
HAL Id: hal-01451202
https://hal.univ-brest.fr/hal-01451202

Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ROLES TRANSFORMATION WITHIN A SOFTWARE
ENGINEERING MASTER BY IMMERSION

Vincent Ribaud, Philippe Saliou

To cite this version:
Vincent Ribaud, Philippe Saliou. ROLES TRANSFORMATION WITHIN A SOFTWARE ENGI-
NEERING MASTER BY IMMERSION. IDIMT 2004: 12th Interdisciplinary - Information Manage-
ment Talks, Sep 2004, Budweis, Czech Republic. �hal-01451202�

https://hal.univ-brest.fr/hal-01451202
https://hal.archives-ouvertes.fr

ROLES TRANSFORMATION WITHIN A SOFTWARE

ENGINEERING MASTER BY IMMERSION

V.Ribaud and P. Saliou
EA2215, Computer Science Departement, Faculté des sciences, 29285 Brest Cedex, France

E-mail:{Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr

Abstract

Learning the software engineering (SE) profession is a difficult task. Most SE professionals will

say that they learned it “by doing”. Hence, the main paradigm used is teaching software

engineering by doing. Most academic curricula address this issue through projects, but academic

projects are not sufficient to achieve the goal. Beyond the SE learning, more general questions

arise : how can we teach/learn engineering ? What is a “long-term education”, particularly in

computer science ? And in a general sense ?

Since September 2002, Brest university has offered a dedicated second year of Master in

computer science, called “Software engineering by immersion”. The main objectives are :

mastering software engineering activities and skills, working in a team, coping with change. Except

for English and Communication, no courses are offered. The plan of action is built on a 6-month

team project, lead and tutored by an experienced software professional. A real corporate baseline

(by the courtesy of a software services company) has been tailored to the apprenticeship paradigm

and now sustains engineering activities and products delivery. The apprenticeship process is

achieved in two iterations. During the first iteration (4 months), students are swapped around the

different tasks needed by engineering activities and strongly guided by the tutor. During the second

iteration (2 months), roles are fixed within each team and teams are relatively autonomous when

completing the project, the tutor performing mainly a supervising and rescuing activity. The

assessment process is essentially formative, due to the permanent feedback of tutoring.

After a very positive first year, the outcome of the second year is rather disappointing. This year,

we met with unexpected difficulties and this may be due to the roles transformation needed in the

immersion paradigm, for the students as well as for the tutors. This paper attempts to present the

new roles. Teachers have to deal with several kinds of tutoring activities : coordination between

teams, software project management, individual and collective apprenticeship during the first

iteration; peer review, sustaining the student acting as software manager, programme management

during the second iteration. Students have to learn new skills but above all play new roles namely :

citizen, builder, explorer, team member.

Assessing the role playing process formally is very difficult, first in a purely quantitative manner

and second in such a short time. Moreover, we are aware of very few similar experiments. So, this

paper tries to evaluate the new roles within the constructivism paradigm, especially the

apprenticeship paradigm described by Jacques Tardif. The teacher and student roles defined in this

paradigm are compared with those defined in our immersion paradigm. Some problems are

reported and possible improvements are drafted.

As a conclusion, if the immersion system is exciting and innovative, on the other hand the system

is fragile if both teachers and students are unable to play the new roles required. In addition to

these first conclusions, the professional insertion and career evolution of students need to be

observed over several years in order to evaluate the real benefits of this system.

1 Introduction

Among possible definitions of software engineering, we kept the following : “Software

engineering includes the different types of knowledge, processes, scientific and technical

experiences used for the manufacturing of software. This starts with the software order from the

contractor and ends with its exploitation”.

Teaching software engineering is hard, but learning software engineering is much harder.

Lethbridge and al. [8] surveyed software professionals to learn which educational topics have

proved most important to them in their careers and to identify the topics for which their education

or current knowledge could be improved. The survey indicates that employees are likely to lack

skills and knowledge in fundamentals areas of software engineering such as requirements

gathering/analysis, human/computer interfaces, project management, configuration management

and in people skills (attitudes) such as leadership and negotiation. Most SE professionals will say

that they learned it “by doing”. Hence, the main paradigm used is teaching software engineering by

doing. Moreover, several analyses of software engineering teaching emphasise the benefit of a long-

term team project (one semester or a year) [1] , [9], [11]. Beyond the SE learning, more general

questions arise : how can we teach/learn engineering ? What is a “long-term education”, particularly

in computer science ? And in a general sense ?

