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Abstract. Model-checkers increasing performance allows engineers to apply 

model-checking for the verification of real-life system but little attention has 

been paid to the methodology of model-checking. Verification “in the large” 

suffers of two practical problems: the verifier has to deal with many verification 

objects that have to be carefully managed and often re-verified; it is often diffi-

cult to judge whether the formalized problem statement is an adequate reflec-

tion of the actual problem.  An organizing system - an intentionally arranged 

collection of resources and the interactions they support – makes easier the 

management of verification objects and supports reasoning interactions that fa-

cilitates diagnosis decisions. We discuss the design of such an organizing sys-

tem, we show a straightforward implementation used within our research team. 

Keywords: verification, model-checking, diagnosis, organizing system 

1 Introduction 

System verification is used to establish that the design or product under consideration 

possesses certain properties. Formal verification has been advocated as a way forward 

to address verification tasks of complex embedded systems. Formal methods, within 

the field of computer science, is the formal treatment of problems related to the analy-

sis of designs, but “it does not yet generally offer what its name seems to suggests, 

viz. methods for the application of formal techniques [1].”  

Our research work is underlined by the observation that verification “in the large” 

causes a proliferation of interrelated models and verification sessions “that must be 

carefully managed in order to control the overall verification process [1].” The main 

technique discussed in this paper is verification by model-checking. “Model checking 

is a formal verification technique which allows for desired behavioral properties of a 

given system to be verified on the basis of a suitable model of the system through 

systematic inspection of all states of the model [2].” 

Model-checking walks through different phases within an iterative process [3]: 

modelling, running the model-checker and analyzing the results. Moreover, the entire 

verification should be planned, administered, and organized. 
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The applicability of model-checking to large systems suffers of two practical prob-

lems. A verification session refines the model, and because properties are verified one 

by one, previously verified properties need or need not to be verified again, depending 

on the refinement performed. When the model-checker runs out of memory, some 

divide-and-conquer techniques should be employed to reduce the model. These tech-

niques exploit regularities in the structure of the models or of the verification process 

itself that are difficult to understand and their performance may vary considerably. 

A second practical problem arises from the difficulty to judge whether the formal-

ized problem statement (model + properties) is an adequate reflection of the actual 

problem. This is known as the validation problem. If the verifier suspects the validity 

of a property, the property needs to be re-formalized and it starts the whole verifica-

tion again. If the verifier suspects the validity of the design, the verification process 

restarts after an improvement of the design. The complexity of the involved system, 

as well as the lack of precision of the informal specification of the system’s function-

ality, makes it hard to answer the validation problem satisfactorily [1], [3]. 

Both problems require an organized verification method. Organization creates or 

supports capabilities by intentionally imposing order and structure. In this paper, we 

apply the concepts of an organizing system promoted by [4]: “an Organizing System 

is an intentionally arranged collection of resources and the interactions they support." 

As an attempt to solve the problems mentioned above, we designed and built a proto-

type of an Organizing System for the support of verification and diagnosis activities. 

In section 2, we precise the issues of the management of verification cycles; we intro-

duce a general theory of diagnosis, and we presents some design decisions for our 

Organizing System. Section 3 deepens different aspects of an Organizing System: 

knowledge management and ontologies, technical aspects of the tiers of the organiz-

ing system. Section 4 relates our work with previous work, and Section 5 concludes. 

2 Organizing System for Verification and Diagnosis activities 

2.1 Managing the Verification Trajectories 

There are basically three possible outcomes of a verification run: the specified proper-

ty is either valid in the given model or not, or the model is faced with the state space 

explosion problem (it turns out to be too large to fit within the computer memory). 

If a state is encountered that violates the property under consideration, the model 

checker provides a counterexample that describes an execution path that leads from 

the initial system state to the faulty state. It is indisputable that the verification results 

obtained using a verification tool should always be reproducible [5]. Tool support is 

required and we present in Fig. 2 the objects that are significant and tool-managed 

during the verification phases. The specification-design-modelling-verification cycles 

are presented in Fig. 1. The terminology in [3] is used as a reference in the paper. 

Modelling. 

