N

N
N

HAL

open science

Meta-programming with Express and SQL
Philippe Saliou, Alain Plantec, Vincent Ribaud

» To cite this version:

Philippe Saliou, Alain Plantec, Vincent Ribaud. Meta-programming with Express and SQL. In-
ternational Workshop on Declarative Meta Programming (DMP 02), Sep 2002, Edimbourg, United

Kingdom. hal-01451131

HAL Id: hal-01451131
https://hal.univ-brest.fr/hal-01451131
Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.univ-brest.fr/hal-01451131
https://hal.archives-ouvertes.fr

Meta-programming with EXPRESS and SQL

Philippe Saliou, Alain Plantec and Vincent Ribaud

{ Philippe.Saliou, Alain. Plantec, Vincent. Ribaud} Quniv-brest.fr

EA2215, Département d’informatique, Université de Bretagne Occidentale,
BP 809, 29285 Brest Cedex, France

Preface

Meta-programming can be defined as creating application programs by writing
programs that produce programs (application generators).

Meta-programming is programming and meta-data management is data man-
agement. STEP is an ISO 10303 standard intended to data modeling and ex-
change. STEP standard defines very useful software tools, as EXPRESS an
object-oriented modeling manguage, and STEP technology can be applied for
the design and the implementation of application generators.

The position of the paper is that SQL-PL/SQL or EXPRESS declarative and
imperative features are powerful enough to build applications generators.

1 Introduction

A lot of formal models (entity-relationship, relational, object-oriented...) are
used at different phases of system life cycle. The programming environments
often offer the possibility to describe all the used models. This description is
structured in a dictionary or meta-model, which, following Codd’s idea [1] is
usually implemented with the same programming environment constructions as
the models themselves. Software engineering (CASE) tools and programmers use
these meta-informations to transform models from one phase to another or to
generate programs and documentation.

Programming using meta-informations is usually called metaprogramming.
The programmer’s effort is primarily in the development of application-code
generators to produce the deliverable software [4].

Application generators translate specifications into products (programs, doc-
umentations). They parse specifications statements into data structures (called
dictionaries or meta-models), from which desired products can be derived.

An application generator builder offers a means to define specification lan-
guages and associated parsers, to describe and traverse the meta-model structure
and to specify the code generation from this structure. In most builders, code
generation is specified with templates (or skeletons) of code. Templates contain
a mixture of commands operating on the meta-models and "real” code directly
inserted into the products.

The meta-modeling approach can be made easier by the use of several meta-
models and a way to link it. Declarative or imperative techniques are then em-
ployed to define the relationships between meta-models.

Meta-data management is data (information) management. STEP is an ISO
10303 standard developed to facilitate product information sharing by specifying
sufficient semantic content for data and their usage. Parallelizing the STEP stan-
dardization process, we defined a method intended for the building of application
generators [5].

One major component of a CASE tool is the repository. A repository holds
the meta-models definitions as well the models themselves. The repository itself
is usually implemented using either a relational or an object-oriented database
management system.

We have employed Oracle Designer for several industrial projects according
a waterfall process. Designer supplies transformers in order to generate models
along the phases of the project. When supplied-transformers are not well-suited,
either a dedicated-transformer can be built or the work is accomplished manually.

Oracle repository is implemented in SQL and PL/SQL (a procedural exten-
sion). SQL owns declarative features which can be used for metaprogramming.
However, in most of cases, we prefer to use Eugene, a STEP-based framework
intended for the building of application generators. Meta-models, meta-models
relationships and code templates are programmed with the object-oriented data
modelling language, EXPRESS.

2 Building an application generator

2.1 The building process

Application generators translate source specifications into target products as
programs or documentations. The problem can be seen as belonging to the field
of compilation: an intermediate representation is built through an analysis (pars-
ing) process and this representation is used by a synthesis process to produce a
product in a target language.

Asin the compiler field, intermediate representations, close to the target, reduce
the code generation work. As source representation, an intermediate represen-
tation is stored in a meta-model. The structure of this meta-model is related
to the target language. In order to obtain this meta-model, called interpreted
meta-model (IMM), we defined a method which is similar to the method used in
the STEP standard to define an application model from standardized models.

The generated application is obtained through three steps (see figure 1): analysis
of source specification, building of the IMM, generation of the target represen-
tation.

2.2 Data models

The source and target language meta-models describe the source and target
language data constructs. These descriptions are called meta-model schemata.

The translation parameters schema consists of a set of entities describing
other data that are used by the translation process. It aims to describe data
useful for the naming of target programming constructs such as the class or type
names. It can also contain target system descriptions such as the name of basic
classes used by produced classes. This schema is considered as a description of
a part of programming rules usually described and used for building and for
integration of an application within a target system.