Brest University has been providing since September 2002 a second year of Master in software

engineering. The opportunity to offer a dedicated year allows us to cope with some missing skills

which are however well-identified by the professional branch. The main objective is mastering

software engineering activities and skills. Moreover, among the characteristics and practices

recommended for computer science graduates (Computing Curricula 2001, Computer Science

Volume), we kept as additional objectives : working in a team, coping with change, and being able

to appreciate a perspective in a whole [2]. The pedagogy used to achieve these objectives breaks

with the usual teaching paradigm to rely on an learning paradigm [14].

The main idea of the system is to let professional realities into our university walls. Students work

in teams to analyse, design, implement, test and document a software project relying on strong

software engineering principles. The pedagogical system imitates as closely as possible real-world

phenomena: a professional working environment, the client-supplier relationship, the application of

a development baseline, the use of methods and associated tools, the cooperation within the team, ...

We call this education system « Software engineering apprenticeship by immersion ». This system

is presented in sections 2 and 3, a digest of [12].

During the first year of our Master in computer science, students experimented with the “learning

by doing” paradigm through two mini-projects (2 weeks each) in distributed systems and in

information systems. Each mini-project follows a classical development cycle starting with software

specifications as defined by the teachers and ending with deliveries and a demonstration. But in the

immersion paradigm, the whole year is devoted to the project. No courses are offered, except for

English and Communication.

The need for significant changes in the character of engineering education emerged in the mid-

1980s. As an example, from 1989, the National Science Foundation supported six major Coalitions

of U. S. institutions to pursue the vision and goals outlined in their proposals [13]. The Université

de Sherbrooke has totally redesigned its electrical engineering and computer engineering programs,

following an original learning approach that combines problem-based and project-based learning

[7]. However, we are not aware of similar experiments in a MS in software engineering. However,

the good and bad results that we observed probably apply to various disciplines using engineering.

Yet, providing professional working environment and processes is much easier and cheaper in

software engineering education than in other fields.

After a very positive first year, the outcome of the second year is rather disappointing. This year,

we met with unexpected difficulties and this may be due to the roles transformation needed in the

apprenticeship by immersion paradigm, for the students as well as for the tutors. New roles are

depicted in section 4.

We were not able to assess the role playing process formally, firstly because the assessment is

more qualitative than quantitative and secondly because it is too early to decide if the seeds we

sowed are producing (or will produce) the desired fruits. So, in section 5, we try to evaluate the new

roles within the constructivism paradigm, especially the apprenticeship paradigm described by

Jacques Tardif. The teacher and student roles defined in this paradigm are compared with those

defined in our immersion system. Some problems are reported and possible improvements are

drafted.

We finish the paper with related work and a conclusion.

2 General description

2.1 Immersion principles

We structured SE activities around three main areas : software project management activities,

specific software development activities and software development support activities. This division

is the reference framework for the university (in a diploma-awarding perspective), for the

pedagogical team and the students, and finally for the professional branch which will hire these

young graduates.

Teaching these various activities is quite difficult following the teaching paradigm. Hence the idea

to tackle these activities within an immersion in a real project, with the following specificities:

- the project goes on in the university in a dedicated fitted-out room;

- the ten students are divided into two separate project teams, that we call companies;

- companies will have to produce the same product but with different methods, tools and

technologies;

- the project manager driving the project is a university lecturer, formerly a SE professional;

- the target, the software product, is only a pretext for learning software engineering activities.

In order to emulate a standard firm environment, we fitted out a laboratory room with a landscape

room for each company (with own individual working post), a common meeting room and an

Internet room.

The apprenticeship environment is made of at least four essential elements:

- a set of activities (or tasks) related to the software engineering profession,

- a software development process which organises the set of SE activities,

- a corporate baseline (by courtesy of Thales-IS) which defines good practices and capitalizes the

company’s know-how,

- a working framework including common installations and tool suites (IBM, Oracle, Rational).

The whole apprenticeship plan of action is guided by the development process, which defines,

among others, the role and the schedule of project stages. It reveals clearly three kinds of teaching

activities:

- Organising. It is a matter of scheduling and elaborating work cards that define, at each stage,

the work to be done and preparing pedagogical supplies (book, software, hardware, corporate

baseline…) needed to carry out the work.