Model checking inputs are a model of the system and a formal characterization of 

the property to be checked. Models are mostly expressed using finite-state automata, 



 

 

made of a finite set of states and a set of transitions. To allow verification, properties 

are described using a property specification language, relying generally on temporal 

logic that allows people to describe properties in a precise and unambiguous manner. 
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Fig. 1. The specification-design-modelling-verification process and its cycles 

Verification: running the model-checker. 

Current model checkers provide the user with various options and directives to op-

timize and tune the functionality and performance of the verification run. Subsequent-

ly, the actual model checking takes place. Whenever a property is not valid, it may 

have different causes. A modelling error means that the model does not reflect the 

design of the system. After the model correction, verification has to be restarted with 

the improved model. This corresponds to the bolded cycle in Fig. 1. When there is no 

undue discrepancy between the design and its model, then either a design error has 

been exposed, or a property error has taken place (this case is not considered in the 

paper). In case of a design error, the verification is concluded with a negative result, 

and the design (together with its model) has to be improved. The designer will pro-

ceed through iterative refinements; a situation depicted with a plain cycle in Fig. 1. 

Interpreting the error(s). 

The main advantage of model checking is the production of counterexamples 

demonstrating that a system does not satisfy a specification. Extracting the essence of 

an error from even a detailed source-level trace of a failing run requires a great deal of 

human-effort [6] and a lot of research work focus on counterexample processing to 

produce an error explanation. Hence, correcting the error(s) starts with an error diag-

nosis, and more precisely, using the fault, error, and failure nomenclature of [7], it 



 

 

starts with a failure diagnosis. Failure diagnosis is the process of identifying the fault 

that has led to an observed failure of a system or its constituent components.  

Model-based diagnosis. 

The technique we use for failure diagnosis is a model-based diagnosis (also called 

reasoning from first principles) based on a theory of diagnosis established by [8]. A 

diagnosis is as a set of assumptions about a system component’s abnormal behavior 

such that observations of one component’s misbehavior are consistent with the as-

sumptions that all the other components are acting correctly [8]. The computational 

problem is to determine all possible diagnoses for a given faulty system. The repre-

sentation of the knowledge of the problem domain should achieve the desired cover-

age and quality of diagnoses while remaining computationally tractable [9]. 

Verification organization. 

Whether the verification trajectory is incorporated in an adaptive design strategy or 

focused on modelling-and-verifying cycles, the entire model-checking process should 

be well organized, well structured, and well planned. According to [3], different mod-

els are describing different parts of the system, various versions of the verification 

models are established, and plenty of verification parameters and results are available. 

We propose to use an organizing system to manage a practical model-checking pro-

cess and to allow the reproduction of the experiments carried out by the engineers. 

Robert J. Glushko and al. [4] promote The Discipline of Organizing (TDO) ap-

proach. Library and information science, informatics and other fields focus on the 

characteristic types of resources and collections that define those disciplines. In con-

trast, TDO complements the focus on specific resource and collection types with a 

framework that views organizing systems as existing in a multi-dimensional design 

space in which we can consider many types of resources at the same time and see the 

relationships among them. The framework assesses what is being organized, why, 

how much, when and by what means. It leads to an Organizing System defined as “an 

intentionally arranged collection of resources and the interactions they support [4].” 

To sum up the problem statement of this section, managing the verification trajec-

tories is an indispensable support for using model checkers “in the large”. Moreover 

the proliferation of verification resources and the variety of possible interactions with 

them requires an Organizing System. “The concept of the Organizing System high-

lights the design dimensions and decisions that collectively determine the extent and 

nature of resource organization and the capabilities of the processes that compare, 

combine, transform and interact with the organized resources [4].”  

2.2 A Theory of Diagnosis from First Principles 

A variety of failure diagnosis techniques drawing from diverse areas of computing 

and mathematics such as artificial intelligence, machine learning, statistics, stochastic 

modelling, Bayesian inference, rule-based inference, information theory, and graph 

theory have been studied in the literature [10]. In the model-based diagnosis, often 

referred as diagnosis from first principles, one is given a description of a system, to-



 

 

gether with an observation of the system's behavior which conflicts with the way the 

system is meant to behave. “The diagnostic problem is to determine those components 

of the system which, when assumed to be functioning abnormally, will explain the 

discrepancy between the observed and correct system behavior [8].” At the other end 

of the spectrum, there are methods that do not assume any form of model information 

and rely only on historic process data [11].” Without denying the importance of other 

approaches, we use a theory of diagnosis from first principles based on Reiter’s work 

[8] as a general theory of diagnosis.  