STEP description and implementation methods

The EXPRESS language [1] is an object-oriented modelling language. The ap-
plication data are described in schemata. A schema has the type definitions and the
object descriptions of the application called Entities. An entity is made up of at-
tributes and constraint descriptions. Entities may inherit attributes and constraints
from their supertypes.

The STEP physical file format defines an exchange structure using a clear text
encoding of product data for which a conceptual model is specified in the EXPRESS
language. The mapping from the EXPRESS language to the syntax of the exchange
structure is specified in [2].

The Standard Data Access Interface (SDAI) [3] defines an access protocol
for EXPRESS-modelled databases and is defined independently from any particular
system and language. The representation of this functional interface in a particular
programming language is referred to as a language binding in the standard. As an
example, ISO 10303-23 is the STEP part describing the C++ SDAI binding [4].
The five main goals of the SDAI are: (1) to access and manipulate data which
are described using the EXPRESS language, (2) to allow access to multiple data
repositories by a single application at the same time, (3) to allow commit and
rollback on a set of SDAI operations, (4) to allow access to the EXPRESS definition
of all data elements that can be manipulated by an application process, and (5) to
allow the validation of the constraints defined in EXPRESS.

An SDAI can be implemented as an interpretor of EXPRESS schemata or as a
specialized data interface. The interpretor implementation is referred to in the stan-
dard [3] as the SDALI late binding. An SDAI late binding is generic in nature. The
specialized implementation is referred to in the standard as the SDAI early binding.

Application protocol (AP) is a part of STEP that defines the context, scope and
information requirements for designated domain(s) and specifies the STEP ressource
constructs used to satisfy these requirements. APs were first proposed as a means of
ensuring that STEP would enable a more reliable way of exchanging product data.
APs define the form and contents of a block of data that is to be exchanged in such
a way that claims of conformance to the standard for particular software products
can be properly tested. In order to avoid overlapping between APs, STEP provides
integrated resources (IR) that are common generic data constructs used by APs and
application interpreted constructs (AIC) that are common usages of the same generic
data constructs taken from integrated resources.

References

ISO 10303-11. Part 11: EXPRESS Language Reference Manual, 1994.

ISO 10303-21. Part 21: Clear Text Encoding of the Exchange Structure, 1994.
ISO DIS 10303-22. Part 22: Standard Data Access Interface, 1994.

ISO CD 10303-23. Part 238: C++ Programming Language Binding to the SDAI
Specification, 1995.

e

Source

Interpreted Generation
meta-model

meta-model

Source Generated
specification application

Fig. 1. Generation with an intermediate meta-model

2.3 The interpretation process

The interpreted meta-model (IMM) schema contains all constructs of the target
meta-model schema. Subtypes of the entities from the target meta-model schema
are created. The creation of subtypes allows more specific attribute definitions
to be given in the context of the source language meta-model schema and of the
translation parameters schema. The context is represented in the subtypes by
associating them with entities from the source language meta-model and from
the translation parameters. The goal is to redefine all the attributes of subtypes
of the target meta-model schema as derived attributes in order to compute their
value in the given context.

3 A concrete example

3.1 The context

The three authors worked previously in a software company, Thales-IS Brest,
within a small team (3-6 persons) developing a project named ARIANE : the
management of the textile department of a supermarket chain. Technical choices
made at the beginning of the project (1995) and still valid are Oracle for the
database management system and VisualBasic and SQL for the client software.
System analysis and design is done with the help of Designer/2000; the repository
is continually updated and SQL DDL code (the database schema) used in the
project is always obtained by the code generators of Designer/2000.

Since 1998, a part of the team’s effort has been devoted to developing and
maintaining a family of VisualBasic generators, called GARI (for Generator
ARIane).

Four generators have been built and are used :

— gari_iobdd generates interface VB data access functions from SQL table de-
scriptions,

— with gari_pre functions calling stored procedures are generated from the

procedures descriptions,

gari_sql embeds SQL clauses in VB functions,

— gari_taico handles the mapping between VB two-dimensional matrices and
flat SQL tables.

I

I

al» |

Meta-data 1 -1 »!
(STEP files) . GARI

|

API Meta—data
converter

Relational Models Relational Models

Designer API Designer
2000 2000

_‘L,—/ 3 ; o
Designer i Designer [meta-model
i repository

Q
]
=]
@
=
e
o
=
7]

40O saduelsu|

reposito < -- ---| writtenin
pository describes| EXPRESS

Meta—-programming with SQL and PL/SQL 3 Meta—-programming with EXPRESS

Fig. 2. Cooperation between Designer/2000 and GARI with an intermediate transla-
tion tool

So the problem lies on providing inputs to GARI generators with a guar-
anteed and automatic consistency with the Designer/2000 repository. This will
provide a seamless integration of all CASE tools used in the project.

