides a sufficient
condition to guarantee that all xi will converge to a steady-state value c:

lim
k→∞

x(k) = c1

Consequently, as xi = α̂iai,

lim
k→∞

α̂i(k)ai = αv1

ut

A Distributed Consensus-based Clock Synchronization Protocol 21

Appendix C Proof of Lemma 2 (see page 10)

Proof According to Equation (19), we can write:

offset tij − offsetoldij = (α̂ij − 1)(τi(t)− τi(told))

offset tij = offsetoldij + (α̂ij − 1)(τi(t)− τi(told))

Cj(t)− τi(t) = offsetoldij + (α̂ij − 1)(τi(t)− τi(told))

Consequently,

Cj(t) = α̂ijτi(t) + offsetoldij − (α̂ij − 1)τi(told) (20)

ut

Appendix D Proof of Theorem 2 (see page 10)

Proof The Equation (14) can be written as:

Ci(t) = α̂iait+ α̂ibi + offsetoldi − (α̂i − 1)τ i(told) (21)

where ait =
∑

j∈Ni

wijait and bi =
∑

j∈Ni

wijbi as stated by Equation (16). Ac-

cording to Equations (8) and (21), we have:

α̂i(k + 1)bi + β̂i(k + 1) = α̂i(k)bi + offsetoldi (k)− (α̂i − 1)τ i(told)(k)

We denote α̂i(k + 1)bi + β̂i(k + 1) by xi(k + 1) to obtain:

xi(k + 1) = α̂i(k)bi + offsetoldi (k)− (α̂i − 1)τ i(told)(k)

Using Equations (15) and (16), we can substitute the values of both offsetoldi

and τ i(told) into the above equation to obtain:

xi(k + 1) = α̂i(k)bi +
∑
j∈Ni

wijoffset ij(k)− (α̂i − 1)
∑
j∈Ni

wijτi(t)(k)

= α̂i(k)bi +
∑
j∈Ni

wij(Cj(t)− τi(t)− (α̂i − 1)τi(t))(k)

22 H. Aissaoua et all.

According to Equation (7), we can substitute the value of Cj(t) into the
above equation to obtain:

xi(k + 1) = α̂i(k)bi +
∑
j∈Ni

wij(α̂jτj(t) + β̂j − α̂iτi(t))(k)

= α̂i(k)bi +
∑
j∈Ni

wij(α̂jajt+ α̂jbj + β̂j − α̂iait− α̂ibi)(k)

= α̂i(k)bi − α̂i(k)
∑
j∈Ni

wijbi +
∑
j∈Ni

wij(α̂jajt− α̂iait)(k) +
∑
j∈Ni

wij(α̂jbj + β̂j)(k)

= α̂i(k)bi − α̂i(k)bi +
∑
j∈Ni

wij(α̂jajt− α̂iait)(k) +
∑
j∈Ni

wijxj(k)

=
∑
j∈Ni

wijxj(k) +
∑
j∈Ni

wij(α̂jajt− α̂iait)(k)

which can be rewritten more compactly as:

x(k + 1) =W(k)x(k) + φ(k)

According to Theorem 1, lim
k→∞

aiα̂i(k) = αv,∀i ∈ V , and thus lim
k→∞

φ(k) = 0.

Likewise,W is row-stochastic since it is nonnegative and the sum of the entries
of each row equals 1. Also, according to Assumption 1, each node i ∈ V can
communicate its values to every other node j ∈ V. As a result [28, 29], xi will
converge to a steady-state value c:

lim
k→∞

x(k) = c1

Consequently, as xi = α̂ibi + β̂i, we obtain:

lim
k→∞

α̂i(k)bi + β̂i(k) = βv1

ut

Acknowledgements This paper has been written while the first author was visiting the
Wireless Sensor group at Lab-STICC in Brest. Financial support through the PNE program
established by the Government of Algeria is gratefully acknowledged.