- Tutoring. For each work card, a tutor is available to students who are thus provided with

continuous support and assistance.

- Control. Work cards constitute the assessment framework because they define form and content

for the deliverables to be produced and delivered.

2.2 Apprenticeship and manufacturing card

 First, the apprenticeship process strongly relies on apprenticeship cards; then students enrich

them for their own software development (manufacturing) process. The card structure is

standardized (see as example below). Its main elements are the activity (here requirements capture)

tied up to the work; the role to play (here analyst) with students’ name; the work description (here a

consolidation task); the products (deliverables) to deliver (here a Software Requirements

Specification, SRS); the supplied pedagogical resources (here a writing guide and real SRS

samples); workload and lead-time information.

Figure 1 : Apprenticeship card

Number : 8 Date : 11-21-2002 Origin : Ph. SALIOU Action

Program : SI2EWP1

APPRENTICESHIP CARD

Analyst
L. Delemazure

S. Le Livec

Activity : Requirements capture Name : Requirements consolidation

WORK DESCRIPTION

This work aims to consolidate in a single document the set of requirements. The purposes of this work

are :

 To be in accordance with the TEMPO-ILI baseline and the Two-Track Unified Process.

 To bring together two requirements : functional and technical.

…

The expected result will be materialized with a Software Requirements Specification document

(SRS). This specification is a reference document for the software design.

…

Pedagogical resources can be helpful in order to write the SRS :

 Simplified writing guide for the software requirements specification (TEMPO-IGQ347).

 SRS Examples

…

Products Version Milestone

Software Requirements Specification (SRS)

A

11-29-2002

WORK IN PROGRESS

Estimation Reality
Start date End date Workload Start date End date Used workload

11-25-2002 12-03-2002 3,5 3,5

Date Used workload Deliveries-Observations

3 The apprenticeship process

The apprenticeship process is guided by an unified software development process :

- It materializes as a sequence of stages with clear and controlled objectives at each stage.

- Each stage includes some work described with work cards that define precisely the work to be

done and the apprenticeships to gain and/or the competencies to mobilize.

- Each work card is assigned to one or several students who should take up the job (or the role)

inherent to the activity.

- Students are swapped around the roles from one stage to another stage.

For each work card, students can rely on tutor’s support and assistance on a daily basis.

3.1 First iteration

The first tutored apprenticeship iteration (4 months) lets students acquire knowledge and skills

needed for each stage. An incomplete version of the software is built, entirely driven and tutored by

the company’s tutor. All SE activities are put in practice within a complete software development

cycle.

Each apprenticeship card give rise to one or several deliverables. Each deliverable is carefully

examined and annotated by tutors, then the tutor feeds back comments to the authors together with

improvements to bring about. This assessment and feedback process is iterated (at least twice) until

that the deliverable is considered as good enough for its future exploitation (it should arise some

problems when the final delivery is not judged as good enough).

 Software project management Coeff. Apprenticeship card

Software project leading 2 Project set-up

 Progress report meeting accounting

 Software quality programme 1 Quality programme set-up

 Quality insurance

Software configuration management 2 Software configuration plan elaboration

 Software configuration management

 Technical incident management

 Version management

 Software development engineering Coeff. Apprenticeship card

Requirements capture 2 Functional requirements capture

 Technical requirements capture

 Requirements consolidation

Technical architecture 2 Technical architecture validation

 Development framework exploration

 Generic design

 Technical prototype

Analysis 2 Requirements analysis

 Human-computer interface mock-up

Design 2 General design

 Relational database consolidation

 Detailed design

Coding – Unit testing 2 Coding – Unit testing

Integration-Qualification 2 Software test plan elaboration

 Software test dossier elaboration

 Integration

 Internal validation

 Qualification

 Software development support Coeff. Apprenticeship card

Technical support 2 Means set-up

 System and networking support

 Database administration

 Development technical support

Tools and methods support 2 Analysis environment definition and set-up

Design tailoring

Development support

 Software configuration tool mastering

User’s documentation 2 Software user’s guide writing

Software installation and exploitation guide

writing

Installation - Deployment 1 Target installation and configuration

 Software deployment

The array above describes the link of apprenticeship cards (the learning activities) with the SE

activities breakdown structure (the competencies curriculum). This set of apprenticeship cards is the

reference framework for all the stakeholders (university, teachers, students, professional branch).