3.2 Possible solutions

Meta-programming with SQL and PL/SQL Designer/2000 provides an
Application Programming Interface (API) to the repository. The API is a set of
database views and PL/SQL packages that allow safe access to the repository
data (meta-data).

Since the repository is a standard SQL database, GARI meta-models could be
implemented in a same way.

Thus, the interpreted meta-model consists in a set of views and tables based
on the repository tables. When the repository meta-data are changing, views are
automatically updated and tables need to be refresh with the help of triggers
and stored procedures.

Pros and cons The use of SQL and PL/SQL make easier the integration between
tools.

As a matter of fact, the repository consists of a relatively small number
of tables that store the source meta-data. These tables have complex (undoc-
umented) relationships. There are, however, many views of these tables that
represent repository objects, such as entities and attributes. These views are an
important part of the API because they allow us to examine the definition of
objects created through the transformers [2]. Unfortunately, if working on SQL
DDL statements is straightforward, this is not true with SQL DML statement,
specially if they are complex.

Meta-programming with EXPRESS The source language is SQL and each
GARI generator has its own interpreted meta-model.

All the meta-models can be specified with EXPRESS (the source meta-model
is a subset of the SQL meta-model). We need then a translation tool able to
produce EXPRESS meta-data schema from the repository meta-data.

Pros and cons The seamless integration is obtained through three steps (see
our current implementation depicted in figure 2): analysis and design using De-
signer /2000 tools, generation of the EXPRESS meta-data, generation of the VB
code with the GARI family. It took few weeks to make the meta-data converter.
It works as expected and provides consistency. But this consistency is possible
because there is no semantic loss between the information needed in the reposi-
tory and the translation in EXPRESS.

4 Declarative features

The Eugene method is independent of the language used to describe meta-model
and to program it. We often claim that SQL extended with an imperative lan-
guage such as PL/SQL would be a good candidate for implementation of the
Eugene environment.

Moreover, the declarative features that we use in meta-programming can be
mostly found in SQL.

4.1 Why EXPRESS
We choose EXPRESS for two main reasons :

Powerful modeling The structure of any meta-model is easily modeled with
an object-oriented EXPRESS schemata.

SDAT generation An SDAT for the meta-data management system is gener-
ated. This requires naturally an SDAT generator suited to the target system,
but such an SDAT generator is re-used for each project available within this
target system.

4.2 The EXPRESS language

EXPRESS is an object-oriented modelling language. The application data are
described in schemata and a schema can reference other schemata. This allows
the designer to write generic schemata referenced by more specific ones.

A schema owns the types definitions and the objects descriptions of the ap-
plication called Entities. An entity is made of attributes and constraints descrip-
tions and can inherit from others entities. The constraints expressed in an entity
definition can be of several kinds [3], briefly:

— the UNIQUE constraint allows entity attributes to be constrained to be
unique either singly or jointly (e.g any one value of that (these) attribute(s)
is (are) associated with only one instance of the owner entity),

— the DERIVE constraint is used to represente computed attributes. Such
constraint specifies the way derived attributes are computed,

— the WHERE clause of an entity constraints each instance of an entity indi-
vidually,

— the INVERSE clause is used to specify the inverse cardinality constraints.

EXPRESS allows the definition of global rules. These rules are used when
either all instances of a given entity or instances of at least two entities need to
be examined concurrently to determine whether a given constraint is satisfied.

5 Conclusion

We need a cooperation between different CASE tools, especially if we wish to
guarantee consistency. This requires access to the CASE tool repositories. STEP
is an ISO standard (ISO-10303) for the computer-interpretable representation
and exchange of product data. We successfully used STEP framework to produce
SDAT automatically from the repository meta-modeling, and using this standard
meta-data access more easily than the dedicated repository API.

References

1. C. J. Date. An Introduction to Database Systems, vol. 1. Addison Wesley, Reading
MA, 1990.

2. Paul Dorsey and Peter Koletzke. Designer/2000 Handbook. McGraw-Hill, 1998.

3. ISO 10303-11. Part 11: EXPRESS Language Reference Manual, 1994.

4. Leon S. Levy. A Metaprogramming Method and Its Economic Justification. IEEE
Transaction on Software Engineering, 12(2), February 1986.

5. Alain Plantec. Ezploitation de la norme STEP pour la spécification et la mise en
ceuvre de générateurs de code. PhD thesis, Université de Rennes I, 35065 Rennes
cedex, France, 1999.