References

1. D. Mills. Internet time synchronization: the network time protocol. In
IEEE Transactions on Communications, 1991.

2. Jeremy Elson and Kay Römer. Wireless sensor networks: A new regime
for time synchronization. ACM SIGCOMM Computer Communication
Review, 33(1):149–154, 2003.

3. Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network
time synchronization using reference broadcasts. ACM SIGOPS Operating
Systems Review, 2002.

A Distributed Consensus-based Clock Synchronization Protocol 23

4. Saurabh Ganeriwal, Ram Kumar, and Mani B Srivastava. Timing-sync
protocol for sensor networks. In Proceedings of the 1st international con-
ference on Embedded networked sensor systems, pages 138–149, 2003.

5. Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The
flooding time synchronization protocol. In ACM Second Intl Conference
on Embedded Networked Sensor Systems (SenSys 04), pages 39–49, 2004.

6. Michael Kevin Maggs, Steven G O’Keefe, and David Victor Thiel. Consen-
sus clock synchronization for wireless sensor networks. Sensors Journal,
IEEE, 12(6):2269–2277, 2012.

7. Philipp Sommer and Roger Wattenhofer. Gradient clock synchronization
in wireless sensor networks. In Proceedings of the 2009 International Con-
ference on Information Processing in Sensor Networks, pages 37–48. IEEE
Computer Society, 2009.

8. Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. Pulsesync:
an efficient and scalable clock synchronization protocol. Networking,
IEEE/ACM Transactions on, 2015.

9. Luca Schenato and Federico Fiorentin. Average timesynch: A consensus-
based protocol for clock synchronization in wireless sensor networks. Au-
tomatica, 47(9):1878–1886, 2011.

10. Jianping He, Peng Cheng, Ling Shi, Jiming Chen, and Youxian Sun. Time
synchronization in wsns: A maximum-value-based consensus approach.
Automatic Control, IEEE Transactions on, 59(3):660–675, 2014.

11. Branislav Kusy, Prabal Dutta, Philip Levis, Miklos Maroti, Akos Ledeczi,
and David Culler. Elapsed time on arrival: a simple and versatile primitive
for canonical time synchronisation services. International Journal of Ad
Hoc and Ubiquitous Computing, 1(4):239–251, 2006.

12. Philipp Sommer and Roger Wattenhofer. Symmetric clock synchronization
in sensor networks. In Proceedings of the workshop on Real-world wireless
sensor networks, pages 11–15. ACM, 2008.

13. Yin Chen, Roberto Tron, Andreas Terzis, and Rene Vidal. Accelerated
corrective consensus: Converge to the exact average at a faster rate. In
American Control Conference (ACC), 2011, pages 3417–3422. IEEE, 2011.

14. Boris N Oreshkin, Tuncer C Aysal, and Mark J Coates. Distributed aver-
age consensus with increased convergence rate. In Acoustics, Speech and
Signal Processing, 2008. ICASSP 2008. IEEE International Conference
on, pages 2285–2288. IEEE, 2008.

15. C. Lenzen, P. Sommer, and R. Wattenhofer. Optimal clock synchroniza-
tion in networks. In Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, pages 225–238, 2009.

16. Jianping He, Peng Cheng, Ling Shi, Jiming Chen, and Youxian Sun. Time
synchronization in wsns: a maximum-value-based consensus approach.
IEEE Transactions on Automatic Control, 59(3):660–675, 2014.

17. Jie Wu, Liyi Zhang, Yu Bai, and Yunshan Sun. Cluster-based consensus
time synchronization for wireless sensor networks. Sensors Journal, IEEE,
15(3):1404–1413, 2015.

24 H. Aissaoua et all.

18. Wendi B Heinzelman, Anantha P Chandrakasan, and Hari Balakrishnan.
An application-specific protocol architecture for wireless microsensor net-
works. Wireless Communications, IEEE Transactions on, 1(4):660–670,
2002.

19. Zhe Yang, Liang He, Lin Cai, and Jianping Pan. Temperature-assisted
clock synchronization and self-calibration for sensor networks. IEEE
Transactions on Wireless Communications, 13(6):3419–3429, 2014.