Each apprenticeship card has an assessment and a mark is given to.

3.2 Second iteration

The second accompanied application iteration (2 months) is intended to transform knowledge

and skills into competencies. Each company is relatively autonomous in order to complete the

project. The expected software product at this end of this iteration corresponds to the whole

software product as defined in the contract. The progress of this iteration is similar to those of the

first iteration, except that the company’s tutor stands back in order to allow the company to stand on

one’s own two feet. The company’s tutor has mainly a supervising and rescuing function.

At the end of the first iteration, students carried out (or saw their team mate at work) different

engineering activities, and students used deliverables produced by other students during previous

stages. We consider that they have a first “apprenticeship by doing” of the job and also that they

know what they are able or not able to perform.

A fixed organisation of the team is set up for the second iteration, structured around roles. One

student is acting as project manager while the others are carrying out all the others activities. During

the second iteration, students will rely on the apprenticeship process acquired during the first

iteration. The company has to transform this process in a production process.

For the second iteration, we did not want to measure individual competencies and performances.

We gave three marks for this iteration : a mark given the project itself (and the work done), a mark

given a collective viva voce examination, a mark given individual reports on the personal and the

work done collectively. The mark given on the project relies on an formative and summative

assessment of the essential deliverables of a software project.

Assessment Coeff. Deliverables

Viva voce examination 2

Individual written report 2

Work 4 Software Requirements Specification

 Software Analysis Document

 Software Design Document

 Software Test Plan

 Software Test Description

 Software User’s Guide

 Software Installation and Exploitation Guide

Delivered information system

(the software product)

4 Roles

4.1 Teacher roles

In order to guarantee the good progress of the training course, preparation work and continuous

maintenance is necessary. This work is accomplished by a “Coordinator” working all the year long.

He/she has to:

- define the new project in which the students will be immersed. He/she has to write

requirements, then a response to solicitation including a technical and commercial offer

answering the expected needs.

- prepare the logistics necessary for the smooth running of the service: to make an inventory of

company’s resources and to sort them out, to reset development framework to zero, to forecast

needs in hardware of software, to negotiate contracts with software providers, to supply with

and receipt new devices, software, books, self-training media, ...

- consolidate and to tailor the apprenticeship repository in order to make it easier to use by the

tutors and the students. It could be the integration of new books or self-training supports as

well as enriching or updating the TEMPO-ILI repository, for example apprenticeship cards.

The smooth running of the first iteration relies mostly on the company’s tutor, who has two

functions.

The “Software manager-Tutor” is the authentic software manager inside the company, he/she

leads the students’ team, is in charge of the work progress, and refers to the “Coordinator” as much

as necessary. The “Software manager-Tutor“ coordinates students’ work and adjusts the planning

according to real work progress. On a daily basis (at least one hour per day), he/she is the privileged

interlocutor for the students as well as other apprenticeship system staff members. He/she prepares

and drives the weekly progress report meeting, which is a privileged time to exchange information

within the team. Last but not least, the main objective in the first iteration is the apprenticeship : the

“Software manager-Tutor“ is, first of all, a teacher who wishes to transfer competences to his/her

team mate.

The “Apprenticeship-Tutor” coordinates and regulates individual and collective students’

apprenticeships, assists students on a daily basis, and finally assesses deliverables. For these

purposes, he/she relies on the apprenticeship process (see section 3.1) and on apprenticeship cards

(see section 2.2). Thanks to this support and assistance, students are able to provide deliverables.

The production process is continuously sustained, the “Apprenticeship-Tutor” annotates, corrects,

make proposals, reorientates. Generally, two assessment iterations are necessary in order to

guarantee a satisfactory result, in all case sufficient to carry on the project.

The tasks and the workload of the company’s tutor are still important in the second iteration;

he/she has now three functions.

The “Regulator-Tutor” can accompany individually each student. TEMPO defines a regulator as:

“The regulator is an expert outside the project whose experience corresponds to the current project

in order to give impartial advice on functional and technical features. He/she is working as a peer

who can help the software manager or the team mate.” So, the “Regulator-Tutor“ has mainly a

consolidation activity working on documents and deliverables provided at each Manufacturing

Card, but it is also used as an assessment activity.

