
HAL Id: hal-01450904
https://hal.univ-brest.fr/hal-01450904

Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

STEP-based CASE Tools cooperation
Alain Plantec, Vincent Ribaud

To cite this version:
Alain Plantec, Vincent Ribaud. STEP-based CASE Tools cooperation. ICSE 2000. International
Workshop on Constructing Software Engineering Tools (COSET 2000), Jun 2000, Limerick, Ireland.
�hal-01450904�

https://hal.univ-brest.fr/hal-01450904
https://hal.archives-ouvertes.fr

STEP-based CASE Tools cooperation

Alain Plantec
�

and Vincent Ribaud
�

�

SYSECA, 34 quai de la Douane, 29285 Brest Cedex, France,
alain.plantec@syseca.thomson-csf.com

�

EA2215-LIBr, Faculté des Sciences, BP 809, 29285 Brest Cedex, France,
ribaud@univ-brest.fr

Abstract
Computer-Aided Software Engineering (CASE) tools need to cooperate and this can be accomplished by exchanging

or sharing meta-data stored in a repository.
STEP is an ISO 10303 standard developed to facilitate product information sharing by specifying sufficient semantic

content for data and their usage. STEP is providing a dedicated technology, mainly an object oriented modeling language
EXPRESS and a standardized data access interface SDAI.

Meta-modeling the repository in EXPRESS allows a facilitated cooperation. Both exchange and sharing are provided
by the SDAI generated from the EXPRESS meta-schema. Some experiments are related and an industrial project is
depicted. Designer/2000 modeling is jointly used with dedicated Visual Basic code generators. Consistency is needed
between these two tools families. This is achieved with a simple tool, but the use of the experimental method proposed is
still difficult. Impedance mismatch between relational and object database paradigms may be the origin of the difficulties.

Keywords : CASE tools interoperability, CASE tools implementation, STEP standard, SDAI, EXPRESS

Introduction
CASE tools assist system development in managing

system documentation. Documentation is structured with
the help of various models, elaborated throughout the sys-
tem development cycle. Information on the different mod-
els are the data (in fact meta-data) processed by the CASE
tools. Cooperation of CASE tools rely on common meta-
data access. This kind of cooperation is described as a data
integration in [12].

CDIF (CASE Data Interchange Format) [3] and IRDS
(Information Resource Dictionary System) [6] are two ex-
amples of proposals intended to facilitate the cooperation
of CASE tools and the exchange of models between the
vendor’s tools.

In early 90’s, CDIF and IRDS are the major representa-
tives of the two approaches used to (meta-)data integra-
tion : exchange of meta-data files or sharing through a
common repository. These approaches are still valid to-
day, although the technology slightly differs (e.g. use of
marked-up language such as XMI or dedicated API).

One major component of a CASE tool is the repository.
A repository holds the system documentation in a central

place online. Various tools pick information in the reposi-
tory, process them and store the results in the repository.
The structure of data in the repository is often referred
as the meta-model. The repository itself is usually im-
plemented using either a relational or an object-oriented
database management system.

STEP is an ISO 10303 standard developed to facilitate
product information sharing by specifying sufficient se-
mantic content for data and their usage. Parts of ISO 10303
are intended to standardize conceptual structures of infor-
mation which are either generic or within a subject area
(e.g. mechanics). Standardized parts are expressed with
a dedicated technology, mainly an object-oriented model-
ing language called EXPRESS and a standard data access
interface called SDAI.

As mentioned in the STEP box, the SDAI is a functional
interface for EXPRESS-modeled database and is indepen-
dent of any particular system and language. The SDAI al-
lows data sharing as well as data exchange. The key point
is that a SDAI is automatically generated from the EX-
PRESS schema of the database (as long as an SDAI gen-
erator has been made for the target database management
system).

STEP description and implementation methods
The EXPRESS language [1] is an object-oriented modelling language. The application data are described in schemata. A

schema has the type definitions and the object descriptions of the application called Entities. An entity is made up of attributes and
constraint descriptions.
The constraints expressed in an entity definition can be of four kinds: (1) the unique constraint allows entity attributes to be con-
strained to be unique either solely or jointly, (2) the derive clause is used to represent computed attributes, (3) the where clause
of an entity constraints each instance of an entity individually and (4) the inverse clause is used to specify the inverse cardinality
constraints. Entities may inherit attributes and constraints from their supertypes.

The STEP physical file format defines an exchange structure using a clear text encoding of product data for which a conceptual
model is specified in the EXPRESS language. The mapping from the EXPRESS language to the syntax of the exchange structure
is specified in [2].

The Standard Data Access Interface (SDAI) [3] defines an access protocol for EXPRESS-modelled databases and is defined
independently from any particular system and language. The representation of this functional interface in a particular programming
language is referred to as a language binding in the standard. As an example, ISO 10303-23 is the STEP part describing the C++
SDAI binding [4].
The five main goals of the SDAI are: (1) to access and manipulate data which are described using the EXPRESS language, (2) to
allow access to multiple data repositories by a single application at the same time, (3) to allow commit and rollback on a set of
SDAI operations, (4) to allow access to the EXPRESS definition of all data elements that can be manipulated by an application
process, and (5) to allow the validation of the constraints defined in EXPRESS.
An SDAI can be implemented as an interpretor of EXPRESS schemata or as a specialized data interface. The interpretor imple-
mentation is referred to in the standard [3] as the SDAI late binding. An SDAI late binding is generic in nature. The specialized
implementation is referred to in the standard as the SDAI early binding.

