
HAL Id: hal-01472718
https://hal.univ-brest.fr/hal-01472718v1

Submitted on 21 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Organizing System to Perform and Enable
Verification and Diagnosis Activities
Vincent Leilde, Vincent Ribaud, Philippe Dhaussy

To cite this version:
Vincent Leilde, Vincent Ribaud, Philippe Dhaussy. An Organizing System to Perform and Enable
Verification and Diagnosis Activities. Intelligent Data Engineering and Automated Learning – IDEAL
2016, Oct 2016, Yangzou, China. pp.576-587. �hal-01472718�

https://hal.univ-brest.fr/hal-01472718v1
https://hal.archives-ouvertes.fr

An Organizing System to Perform and Enable

Verification and Diagnosis Activities

Vincent LEILDE
1
, Vincent RIBAUD

2
, Philippe DHAUSSY

1

1 Lab-STICC, team MOCS, ENSTA Bretagne,rue François Verny,Brest

e-mail: firstname.lastname@ensta-bretagne.fr
2 Lab-STICC, team MOCS, Université de Brest,avenue Le Gorgeu,Brest

e-mail: ribaud@univ-brest.fr

Abstract. Model-checkers increasing performance allows engineers to apply

model-checking for the verification of real-life system but little attention has

been paid to the methodology of model-checking. Verification “in the large”

suffers of two practical problems: the verifier has to deal with many verification

objects that have to be carefully managed and often re-verified; it is often diffi-

cult to judge whether the formalized problem statement is an adequate reflec-

tion of the actual problem. An organizing system - an intentionally arranged

collection of resources and the interactions they support – makes easier the

management of verification objects and supports reasoning interactions that fa-

cilitates diagnosis decisions. We discuss the design of such an organizing sys-

tem, we show a straightforward implementation used within our research team.

Keywords: verification, model-checking, diagnosis, organizing system

1 Introduction

System verification is used to establish that the design or product under consideration

possesses certain properties. Formal verification has been advocated as a way forward

to address verification tasks of complex embedded systems. Formal methods, within

the field of computer science, is the formal treatment of problems related to the analy-

sis of designs, but “it does not yet generally offer what its name seems to suggests,

viz. methods for the application of formal techniques [1].”

Our research work is underlined by the observation that verification “in the large”

causes a proliferation of interrelated models and verification sessions “that must be

carefully managed in order to control the overall verification process [1].” The main

technique discussed in this paper is verification by model-checking. “Model checking

is a formal verification technique which allows for desired behavioral properties of a

given system to be verified on the basis of a suitable model of the system through

systematic inspection of all states of the model [2].”

Model-checking walks through different phases within an iterative process [3]:

modelling, running the model-checker and analyzing the results. Moreover, the entire

verification should be planned, administered, and organized.

mailto:firstname.lastname@ensta-bretagne.fr
mailto:ribaud@univ-brest.fr

The applicability of model-checking to large systems suffers of two practical prob-

lems. A verification session refines the model, and because properties are verified one

by one, previously verified properties need or need not to be verified again, depending

on the refinement performed. When the model-checker runs out of memory, some

divide-and-conquer techniques should be employed to reduce the model. These tech-

niques exploit regularities in the structure of the models or of the verification process

itself that are difficult to understand and their performance may vary considerably.

A second practical problem arises from the difficulty to judge whether the formal-

ized problem statement (model + properties) is an adequate reflection of the actual

problem. This is known as the validation problem. If the verifier suspects the validity

of a property, the property needs to be re-formalized and it starts the whole verifica-

tion again. If the verifier suspects the validity of the design, the verification process

restarts after an improvement of the design. The complexity of the involved system,

as well as the lack of precision of the informal specification of the system’s function-

ality, makes it hard to answer the validation problem satisfactorily [1], [3].

Both problems require an organized verification method. Organization creates or

supports capabilities by intentionally imposing order and structure. In this paper, we

apply the concepts of an organizing system promoted by [4]: “an Organizing System

is an intentionally arranged collection of resources and the interactions they support."

As an attempt to solve the problems mentioned above, we designed and built a proto-

type of an Organizing System for the support of verification and diagnosis activities.