The “Facilitator-Tutor” is in charge of the project logistics, but mainly sustains the student acting

as the important role of project manager. It is a daily meeting (from 10 minutes from 1 hour)

browsing current aspects of the projects.

The “Programme manager-Tutor” arbitrates conflicts, regulates workload, indeed may give orders

in case of production locking. As seen in the definition above, the “Regulator-Tutor“ has no

decision power on the team. The role play needs a dedicated hierarchical role in order to solve the

problems which could arise. In the TEMPO repository, the immediate superior of the project

manager is the programme manager. “The programme manager acts on behalf of the unit (the firm)

and the customer to ensure contractual commitments (cost, lead-times and performance) are met.

[15]”. This hierarchical authority is entrusted to the company’s tutor and allow him/her to ensure

commitments but also to substitute for the project manager for any technical, functional,

organisational aspects.

4.2 Student roles

The first role is called “a citizen”. Each student lives with their team mates during 6 months, 5

days a week, 8 hours a day. The respect of others, of their work, of their own working place and of

the common infrastructure is fundamental when working in a team. Unlike what happened during

previous years, the student must realize that the respect for the environment and a few rules

(working hours, computer security, deadlines) is not enforced by the institution but accepted by

each student. A few students were not able to impose this discipline on themselves, but “it is

discipline first which transforms animality in humanity” (I. Kant, [6]).

The main role is called “a builder”. The student is in turn architect, project manager,

manufacturer, inventor, artist. Sometimes he/she will be providing others with products or services,

sometimes he/she will be using the other students’ work. He/she must understand that his/her own

work takes place within a structured set and that the success of each piece is necessary to the

success of the whole project itself. The understanding of long term issues should always be kept in

mind and regular and sustained efforts are essential. It breaks away from previous attitudes where

efforts are mainly motivated by the examination deadlines.

Beside this building activity, the apprentice engineer must sometimes transform him/herself into

“an explorer”. Students cannot always find their way in the maze of pedagogical resources provided

(manuals, tutorials, white papers) or in the explanations that they can get from tutors. So there is

nothing to help them through the work they have to do. The student generally feels very

uncomfortable and this situation is aimed at pushing him/her to deepen existing knowledge, to

discover new skills, to invent personal solutions. A few students liked this exploration/invention

role so much that the tutor had to lead them back to the hard realities of the builder’s life ...

Each of these three previous roles bring us back to the question of teamwork and hence to the

definition of the role “a team member”. Students, until now engaged in a rather individualistic

learning process (although they are used to negotiating mutual services) must be aware of the fact

that nothing can be done without others or more exactly, that they need the others to do everything.

It is not possible to describe the attitudes that each team member will have, develop or discover in

others. We think that, in a team, each personal quality or skill is useful to the whole and that

diversity is guarantee of success. True cooperation is before all complementary rather than

community [3].

5 Examining some problems in the light of the learning paradigm

Let us examine some problems we met the second year in the light of constructivism.

Constructivism can be summed up with two fundamental statements [4] :

- learning is defined as an active process for knowledge building rather than a knowledge

acquisition process;

- teaching is essentially aimed at helping students in this process rather than transmitting

knowledge.

Among practices belonging to the constructivist stream (and cognitive psychology), D. Dwyer [5]

and J. Tardif [14] define a learning paradigm, in opposition with the main teaching paradigm. The

learning paradigm provides a framework which allows the school to constitute a learners’

community for the pupils as well as the teachers and the other staff members.

5.1 Roles relationships

5.1.1 Teachers roles

J. Tardif defines teachers’ roles as creators of pedagogical environments; interdependent, open-

minded, critical professionals; development instigators; mediators between knowledge and students;

coaches; collaborators for the students’ success of a whole school. Relying on exhaustive

definitions of these roles given in [14] p. 59-70, the table below establishes the relationships

between these roles and the different kinds of teachers roles described in section 4.1.

Tardif’s roles Apprenticeship by immersion teacher roles

-1- creators of pedagogical environments coordinator

-2- interdependent, open-minded, critical

professionals

all roles

-3- development instigators software manager, apprenticeship, regulator, facilitator

-4- mediators between knowledge and

students

software manager, apprenticeship, regulator, facilitator

-5- coaches all tutoring roles

-6- collaborators for the students’ success

of a whole school

coordinator

Table 1 : Teacher roles relationships

Let us examine how Tardif’s roles are played in our immersion system.

