Skip to Main content Skip to Navigation
Conference papers

Distributed Faulty Sensor Node Detection in Wireless Sensor Networks based on Copula Theory

Farid Lalem Ahcène Bounceur 1 Reinhardt Euler 2 Hammoudeh Mohammad 3 Kacimi Rahim 4 Sanaa Kawther Ghalem 5
1 Lab-STICC_UBO_CACS_MOCS
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance, UBO - Université de Brest
2 Lab-STICC_IMTA_CID_DECIDE
Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance
4 IRIT-T2RS - Temps Réel dans les Réseaux et Systèmes
IRIT - Institut de recherche en informatique de Toulouse
Abstract : Wireless Sensor Networks (WSNs) are arising from the pro- liferation of Micro-Electro-Mechanical Systems (MEMS) tech- nology as an important new area in wireless technology. They are composed of tiny devices which monitor physi- cal or environmental conditions such as temperature, pres- sure, motion or pollutants, etc. Moreover, the accuracy of individual sensor node readings is decisive in WSN ap- plications. Hence, detecting nodes with faulty sensors can strictly influence the network performance and extend the network lifetime. In this paper, we propose a new approach for faulty sensor node detection in WSNs based on Copula theory. The obtained experimental results on real datasets collected from real sensor networks show the effectiveness of our approach.
Document type :
Conference papers
Complete list of metadatas

https://hal.univ-brest.fr/hal-01487530
Contributor : Ahcène Bounceur <>
Submitted on : Sunday, March 12, 2017 - 4:38:09 PM
Last modification on : Sunday, January 10, 2021 - 2:52:04 PM

Identifiers

Citation

Farid Lalem, Ahcène Bounceur, Reinhardt Euler, Hammoudeh Mohammad, Kacimi Rahim, et al.. Distributed Faulty Sensor Node Detection in Wireless Sensor Networks based on Copula Theory. Second International Conference on Internet of Things, Data and Cloud Computing (ICC 2017), Mar 2017, Cambridge, United Kingdom. pp.1-8, ⟨10.1145/3018896.3065837⟩. ⟨hal-01487530⟩

Share

Metrics

Record views

683