In section 2, we precise the issues of the management of verification cycles; we intro-

duce a general theory of diagnosis, and we presents some design decisions for our

Organizing System. Section 3 deepens different aspects of an Organizing System:

knowledge management and ontologies, technical aspects of the tiers of the organiz-

ing system. Section 4 relates our work with previous work, and Section 5 concludes.

2 Organizing System for Verification and Diagnosis activities

2.1 Managing the Verification Trajectories

There are basically three possible outcomes of a verification run: the specified proper-

ty is either valid in the given model or not, or the model is faced with the state space

explosion problem (it turns out to be too large to fit within the computer memory).

If a state is encountered that violates the property under consideration, the model

checker provides a counterexample that describes an execution path that leads from

the initial system state to the faulty state. It is indisputable that the verification results

obtained using a verification tool should always be reproducible [5]. Tool support is

required and we present in Fig. 2 the objects that are significant and tool-managed

during the verification phases. The specification-design-modelling-verification cycles

are presented in Fig. 1. The terminology in [3] is used as a reference in the paper.

Modelling.

Model checking inputs are a model of the system and a formal characterization of

the property to be checked. Models are mostly expressed using finite-state automata,

made of a finite set of states and a set of transitions. To allow verification, properties

are described using a property specification language, relying generally on temporal

logic that allows people to describe properties in a precise and unambiguous manner.

VerificationModellingSpecification

Architectural design Formalization

Verification

Simulation

Modelling

System Requirements

System Description (Sentences and Properties)

Models and Properties
For each property

End for → Verified System

Error interpretation

Observations

Model-based diagnosis

Modelling error

Diagnosis

Experential diagnosis

Diagnosis

Design error

Fig. 1. The specification-design-modelling-verification process and its cycles

Verification: running the model-checker.

Current model checkers provide the user with various options and directives to op-

timize and tune the functionality and performance of the verification run. Subsequent-

ly, the actual model checking takes place. Whenever a property is not valid, it may

have different causes. A modelling error means that the model does not reflect the

design of the system. After the model correction, verification has to be restarted with

the improved model. This corresponds to the bolded cycle in Fig. 1. When there is no

undue discrepancy between the design and its model, then either a design error has

been exposed, or a property error has taken place (this case is not considered in the

paper). In case of a design error, the verification is concluded with a negative result,

and the design (together with its model) has to be improved. The designer will pro-

ceed through iterative refinements; a situation depicted with a plain cycle in Fig. 1.

Interpreting the error(s).

The main advantage of model checking is the production of counterexamples

demonstrating that a system does not satisfy a specification. Extracting the essence of

an error from even a detailed source-level trace of a failing run requires a great deal of

human-effort [6] and a lot of research work focus on counterexample processing to

produce an error explanation. Hence, correcting the error(s) starts with an error diag-

nosis, and more precisely, using the fault, error, and failure nomenclature of [7], it

starts with a failure diagnosis. Failure diagnosis is the process of identifying the fault

that has led to an observed failure of a system or its constituent components.

Model-based diagnosis.

The technique we use for failure diagnosis is a model-based diagnosis (also called

reasoning from first principles) based on a theory of diagnosis established by [8]. A

diagnosis is as a set of assumptions about a system component’s abnormal behavior

such that observations of one component’s misbehavior are consistent with the as-

sumptions that all the other components are acting correctly [8]. The computational

problem is to determine all possible diagnoses for a given faulty system. The repre-

sentation of the knowledge of the problem domain should achieve the desired cover-

age and quality of diagnoses while remaining computationally tractable [9].

Verification organization.

Whether the verification trajectory is incorporated in an adaptive design strategy or

focused on modelling-and-verifying cycles, the entire model-checking process should

be well organized, well structured, and well planned. According to [3], different mod-

els are describing different parts of the system, various versions of the verification

models are established, and plenty of verification parameters and results are available.

We propose to use an organizing system to manage a practical model-checking pro-

cess and to allow the reproduction of the experiments carried out by the engineers.

Robert J. Glushko and al. [4] promote The Discipline of Organizing (TDO) ap-

proach. Library and information science, informatics and other fields focus on the

characteristic types of resources and collections that define those disciplines. In con-

trast, TDO complements the focus on specific resource and collection types with a

framework that views organizing systems as existing in a multi-dimensional design

space in which we can consider many types of resources at the same time and see the

relationships among them. The framework assesses what is being organized, why,

how much, when and by what means. It leads to an Organizing System defined as “an

intentionally arranged collection of resources and the interactions they support [4].”