The second role is obviously essential because the apprenticeship by immersion system comes

from the professional world. The two tutors exchange daily their information, questions, doubts and

the possible solutions. It works fine.

The first and sixth roles are nearly devoted to the coordinator. He/she is responsible for the

immersion system and for putting it in practice.

The fifth role – coaches – is the heart of individual and collective apprenticeship. All kinds of

tutoring roles are participating.

The third and fourth roles are shared nearly between all kind of tutoring roles.

Mapping Tardif’s roles and our roles does not work. There are two main functions in our immersion

system : coordinator which is supervising the system and company’s tutor which is playing most of

Tardif’s roles.

5.1.2 Student roles

J. Tardif defines students’ roles as investigators; co-operators sometimes experts; clarifying

actors; strategic users of available resources. Relying on exhaustive definitions of these roles given

in [14] p. 70-74, the table below establishes the relationships between these roles and the different

kinds of students roles described in section 4.2.

Tardif’s roles Apprenticeship by immersion students roles

-1- investigators “an explorer”

-2- co-operators sometimes experts “a team member”

-3- clarifying actors -

-4- strategic users of available resources “a builder”

- “a citizen”

Table 2 : Student roles relationships

None of Tardif’s roles includes “a citizen” role. From the learning paradigm point of view,

defined for one school, this role does not exist probably because the teacher stays in centre of the

class and enforces the discipline.

Investigators and “an explorer”, co-operators sometimes experts and “a team member”, strategic

users of available resources and “a builder” have very similar definitions. It is not surprising

because we integrated in the design of our immersion system many models of constructivism.

Our immersion system did not emphasize on the clarifying role and its associated techniques

(peer/tutors questioning, checking reformulation and comprehension). However, this kind of

clarifying activities is the basis of four apprenticeship tasks. This role may be enforced in the next

version of the system.

5.2 Weak points of the system

The main problems which jeopardize the system are pictured in the figure below, linked with the

roles involved.

Difficulty of being both coordinator

and tutor
Coordinator

Company's tutor

Non-respect of the rules

Excessive complexity

ExplorerCitizen

Over-idealistic assessment

Team member Builder

Difficulties linked to cooperative

learning

Figure 2 : Relationships between roles and main problems

Each problem is briefly described and possible solutions are drafted. We are aware that these

solutions could diverge from the constructivist approach but they are essentially pragmatic.

Difficulty of being both coordinator and tutor

The current system relies on the two authors, each managing a company. The second author also

assumes the role of coordinator. It is hard to supervise the system – preparing, coordinating,

controlling and accompanying the other company’s tutor – while tutoring a company at the same

time. Supervising a company’s tutor can be compared to a form of teacher tutoring : it requires that

activities are well-defined, structured and organized and that events are anticipated. The coordinator

has to adjust the general framework according to real work progress. It consumed time and efforts

and made it difficult for the coordinator to share the everyday concerns of his own company.

Students did not seem to notice it but it caused a lot of inconvenience for the coordinator.

Ideally, the coordinator should not be simultaneously a company’s tutor. But the lack of teachers

makes it impossible. Hence our ambitious system has to be slightly revised and the interdependence

between companies should be diminished by increasing the autonomy and relative freedom of the

company’s tutor.

Difficulties linked to cooperative learning

Our education system uses a cooperative learning model. The class is divided in teams, each team

member builds a competency within a group of 2 or 3 (rarely alone). Each group owns a piece of

the puzzle and students are strongly bound together because of the collective results required.

During the first year, we motivated all the students for shifting from compartmentalized

knowledge acquisition and sanction-assessment to the process of personal and social construction of

SE knowledge intended to be used in a professional environment. We fired them with enthusiasm

for this new kind of education. So, we were mistaken in believing that each student would agree

with the immersion principles : constructing long-term competencies in SE while being the main

actor of his/her education. During the second year, some students moved with difficulty (indeed

could not move) from previous attitudes to the requirements of the problem-based and project-based

learning (Université de Sherbrooke reported the same difficulty for some students). This could be

due to a lack of involvement of students who prefer supporting roles rather than leading roles or it

may come from the difficulty to accept tutor’s feedback as an essential building element rather than

a criticism. The learning process is blocked : what could be done with students who refuse this

approach ? This stalemate (mainly for “a builder” attitude), even for a single student, can involve

the whole team due to group phenomena. The big role play will then become very difficult for all

actors.