One begins with a description of a system, including desired properties and the 

structure of the system’s interacting components. Whatever one's choice of represen-

tation, the description will specify how that system normally behaves on the assump-

tion that all its components are functioning correctly. We need a diagnosis if we have 

available an observation of the system's actual behavior and if this observation is logi-

cally inconsistent with the way the system is meant to behave. Intuitively, a diagnosis 

determines system components which, when assumed to be functioning abnormally, 

will explain the discrepancy between the observed and correct system behavior [8]. 

There may be several competing explanations (diagnoses) for the same faulty system, 

the computational problem, then, is to determine all possible diagnoses. 

2.3 Design Decisions 

Explicitly or by default, establishing an Organizing System (OS) requires many deci-

sions. These decisions are deeply intertwined, but it is easier to introduce them as if 

they were independent. In [4], authors introduce five groups of design decisions. 

What is being organized? 

System models, verification runs and diagnosis are our primary source of interest. 

There are all made of digital resources, but we can make a distinction between prima-

ry resources (such as [parts of] models, properties, verification runs, and counterex-

amples) and description resources about the primary resources and their relationships. 

Verification benchmarks (e.g. BEEM, BEnchmarks for Explicit Model checkers [12]) 

provide valuable inputs and need to be organized in collections. Any OS user can also 

organize her own verification endeavors in collections, sub-collections of resources. 

Why it is being organized? 

OS users are modelling and verification engineers, working alone or in teams, who 

need “to deal with the data explosion of the modelling phase and the versioned prod-

uct space explosion of the verification phase [1].”  The OS gathers and organizes 

quantitative and qualitative information to support knowledge creation and automated 

diagnosis reasoning. OS users share knowledge without being constrained to espouse 

a given formalism. OS users need to navigate efficiently through the resources space. 

The OS supports a reverification procedure to make sure that errors found in the mod-

el do not invalidate previous verification runs.  

How much is it being organized? 



 

 

The simplest OS can be a software configuration management system controlling 

the release and change of each digital resource, leaving the burden of organization 

outside of the OS. At the opposite of the spectrum, the OS can be a full ontology 

where any relationship between any piece of information is carefully defined and 

controlled, allowing many reasoning possibilities. For our point of view, the OS man-

ages essentially documents (models, results, traces). Each document organizes its 

knowledge structure and content, according to its document type, and the engineer 

writes and reads information according to this structure. The reification of the under-

lying knowledge structure for reasoning purposes is done automatically by the OS. 

When is it being organized?  

The OS is intended to assist the engineer in her daily modelling and verification 

tasks, hence resources are organized continuously. However, the OS should offer an 

ingestion feature that helps to enter inputs into the OS. Ingest feature provides the 

services and functions to accept complex verification endeavors or benchmark collec-

tions and prepares the contents for storage and management within the OS. Converse-

ly, an access feature provides the services and functions that support users in  deter-

mining  the  existence,  description,  location  and  availability  of  information  stored  

in  the  OS,  and  allowing  users  to extract information in a parametrized manner. 

How or by whom, or by what computational processes, is it being organized? 

Although a single verification engineer will benefit of the OS use, the OS is in-

tended to support teamwork and to share knowledge about models and verification 

endeavors. Automated processes should extract as much knowledge as possible from 

the documents internal structure and from the collections organization. As a collabo-

rative teamwork, organization is performed in a distributed, bottom-up manner. 