To sum up the problem statement of this section, managing the verification trajec-

tories is an indispensable support for using model checkers “in the large”. Moreover

the proliferation of verification resources and the variety of possible interactions with

them requires an Organizing System. “The concept of the Organizing System high-

lights the design dimensions and decisions that collectively determine the extent and

nature of resource organization and the capabilities of the processes that compare,

combine, transform and interact with the organized resources [4].”

2.2 A Theory of Diagnosis from First Principles

A variety of failure diagnosis techniques drawing from diverse areas of computing

and mathematics such as artificial intelligence, machine learning, statistics, stochastic

modelling, Bayesian inference, rule-based inference, information theory, and graph

theory have been studied in the literature [10]. In the model-based diagnosis, often

referred as diagnosis from first principles, one is given a description of a system, to-

gether with an observation of the system's behavior which conflicts with the way the

system is meant to behave. “The diagnostic problem is to determine those components

of the system which, when assumed to be functioning abnormally, will explain the

discrepancy between the observed and correct system behavior [8].” At the other end

of the spectrum, there are methods that do not assume any form of model information

and rely only on historic process data [11].” Without denying the importance of other

approaches, we use a theory of diagnosis from first principles based on Reiter’s work

[8] as a general theory of diagnosis.

One begins with a description of a system, including desired properties and the

structure of the system’s interacting components. Whatever one's choice of represen-

tation, the description will specify how that system normally behaves on the assump-

tion that all its components are functioning correctly. We need a diagnosis if we have

available an observation of the system's actual behavior and if this observation is logi-

cally inconsistent with the way the system is meant to behave. Intuitively, a diagnosis

determines system components which, when assumed to be functioning abnormally,

will explain the discrepancy between the observed and correct system behavior [8].

There may be several competing explanations (diagnoses) for the same faulty system,

the computational problem, then, is to determine all possible diagnoses.

2.3 Design Decisions

Explicitly or by default, establishing an Organizing System (OS) requires many deci-

sions. These decisions are deeply intertwined, but it is easier to introduce them as if

they were independent. In [4], authors introduce five groups of design decisions.

What is being organized?

System models, verification runs and diagnosis are our primary source of interest.

There are all made of digital resources, but we can make a distinction between prima-

ry resources (such as [parts of] models, properties, verification runs, and counterex-

amples) and description resources about the primary resources and their relationships.

Verification benchmarks (e.g. BEEM, BEnchmarks for Explicit Model checkers [12])

provide valuable inputs and need to be organized in collections. Any OS user can also

organize her own verification endeavors in collections, sub-collections of resources.

Why it is being organized?

OS users are modelling and verification engineers, working alone or in teams, who

need “to deal with the data explosion of the modelling phase and the versioned prod-

uct space explosion of the verification phase [1].” The OS gathers and organizes

quantitative and qualitative information to support knowledge creation and automated

diagnosis reasoning. OS users share knowledge without being constrained to espouse

a given formalism. OS users need to navigate efficiently through the resources space.

The OS supports a reverification procedure to make sure that errors found in the mod-

el do not invalidate previous verification runs.

How much is it being organized?

The simplest OS can be a software configuration management system controlling

the release and change of each digital resource, leaving the burden of organization

outside of the OS. At the opposite of the spectrum, the OS can be a full ontology

where any relationship between any piece of information is carefully defined and

controlled, allowing many reasoning possibilities. For our point of view, the OS man-

ages essentially documents (models, results, traces). Each document organizes its

knowledge structure and content, according to its document type, and the engineer

writes and reads information according to this structure. The reification of the under-

lying knowledge structure for reasoning purposes is done automatically by the OS.

When is it being organized?

The OS is intended to assist the engineer in her daily modelling and verification

tasks, hence resources are organized continuously. However, the OS should offer an

ingestion feature that helps to enter inputs into the OS. Ingest feature provides the

services and functions to accept complex verification endeavors or benchmark collec-

tions and prepares the contents for storage and management within the OS. Converse-

ly, an access feature provides the services and functions that support users in deter-

mining the existence, description, location and availability of information stored

in the OS, and allowing users to extract information in a parametrized manner.