We do not have any real solution to this problem. Improving the recruiting process aims to

minimize the risk : cooperative learning principles will be emphasized as well as the required

attitudes; individual recruitment techniques may be useful.

Over-idealistic assessment

Our assessment process relies on work cards. Cards are essential elements in the tutor(s)-

student(s) relationship. The objectives of the card are to describe the work to be done as well as the

pedagogical resources supporting apprenticeship. Resulting products should be considered as good

enough for their future exploitation. This is a formative assessment of competencies which

diagnoses and regulates apprenticeships. Summative assessment is accomplished by giving a mark

to each product. We consider that product evaluation is appropriate to judge knowledge and skills

acquisition independently from the learning framework.

Assessment has a strong influence on the students’ motivation for learning. So it seems important

to us to break away from the traditional evaluation process. We privilege collective assessments and

we do not communicate any mark to students during the whole year in order to focus on the

formative assessment. Selected students graduated from a 4-year technological education system,

we assume that everyone will succeed in a traditional system and we wish to offer a transition year

between the university and the professional world.

During the first year, this assessment system has been a determining factor in the cooperative

learning dynamics. Students quickly understood that learning was intended to reuse competencies in

order to diagnose, explain and solve problems rather than restitute knowledge during examinations.

During the second year, some students did not play “a team member” role and took advantage of the

collective assessment system to have a quiet year, relying on other team members’ efforts.

We do not want to fundamentally modify our assessment system. It belongs to the « authentic

assessment » stream : this considers moments and contexts where students learn as the privileged

place to gather information on assessment itself. Nevertheless, it should be essential to impose

sanctions to the students who are insufficiently involved in their apprenticeships :

- the first iteration, “Tutored apprenticeship”, will not change;

- the second iteration, “Accompanied application”, will aim to enforce the student’s autonomy

and to individualize summative assessment. Students should keep in mind that knowledge and

skills acquired during the first iteration will be put into practice but will also include greater

emphasis on individual performance.

Excessive complexity

Confronting students with complexity is one major goal of the system. This leads to learning

situations which are intentionally complex and which some students will not assume. Students

could be paralysed with a problem they are not used to solving and could accept no responsibility

for this failure and will blame someone else (the education system, tutors and so on).

We must be able to include just the right amount of technological complexity. We agree with

Monash teachers who are circumspect about the complexity of using industrial CASE environments

[10]. Students can get stuck trying to master commercial tools, rather than learning appropriate

abstractions, developing and applying well-suited principles and processes.

Complexity is an essential principle of our education system. We will stress the need for adopting

“a builder” and “an explorer” attitudes during the recruitment as well as during the year.

Technological complexity should be reduced. Our goal is to come back to initial objectives, i.e.

acquire strong competencies in software engineering without getting lost in the complexities of a

technological environment.

Non-respect of the rules

This education system is intended for graduate students and relies on students’ self-management

including the respect of elementary rules such as assiduity, punctuality, deadlines. The necessity of

“a citizen” role arose only the second year due to the attitude of one student. Although it happened

only once, not respecting the rules is detrimental to the company and hence to the other teams. Our

cooperative learning relies on, among other things, the “learning together” idea. Students have to

organise their work, to assign tasks, to dispatch responsibilities and to help one another, that is

difficult when somebody does not respect the rules.

Next year, we will set up safety and control measures. The students who will not follow the rules

repeatedly will be sent back to a traditional system.

6 Related work

The Department of Electrical and Computer Engineering at the Université de Sherbrooke has

totally redesigned its electrical engineering and computer engineering programs. Based on recent

research advances in cognitive science as applied to student learning, these curricula have led to

new instructional models. The programs were built on a competency-based framework, following

an original learning approach that combines problem-based and project-based learning (PBL). PBL

is the principal mode of knowledge acquisition. Each problem is formulated so that the solving

process leads students to discover what of their existing knowledge can be used, what they need to

learn, and what skills are required to manage the situation effectively. Competencies are evaluated

in terms of behaviours that can be demonstrated and observed in a professional context [7].