20. Miao Xu and Wenyuan Xu. Taco: Temperature-aware compensation for
time synchronization in wireless sensor networks. In Mobile Ad-Hoc and
Sensor Systems (MASS), 2013 IEEE 10th International Conference on,
pages 122–130. IEEE, 2013.

21. Chafika Benzäıd, Miloud Bagaa, and Mohamed Younis. Efficient clock
synchronization for clustered wireless sensor networks. Ad Hoc Networks,
2016.

22. Djamel Djenouri, Nassima Merabtine, Fatma Zohra Mekahlia, and Mes-
saoud Doudou. Fast distributed multi-hop relative time synchronization
protocol and estimators for wireless sensor networks. Ad Hoc Networks,
11(8):2329–2344, 2013.

23. Bin Luo, Lei Cheng, and Yik-Chung Wu. Fully distributed clock syn-
chronization in wireless sensor networks under exponential delays. Signal
Processing, 125:261–273, 2016.

24. Pierre-Alexandre Bliman and Giancarlo Ferrari-Trecate. Average consen-
sus problems in networks of agents with delayed communications. Auto-
matica, 44(8):1985–1995, 2008.

25. Ruggero Carli. Topics on the average consensus problems. 2008.
26. Konstantin Avrachenkov, Mahmoud El Chamie, and Giovanni Neglia. A

local average consensus algorithm for wireless sensor networks. In Dis-
tributed Computing in Sensor Systems and Workshops (DCOSS), 2011
International Conference on, pages 1–6. IEEE, 2011.

27. F Knorn, R Stanojevic, M Corless, and R Shorten. A framework for decen-
tralised feedback connectivity control with application to sensor networks.
International Journal of Control, 82(11):2095–2114, 2009.

28. Ming Cao, A Stephen Morse, and Brian DO Anderson. Reaching a consen-
sus in a dynamically changing environment: A graphical approach. SIAM
Journal on Control and Optimization, 47(2):575–600, 2008.

29. Alex Olshevsky and John N Tsitsiklis. Convergence speed in distributed
consensus and averaging. SIAM Journal on Control and Optimization, 48
(1):33–55, 2009.

30. F. Sivrikaya and B. Yener. Time synchronization in sensor networks: a
survey. Network, IEEE, 18(4):45–50, July 2004.

31. Jennifer Lundelius and Nancy Lynch. An upper and lower bound for clock
synchronization. Information and Control, 62(2–3):190 – 204, 1984.

32. S. Graham and P.R. Kumar. Time in general-purpose control systems: the
control time protocol and an experimental evaluation. In Decision and
Control, 2004. CDC. 43rd IEEE Conference on, volume 4, pages 4004–
4009 Vol.4, 2004.

A Distributed Consensus-based Clock Synchronization Protocol 25

33. Athanassios Boulis. Castalia: revealing pitfalls in designing distributed
algorithms in wsn. In Proceedings of the 5th international conference on
Embedded networked sensor systems, pages 407–408. ACM, 2007.

34. Dimosthenis Pediaditakis, Yuri Tselishchev, and Athanassios Boulis. Per-
formance and scalability evaluation of the castalia wireless sensor network
simulator. In Proceedings of the 3rd International ICST Conference on
Simulation Tools and Techniques, page 53. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), 2010.

35. Fengyuan Ren, Chuang Lin, and Feng Liu. Self-correcting time synchro-
nization using reference broadcast in wireless sensor network. IEEE Wire-
less Communications, 15(4), 2008.

36. SS Hussain and P Sprent. Non-parametric regression. Journal of the Royal
Statistical Society. Series A (General), pages 182–191, 1983.

	Introduction
	Related Work
	Preliminaries and basic definitions
	The weighted consensus clock synchronization algorithm
	Validation of the Algorithm
	Conclusion
	Appendices
	Appendix Proof of Lemma 1 (see page 9)
	Appendix Proof of Theorem 1 (see page 9)
	Appendix Proof of Lemma 2 (see page 10)
	Appendix Proof of Theorem 2 (see page 10)