How or by whom, or by what computational processes, is it being organized?

Although a single verification engineer will benefit of the OS use, the OS is in-

tended to support teamwork and to share knowledge about models and verification

endeavors. Automated processes should extract as much knowledge as possible from

the documents internal structure and from the collections organization. As a collabo-

rative teamwork, organization is performed in a distributed, bottom-up manner.

3 Inside the Organizing System

3.1 Knowledge Management and Ontologies

In [13], the authors state that knowledge is an enterprise’s most important assets and

define the basic activities of knowledge management: identification, acquisition, de-

velopment, dissemination, use, and preservation of the enterprise’s knowledge. They

advocate a corporate or organizational memory (OM) at the core of a learning organi-

zation, supporting sharing and reuse of individual and corporate knowledge and les-

sons learned [13]. The concept of an organizing system intended to knowledge man-

agement (KM) is a modern reincarnation of the organizational memory and we can

benefit from the results gained in this research area. Knowledge acquisition and

maintenance pose a serious challenge for organizational memories and [13] recom-

mend adhering to the following principles: - exploit easily available information

sources ; - forgo a complete formalization of knowledge; - use automatic knowledge-

acquisition tools; - encourage user feedback and suggestions for improvements; -

check the consistency of newly suggested knowledge.

An organizational memory or a KM organizing system relies substantially on exist-

ing information sources, which constitute the first tier of its architecture, called the

object level in [13] and the storage tier in [4]. This level or tier is characterized by a

variety of sources, heterogeneous with respect to several dimensions concerning form

and content properties. An organizational memory or an information organizing sys-

tem offers presentation facilities in the access tier, called the application-specific level

in [13] and the presentation tier in [4]. This level or tier performs the mapping from

the application-specific information needs to these heterogeneous object-level sources

via a uniform access and utilization method on the basis of a logic-based, knowledge-

rich level, a middle tier called the knowledge description level in [13] and the logic

tier in [4]. The knowledge-rich level has the central role of a shared language to con-

nect people to people, people to information, and information to information [14], and

the level includes ontologies as a core enabler. As major knowledge-based KM appli-

cations, ontologies are used for the following three general purposes [14]: to support

knowledge visualization; to support knowledge search, retrieval, and personalization;

to serve as the basis for information gathering and integration.

System Component

is composed of forms part of

Sentence

System Description

Property

Propositional Object
Diagnosis

Faulty - abnormal

Normal

Observation

Inconsistency

is referred to by

refers to

System

Verification Endeavor

Verification Run

has association with

is associated with
is subject of

is aboutis subject of is about

is composed of

forms part of

Fig. 2. Main elements of the ontological level.

Fig. 2 represents the main concepts and relationships of our ontology. A system is

referred to by several propositional objects: system requirements (sentences and for-

malized properties), the system model (and its components), observations generally

made about verification runs that are organized within verification endeavors. A diag-

nosis is a conjecture that certain of the components are faulty (Abnormal) and the rest

normal, stemming from an observation inconsistent with the system descriptions. All

information on a particular verification run is not detailed here, and include, among

others, checked properties, run outcomes, model-checker options and statistics.

3.2 Technical Aspects of the Tiers of the Organizing System

Modern applications separate the storage of data, the business logic or functions that

use the data, and the user interface or presentation components through which users or

other applications interact with the data. For each tier, we kept the design as simple as

possible, relying on straightforward and widely-used solutions.

The storage tier.

As mentioned in the introduction, a practical difficulty of using model checkers “in

the large” is the management of all (generated) data during the verification endeavors.

A disciplined recording of information on the different models during the verification

phase becomes even more indispensable when errors are found, because, once the

erroneous models have been corrected and re-verified, all models that have been veri-

fied previously and which are affected by the error should be re-verified as well [1].

We propose to use a Software Configuration Management (SCM) system to control

the versioned artifacts produced during modelling and verification phases.

We do not impose any arrangement to the verification engineers. Hence, a verifica-

tion endeavor is associated with a directory, with a total freedom to arrange endeavors

and runs in a recursive manner. Using the combination of SCM feature and tools (e.g.,

the tool make) able to process automatically the building of software artifacts, each

engineer organizes her endeavors in an arranged hierarchy or a rake of runs.