3 Inside the Organizing System 

3.1 Knowledge Management and Ontologies 

In [13], the authors state that knowledge is an enterprise’s most important assets and 

define the basic activities of knowledge management: identification, acquisition, de-

velopment, dissemination, use, and preservation of the enterprise’s knowledge. They 

advocate a corporate or organizational memory (OM) at the core of a learning organi-

zation, supporting sharing and reuse of individual and corporate knowledge and les-

sons learned [13]. The concept of an organizing system intended to knowledge man-

agement (KM) is a modern reincarnation of the organizational memory and we can 

benefit from the results gained in this research area. Knowledge acquisition and 

maintenance pose a serious challenge for organizational memories and [13] recom-

mend adhering to the following principles: - exploit easily available information 

sources ; - forgo a complete formalization of knowledge; - use automatic knowledge-

acquisition tools; - encourage user feedback and suggestions for improvements; - 

check the consistency of newly suggested knowledge.  



 

 

An organizational memory or a KM organizing system relies substantially on exist-

ing information sources, which constitute the first tier of its architecture, called the 

object level in [13] and the storage tier in [4]. This level or tier is characterized by a 

variety of sources, heterogeneous with respect to several dimensions concerning form 

and content properties. An organizational memory or an information organizing sys-

tem offers presentation facilities in the access tier, called the application-specific level 

in [13] and the presentation tier in [4]. This level or tier performs the mapping from 

the application-specific information needs to these heterogeneous object-level sources 

via a uniform access and utilization method on the basis of a logic-based, knowledge-

rich level, a middle tier called the knowledge description level in [13] and the logic 

tier in [4]. The knowledge-rich level has the central role of a shared language to con-

nect people to people, people to information, and information to information [14], and 

the level includes ontologies as a core enabler. As major knowledge-based KM appli-

cations, ontologies are used for the following three general purposes [14]: to support 

knowledge visualization; to support knowledge search, retrieval, and personalization; 

to serve as the basis for information gathering and integration. 
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Fig. 2. Main elements of the ontological level. 

Fig. 2 represents the main concepts and relationships of our ontology. A system is 

referred to by several propositional objects: system requirements (sentences and for-

malized properties), the system model (and its components), observations generally 

made about verification runs that are organized within verification endeavors. A diag-

nosis is a conjecture that certain of the components are faulty (Abnormal) and the rest 

normal, stemming from an observation inconsistent with the system descriptions. All 

information on a particular verification run is not detailed here, and include, among 

others, checked properties, run outcomes, model-checker options and statistics. 

3.2 Technical Aspects of the Tiers of the Organizing System  

Modern applications separate the storage of data, the business logic or functions that 

use the data, and the user interface or presentation components through which users or 



 

 

other applications interact with the data. For each tier, we kept the design as simple as 

possible, relying on straightforward and widely-used solutions. 

The storage tier.  

As mentioned in the introduction, a practical difficulty of using model checkers “in 

the large” is the management of all (generated) data during the verification endeavors. 

A disciplined recording of information on the different models during the verification 

phase becomes even more indispensable when errors are found, because, once the 

erroneous models have been corrected and re-verified, all models that have been veri-

fied previously and which are affected by the error should be re-verified as well [1]. 

We propose to use a Software Configuration Management (SCM) system to control 

the versioned artifacts produced during modelling and verification phases.  

We do not impose any arrangement to the verification engineers. Hence, a verifica-

tion endeavor is associated with a directory, with a total freedom to arrange endeavors 

and runs in a recursive manner. Using the combination of SCM feature and tools (e.g., 

the tool make) able to process automatically the building of software artifacts, each 

engineer organizes her endeavors in an arranged hierarchy or a rake of runs. 

Complex objects such as set of properties or models decomposition are managed in 

the same manner, with a root directory and a freedom of organization. In order to ease 

the integration of each single object at the logical level, an XML description file 

stores information about the objects, a feature called a version description in a SCM 

system. The structure of the XML (its schema) is used by the software components 

(providing ingest and access features) to maintain an up-to-date ontological network 

in the logical level. 

Avoiding the building of an information silo was also a concern. A silo is an insu-

lar management system that is unable to operate with any other systems. Files, direc-

tories, XML description, source version control ensure an access independent of any 

management system. 

The access tier.  