Besides formal courses, any curriculum will include software projects. B. Meyer advocates the

long-term project as an essential technique, which students should develop over more than a

standard quarter or semester – typically over the course of a year. It should be a group project that

includes aspects of analysis, design and implementation. And it should involve the reuse,

understanding, modification, and extension of existing software [9].

Meyer pointed out that a group of enthusiastic teachers at Monash University, under the direction

of Christine Mingins, has been doing exactly that over the past few years (1996-1999). The Monash

solution takes place in the second year of an undergraduate program, after that students have

already completed two semesters of introductory programming in C++. Monash objectives are :

understand the importance of software engineering, OO design as a software engineering method,

motivation, experience a large-scale software engineering project, use an industrial strength CASE

environment. For some topics, teachers teach the ideas first; for other topics, however, teachers let

the students follow an experimental approach. Mingins and al. believe they have achieved a balance

between the conflicting requirements of dealing with the complexities of ‘real-world’ software

engineering based on large projects with the need to establish a firm personal software process

which students can use as a basis for reflection and further professional development [10].

7 Conclusion

The education given in the software engineering apprenticeship by immersion system relies on the

following principles :

- to be centred on the competencies to be developed and on the fruitful apprenticeship

situations, rather than be content with the teaching of knowledge, subject by subject.

- to develop an active and cooperative pedagogy based on the project and the role play:

students’ immersion in a 6-month project imitating as closely as possible a project in a firm.

- to work in a team, to communicate about the work done, to cooperate with colleagues.

- to elaborate and maintain an apprenticeship by immersion repository.

The first year, there was great enthusiasm coming from students and the two tutors as well. This

dynamics helped to solve most of problems.

The second year was rather disappointing. Some of the phenomena we expected did not happen

and part of the previous system did not work. The role definitions as stated in section 4 did not

allow us to diagnose all problems but the classification of Jacques Tardif let us discover some roles

which were played incorrectly or missing, either by tutors or students. We have now to enhance the

system in order to prevent these possible failures and improve the role play.

As a conclusion, we can say that if the immersion system is exciting and innovative, on the other

hand the system is fragile if both teachers and students are unable to play the roles required. In

addition to these first conclusions, the professional insertion and career evolution of students need

to be observed over several years in order to evaluate the real benefits of this system.

8 References

[1] Computing Curricula, Computer Science Volume, chapter 10, IEEE and ACM, 2001

[2] Computing Curricula, Computer Science Volume, chapter 11, IEEE and ACM, 2001

 [3] Dameron S., 2002, La dynamique relationnelle au sein d’équipe de conception , Le travail humain, Vol. 65, n°4,

Oct-Déc 2002, pp 339-361.

[4] T. M. Duffy, D. J. Cunningham, Constructivism : Implications for the design and delivery of instruction, In

Handbook of Research for Educational Communications and Technology, MacMillan 1996

[5] D. Dwyer, Apple Classrooms of Tomorrow : What we have learned, In Educational Leadership, vol. 54, num. 7,

1994

[6] Emmanuel Kant, Réflexions sur l’éducation, Introduction, Vrin, 1998

[7] G. Lachiver, D. Dalle, N. Boutin, R. Thibault, J.M. Dirand and all, Redesign of Electrical and Computer

Engineering Programs at Université de Sherbrooke, In Proceedings, Canadian Conference on Engineering Education,

August 2001, Victoria.

[8] Timothy C. Lethbridge, What knowledge is important to a software professional ?, IEEE Computer, May 2000

[9] Bertrand Meyer, Software Engineering in the Academy, IEEE Computer, May 2001

[10] C. Mingins and al., How we teach software engineering, JOOP, Feb 1999

[11] Gilda Pour, Martin L. Griss, Michael Lutz, The Push to Make Software Engineering Respectable, IEEE

Computer, May 2000

[12] Vincent Ribaud, Philippe Saliou, Software Engineering Apprenticeship by Immersion, International Workshop

on Patterns in Teaching Software Development, ECOOP 2003, University of Darmstadt, Germany, 2003

[13] Progress of the Engineering Education Coalitions, SRI International, May 2000

[14] Jacques Tardif, Intégrer les nouvelles technologies de l’information – Quel cadre pédagogique ?, ESF, 1998

[15] Thales Information System Glossary, Thales Information System, 1997