Complex objects such as set of properties or models decomposition are managed in

the same manner, with a root directory and a freedom of organization. In order to ease

the integration of each single object at the logical level, an XML description file

stores information about the objects, a feature called a version description in a SCM

system. The structure of the XML (its schema) is used by the software components

(providing ingest and access features) to maintain an up-to-date ontological network

in the logical level.

Avoiding the building of an information silo was also a concern. A silo is an insu-

lar management system that is unable to operate with any other systems. Files, direc-

tories, XML description, source version control ensure an access independent of any

management system.

The access tier.

One of the main goals of an Organizing System is to support the design and im-

plementation of the actions, functions or services that make use of the resources. In

classical 3-tier architecture, the presentation tier is the tier in which users interact with

an application. Typical user interactions are ingestions (importing new resources into

the OS), searches, browsing, tagging and annotations, retrieval, information extrac-

tion. An Organizing System is also intended to interact with other applications and

should provide information exchange features with or without semantic transfor-

mations. Because any of the user interactions mentioned above might be performed in

a dedicated tool, in this perspective, the presentation layer is merely an access layer

and its main concern is tool interoperability. Among possible solutions, we choose a

pragmatic approach, called conceptual interoperability based on the concept of the

federation of models [15] and its open source tooling (http://research.openflexo.org).

The Openflexo tool set provides support for building conceptual views expanding

upon existing models and tools.

http://research.openflexo.org/

The ontological tier.

From a conceptual perspective, the ontological layer is divided into two parts. The

semantic network of types, on one hand, consists of semantic types linked by types of

semantic relations, equivalent to an entity-relationship model or an UML class dia-

gram). The semantic network of objects, on the other hand, contains a node for each

fine-grained object plus nodes for the composite objects, each of which is assigned to

one or more semantic types and linked to other objects by semantic relations.

The ontological tier is evolving continuously over time, because new resources

types and new resources can be added at any time. People and organizations develop-

ing information and knowledge application systems are using different ontologies and

there will be a need to reconcile these ontologies with a common upper ontology. We

use the CIDOC CRM (http://www.cidoc-crm.org/official_release_cidoc.html), a

standardized structure (ISO 21127:2014) for describing the implicit and explicit con-

cepts and relationships used in cultural heritage documentation, as an upper ontology.

Technically, the ontological layer is stored in a TDB triple store; and we use the

Apache Jena API to extract data from and write to RDF graphs

(http://jena.apache.org/). There is an isomorphism between physical objects in the

storage layer and semantic objects in the ontological layer; it is the access layer re-

sponsibility to maintain the isomorphism when items are updated in the storage tier.

3.3 An Organizing System to perform and enable the verifier's activities

Our team develops and maintains a model-checking toolkit. The system is described

using the Fiacre language [16], which enables the specification of interacting behav-

iors and timing constraints through timed-automata. Our approach, called Context-

aware Verification, focuses on the explicit modelling of the environment as one or

more contexts. Interaction contexts are described with the Context Description Lan-

guage (CDL). CDL enables also the specification of requirements through predicates

and properties. The requirements are verified within the contexts that correspond to

the environmental conditions in which they should be satisfied. All these develop-

ments are implemented in the OBP tool kit [17] and are freely available
1
.

Recall that this research work aims to contribute to the solving of two practical

problems: to deal with many verification objects (that have to be carefully managed

and often re-verified); and to facilitate the judgement of the validation problem (is the

formalized problem statement an adequate reflection of the actual problem?).

The first problem requires essentially a methodology of verification and a support

tool. Each verification engineer work process is made of slightly different activities

using their own resources through different verification tools; hence each engineer

defines her methodology or uses a given one. Our aim is to provide an integration

framework for the tools and methodologies; this is precisely the goal of an Organizing

System to arrange resources and to support interactions with.

The second problem is part of a larger problem of computer-supported diagnosis

that, as mentioned in Section 2.2, has been addressed with a multitude of techniques,

1 1OBP Languages and Tool kit website: http://www.obpcdl.org

http://www.cidoc-crm.org/official_release_cidoc.html
http://jena.apache.org/

among which we choose a model-based approach. Our hypothesis is that the logical

tier of the OS, knowledge-rich and ontology-based, serves as the basis for information

gathering, information integration, knowledge creation and knowledge sharing.