One of the main goals of an Organizing System is to support the design and im-

plementation of the actions, functions or services that make use of the resources. In 

classical 3-tier architecture, the presentation tier is the tier in which users interact with 

an application. Typical user interactions are ingestions (importing new resources into 

the OS), searches, browsing, tagging and annotations, retrieval, information extrac-

tion. An Organizing System is also intended to interact with other applications and 

should provide information exchange features with or without semantic transfor-

mations. Because any of the user interactions mentioned above might be performed in 

a dedicated tool, in this perspective, the presentation layer is merely an access layer 

and its main concern is tool interoperability. Among possible solutions, we choose a 

pragmatic approach, called conceptual interoperability based on the concept of the 

federation of models [15] and its open source tooling (http://research.openflexo.org). 

The Openflexo tool set provides support for building conceptual views expanding 

upon existing models and tools. 

http://research.openflexo.org/


 

 

The ontological tier.  

From a conceptual perspective, the ontological layer is divided into two parts. The 

semantic network of types, on one hand, consists of semantic types linked by types of 

semantic relations, equivalent to an entity-relationship model or an UML class dia-

gram). The semantic network of objects, on the other hand, contains a node for each 

fine-grained object plus nodes for the composite objects, each of which is assigned to 

one or more semantic types and linked to other objects by semantic relations. 

The ontological tier is evolving continuously over time, because new resources 

types and new resources can be added at any time. People and organizations develop-

ing information and knowledge application systems are using different ontologies and 

there will be a need to reconcile these ontologies with a common upper ontology. We 

use the CIDOC CRM (http://www.cidoc-crm.org/official_release_cidoc.html), a 

standardized structure (ISO 21127:2014) for describing the implicit and explicit con-

cepts and relationships used in cultural heritage documentation, as an upper ontology. 

Technically, the ontological layer is stored in a TDB triple store; and we use the 

Apache Jena API to extract data from and write to RDF graphs 

(http://jena.apache.org/). There is an isomorphism between physical objects in the 

storage layer and semantic objects in the ontological layer; it is the access layer re-

sponsibility to maintain the isomorphism when items are updated in the storage tier. 

3.3 An Organizing System to perform and enable the verifier's activities 

Our team develops and maintains a model-checking toolkit. The system is described 

using the Fiacre language [16], which enables the specification of interacting behav-

iors and timing constraints through timed-automata. Our approach, called Context-

aware Verification, focuses on the explicit modelling of the environment as one or 

more contexts. Interaction contexts are described with the Context Description Lan-

guage (CDL). CDL enables also the specification of requirements through predicates 

and properties. The requirements are verified within the contexts that correspond to 

the environmental conditions in which they should be satisfied. All these develop-

ments are implemented in the OBP tool kit [17] and are freely available
1
. 

Recall that this research work aims to contribute to the solving of two practical 

problems: to deal with many verification objects (that have to be carefully managed 

and often re-verified); and to facilitate the judgement of the validation problem (is the 

formalized problem statement an adequate reflection of the actual problem?).  

The first problem requires essentially a methodology of verification and a support 

tool. Each verification engineer work process is made of slightly different activities 

using their own resources through different verification tools; hence each engineer 

defines her methodology or uses a given one. Our aim is to provide an integration 

framework for the tools and methodologies; this is precisely the goal of an Organizing 

System to arrange resources and to support interactions with.  

The second problem is part of a larger problem of computer-supported diagnosis 

that, as mentioned in Section 2.2, has been addressed with a multitude of techniques, 

                                                         
1  1OBP Languages and Tool kit website: http://www.obpcdl.org 
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among which we choose a model-based approach. Our hypothesis is that the logical 

tier of the OS, knowledge-rich and ontology-based, serves as the basis for information 

gathering, information integration, knowledge creation and knowledge sharing. 

Thanks to the access layer, tools interoperability is made easier and tools collabora-

tion provides the user with the required help. The OS acts as a backbone to add tools 

supporting techniques such as case-based reasoning. 

Case-based reasoning. 