Thanks to the access layer, tools interoperability is made easier and tools collabora-

tion provides the user with the required help. The OS acts as a backbone to add tools

supporting techniques such as case-based reasoning.

Case-based reasoning.

The main limitation of model-based diagnosis is that it requires a model. What

does mean a modelling error in a model-checking approach? It means that, upon stud-

ying the error it is discovered that the model does not reflect the design of the system

and that implies a correction of the model [3]. Hence it means that the design is the

subject of diagnosis, and that we need a correct model of the design (that we do not

have, in essence) to apply model-based reasoning. Fortunately, we can use case-based

reasoning (CBR) to find this correct model. In CBR, a reasoner remembers previous

situations similar to the current one and uses them to solve the new problem. So, we

need to describe the old cases (called Problem Cases) in the OS using a Problem Case

Template (mainly the problem statement, the formalized properties, the “correct”

model and implementations for different model-checkers). Reasoning on a new case

(called Sample Case) suggests “a model of reasoning that incorporates problem solv-

ing, understanding, and learning and integrates all with memory processes [18].” A

work using pattern for relate Problems and Sample Cases is under submission [19].

4 Related work

The research work of Theo C. Ruys [20] is the closest to ours, particularly for the first

research problem addressed in this paper. The concept of managing the verification

trajectory [1], by Ruys and Brinksma, has been a seminal paper for the understanding

of the verification cycles and the need for a Software Configuration Management

System for the verification “in the large” of real-life systems. We differ in scope be-

cause Ruys’s work is focused on the use of the SPIN model-checker while we are

looking for an agnostic view of model-checking that implies an intermediate abstract

(and ontological) layer between the verification engineer and her verification objects.

Because any resources ingested in the Organizing System is going through the access

layer, the only extra price to pay for the verification engineer is to describe her organ-

ization documents (e.g. the version descriptor used in [1]; containing a description of

the files included in a particular version) in a schema (e.g. in a XML Schema defini-

tion) and to relate schema components (e.g. element and attribute declarations and

complex and simple type definitions) with semantic types and/or semantic relations of

the OS ontological layer. If the verifiers’ schema components does not exist in the

ontological layer, the verification engineer has to indicate whether semantic con-

structs they refine and missing components will be added in the ontology. Thanks to

this mapping, the particular view of any verification engineer will be shared with the

other users of the OS.

Hence, our work and Ruys’s work address the same issues and rely on the same so-

lution scheme. However, our approach has two main advantages: it supports any

model-checking tool and method and enlarges the community of OS users; the onto-

logical layer permits shared knowledge and reasoning over different model-checking

verification experiences, working across boundaries.

The research work of the Divine team [21] was a second source of inspiration. Di-

vine verifies models in multiple input formats and has excellent execution perfor-

mances using a cluster of multi-core machines and partial order reduction techniques,

breaking through the limits of the state space explosion problem. However, our work

has been more influenced by side products of the Divine team, mainly issues related

to the BEEM benchmark management [12] and the automation of the verification

process [21] by Pelanek. He agrees for the need for classifications based on a model

structure and also classifications based on features of state spaces, which relate to

model-based or experiential diagnosis introduced in Section 2.2. Pelanek’s work per-

spectives mention a long term goal intended to develop an automated ‘verification

manager’, which would be able to learn from experience [22]. Our approach is more

humble and pragmatic: to provide the user with the bigger possible set of knowledge

about verification, including an ontological classification of the problem and the solu-

tion spaces. Thanks to the arranged knowledge within the Organizing System, the

verification engineer can plug her plug tools to address the automated verification

manager issue in her way

5 Conclusion

Verification “in the large” suffers of two practical problems: the verifier has to deal

with many verification objects that have to be carefully managed and often re-

verified; it is often difficult to judge whether the formalized problem statement is an

adequate reflection of the actual problem. We designed and built a prototype of an

organizing system (OS) - an intentionally arranged collection of resources and the

interactions they support – that makes easier the management of verification objects

and supports reasoning interactions that facilitates diagnosis decisions.