The main limitation of model-based diagnosis is that it requires a model. What 

does mean a modelling error in a model-checking approach? It means that, upon stud-

ying the error it is discovered that the model does not reflect the design of the system 

and that implies a correction of the model [3]. Hence it means that the design is the 

subject of diagnosis, and that we need a correct model of the design (that we do not 

have, in essence) to apply model-based reasoning. Fortunately, we can use case-based 

reasoning (CBR) to find this correct model. In CBR, a reasoner remembers previous 

situations similar to the current one and uses them to solve the new problem. So, we 

need to describe the old cases (called Problem Cases) in the OS using a Problem Case 

Template (mainly the problem statement, the formalized properties, the “correct” 

model and implementations for different model-checkers). Reasoning on a new case 

(called Sample Case) suggests “a model of reasoning that incorporates problem solv-

ing, understanding, and learning and integrates all with memory processes [18].” A 

work using pattern for relate Problems and Sample Cases is under submission [19]. 

4 Related work 

The research work of Theo C. Ruys [20] is the closest to ours, particularly for the first 

research problem addressed in this paper. The concept of managing the verification 

trajectory [1], by Ruys and Brinksma, has been a seminal paper for the understanding 

of the verification cycles and the need for a Software Configuration Management 

System for the verification “in the large” of real-life systems. We differ in scope be-

cause Ruys’s work is focused on the use of the SPIN model-checker while we are 

looking for an agnostic view of model-checking that implies an intermediate abstract 

(and ontological) layer between the verification engineer and her verification objects. 

Because any resources ingested in the Organizing System is going through the access 

layer, the only extra price to pay for the verification engineer is to describe her organ-

ization documents (e.g. the version descriptor used in [1]; containing a description of 

the files included in a particular version) in a schema (e.g. in a XML Schema defini-

tion) and to relate schema components (e.g. element and attribute declarations and 

complex and simple type definitions) with semantic types and/or semantic relations of 

the OS ontological layer. If the verifiers’ schema components does not exist in the 

ontological layer, the verification engineer has to indicate whether semantic con-

structs they refine and missing components will be added in the ontology. Thanks to 

this mapping, the particular view of any verification engineer will be shared with the 

other users of the OS. 



 

 

Hence, our work and Ruys’s work address the same issues and rely on the same so-

lution scheme. However, our approach has two main advantages: it supports any 

model-checking tool and method and enlarges the community of OS users; the onto-

logical layer permits shared knowledge and reasoning over different model-checking 

verification experiences, working across boundaries. 

 

The research work of the Divine team [21] was a second source of inspiration. Di-

vine verifies models in multiple input formats and has excellent execution perfor-

mances using a cluster of multi-core machines and partial order reduction techniques, 

breaking through the limits of the state space explosion problem. However, our work 

has been more influenced by side products of the Divine team, mainly issues related 

to the BEEM benchmark management [12] and the automation of the verification 

process [21] by Pelanek. He agrees for the need for classifications based on a model 

structure and also classifications based on features of state spaces, which relate to 

model-based or experiential diagnosis introduced in Section 2.2. Pelanek’s work per-

spectives mention a long term goal intended to develop an automated ‘verification 

manager’, which would be able to learn from experience [22]. Our approach is more 

humble and pragmatic: to provide the user with the bigger possible set of knowledge 

about verification, including an ontological classification of the problem and the solu-

tion spaces. Thanks to the arranged knowledge within the Organizing System, the 

verification engineer can plug her plug tools to address the automated verification 

manager issue in her way 

5 Conclusion 

Verification “in the large” suffers of two practical problems: the verifier has to deal 

with many verification objects that have to be carefully managed and often re-

verified; it is often difficult to judge whether the formalized problem statement is an 

adequate reflection of the actual problem.  We designed and built a prototype of an 

organizing system (OS) - an intentionally arranged collection of resources and the 

interactions they support – that makes easier the management of verification objects 

and supports reasoning interactions that facilitates diagnosis decisions.  

Key points and driving issues of this research work are the ability of the OS to host 

a large variety of model-checking tools, techniques and methods; and the interopera-

bility of the OS with external tools, providing the user with the freedom to use the 

proper approach to her problems. 

However, we keep in mind that “any verification using model-based techniques is 

only as good as the model of the system. [3].” Hence, a particular attention to the 

validity of the problem formalization will drive our future research efforts.  
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