Key points and driving issues of this research work are the ability of the OS to host

a large variety of model-checking tools, techniques and methods; and the interopera-

bility of the OS with external tools, providing the user with the freedom to use the

proper approach to her problems.

However, we keep in mind that “any verification using model-based techniques is

only as good as the model of the system. [3].” Hence, a particular attention to the

validity of the problem formalization will drive our future research efforts.

6 References

1. Ruys, T.C., Brinksma, E.: Managing the verification trajectory. International Journal on

Software Tools for Technology Transfer (STTT). 4, 246–259 (2003).

2. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In: International

Symposium on Fundamentals of Computation Theory. pp. 62–88. Springer (1995).

3. Baier, C., Katoen, J.-P.: Principles of model checking. The MIT Press, Cambridge, MA

(2008).

4. Glushko, R.J. ed: The Discipline of Organizing. The MIT Press, Cambridge, MA (2013).

5. Holzmann, G.J.: The Theory and Practice of A Formal Method: NewCoRe. In: IFIP Con-

gress (1). pp. 35–44 (1994).

6. Groce, A., Visser, W.: What went wrong: Explaining counterexamples. In: Model Checking

Software. pp. 121–136. Springer (2003).

7. Avižienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-

pendable and secure computing. Dependable and Secure Computing, IEEE Transactions on.

1, 11–33 (2004).

8. Reiter, R.: A theory of diagnosis from first principles. Artificial intelligence. 32, 57–95

(1987).

9. Peischl, B., Wotawa, F.: Model-based diagnosis or reasoning from first principles. IEEE

Intelligent Systems. 18, 32–37 (2003).

10. Kavulya, S.P., Joshi, K., Giandomenico, F.D., Narasimhan, P.: Failure Diagnosis of Com-

plex Systems. In: Wolter, K., Avritzer, A., Vieira, M., and van Moorsel, A. (eds.) Resilience

Assessment and Evaluation of Computing Systems. pp. 239–261. Springer Berlin Heidel-

berg, Berlin, Heidelberg (2012).

11. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N: A review of process fault

detection and diagnosis: Part I: Quantitative model-based methods. Computers & chemical

engineering, 27, 293-311(2003).

12. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Model Checking Soft-

ware. pp. 263–267. Springer (2007).

13. Abecker, A., Bernardi, A., Hinkelmann, K., Kühn, O., Sintek, M.: Toward a Technology for

Organizational Memories. IEEE Intelligent Systems. 13, 40–48 (1998).

14. Abecker, A., van Elst, L.: Ontologies for knowledge management. In: Handbook on ontolo-

gies. pp. 713–734. Springer Berlin Heidelberg (2009).

15. Guychard, C., Guerin, S., Koudri, A., Beugnard, A., Dagnat, F.: Conceptual interoperability

through Models Federation. In: Semantic Information Federation Community Workshop

(2013).

16. Berthomieu, B., Bodeveix, J.-P., Farail, P., Filali, M., Garavel, H., Gaufillet, P., Lang, F.,

Vernadat, F.: Fiacre: an Intermediate Language for Model Verification in the Topcased En-

vironment. Presented at the ERTS 2008 January (2008).

17. Dhaussy, P., Boniol, F., Roger, J.-C., Leroux, L.: Improving Model Checking with Context

Modelling. Adv. Soft. Eng. 2012, 9:9–9:9 (2012).

18. Kolodner, J.: Case-based reasoning. Kaufmann, San Mateo, Calif (1997).

19. Leilde, V., Ribaud, V., Dhaussy, P. Organizing problem and sample cases for model-based

diagnosis. Submitted in Second International Workshop on Patterns in Model Engineering

co-located with MODELS'16, Saint-Malo, France (2016).

20. Ruijs, T.C.: Towards Effective Model Checking, http://doc.utwente.nl/36596/, (2001).

21. Barnat, J., Brim, L., Havel, V., Havlíček, J., Kriho, J., Lenčo, M., Ročkai, P., Štill, V.,

Weiser, J.: DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded C & C++ Pro-

grams. In: Sharygina, N. and Veith, H. (eds.) Computer Aided Verification. pp. 863–868.

Springer Berlin Heidelberg (2013).

22. Pelánek, R.: Model classifications and automated verification. In: Formal Methods for In-

dustrial Critical Systems. pp. 149–163. Springer (2007).