References
[1] ISO 10303-11. Part 11: EXPRESS Language Reference Manual, 1994.

[2] ISO 10303-21. Part 21: Clear Text Encoding of the Exchange Structure, 1994.

[3] ISO DIS 10303-22. Part 22: Standard Data Access Interface, 1994.

[4] ISO CD 10303-23. Part 23: C++ Programming Language Binding to the SDAI Specification, 1995.

This paper argues that given a CASE tool, data interop-
erability can be accomplished through an SDAI generated
from the EXPRESS schema resulting from the meta-model
used in the CASE tool. Benefits of this method include
data exchange as well as data sharing, allowing system de-
velopers to use best suited CASE tools to their projects,
even if they belong to different CASE toolsets. However,
complex repository causes a complex meta-modeling and
the resulting SDAI can be difficult to use.

The paper is organized as follows: an example of dif-
ferent data integration is described in section 1. Section 2
shows how different CASE tool were needed and used in a
commercial system. Then we finish with perspectives and
a conclusion.

1 Examples of data integration
����� �����

Within the context of a research project, colleagues
were faced to use jointly two kinds of CASE tools: a UML
tool and a SDL tool. The cooperation should be the follow-
ing: an UML tool will be used to design class diagrams and
collaboration diagrams. SDL code will be generated from
both diagrams and then imported into the SDL tool.

Within another research project, a colleague wished to

use UML to design class diagrams and then generate a
SmallTalk-80 implementation. Unfortunately, he didn’t
find any UML tool able to generate SmallTalk-80 code.

We started two different projects of two persons within
the context of final-year course-work (bachelor students).
We chose Argo/UML from Jason Elliot Robbins [10] for
its open-implementation and its conformity to the UML
Meta-model 1.1 [1]. Moreover, Argo/UML allows the two
types of data integration mentioned above : a set of Java
classes providing an API (Application Programming Inter-
face) to the meta-data as well as a file exchange format
(.xmi).

Meta-programming with an API For the cooperation
between Argo/UML and SDT [11], a SDL tool, meta-
programming with ARGO API was chosen. Argo/UML
does not use a database management system to store infor-
mation about diagrams. Hence in order to share meta-data
with the class and collaboration diagrammers, students [4]
incorporated a SDL generator in Argo/UML. This genera-
tor was written in Java.

Part of the time devoted to the project has been used
to understand the UML meta-model (available only in a

Beverage

name
percentage

Bar

name
town
licence

Wine

vintage
year

Beer

color

**

ARGO
Tool

UML Models

Beverage

name
percentage

Bar

name
town
licence

Wine

vintage
year

Beer

color

**

ARGO
Tool

UML Models

Meta-data
(STEP files)

EUGENE
generator

Smalltalk-80
ProgramsPrograms

SDL

UML2SDL xmi-parserAPI

(xmi files)
Meta-dataARGO

repository

Meta-programming
with ARGO API

Meta-data exchange and
Eugene meta-programming

Figure 1. Meta-programming with ARGO API versus meta-data Exchange and Eugene meta-programming

graphical UML form) and to learn the use of the API
(formed by a total of 120 classes) and the way it matches
the meta-model. Then the students were able to use the
API to write their SDL generator.

Meta-data exchange In the second project, meta-data
exchange between Argo/UML and the generator was the
solution we kept. The generator was built with Eugene, our
STEP-based application generators builder [9]. Eugene is
used within the context of research projects at Brest Uni-
versity and also in industrial projects in Syseca, a software
company.

Like the first project, part of the time was devoted to
UML meta-model understanding. Building an application
generator with Eugene requires an EXPRESS description
of the meta-model of the generator inputs (here a .xmi file)
and students did it [5]. Then a meta-program was written
in order to generate Smalltalk-80 code from meta-data.

Discussion We cannot compare the time devoted to real
development in each project. The SDL generator was writ-
ten without any meta-environment whereas the SmallTalk-
80 generators uses that type of environmment. But there
were two successive phases in both projects, i.e. learning
the system (API or meta-model) and programming. Two
points should be noted:

� Learning an API is an experimental task, and no
learning method can be provided. Consistency in the
naming of elements and operations in the API helps
to make learning and use more efficient.

The use of Eugene implies writing of a schema of the
meta-model. The learning phase is in fact a meta-
modeling phase. This activity helps the students in
the learning of UML meta-model.

� Programming an API depends on the API itself. Lit-
tle experience can be re-invested in another API.

Meta-programming is based on the meta-modeling
phase, and another project will require another meta-
modeling activity. So some meta-modeling experi-
ence will grow from a project to another.

� ��� �����	��

���

Cooperating with a CASE tool is made easier if the
CASE tool provides an access to meta-data (API, meta-
data files or others formated outputs). Experience gained
from the above projects enables us to provide a method
(supported by a tool, an SDAI generator) to write a CASE
tool intended to cooperate with an existing CASE tool (see
fig. 2):

Meta-modeling The structure of the existing (source)
CASE tool repository is modeled with EXPRESS
schemata.

SDAI generation An SDAI for the management system
running the new CASE tool (called the target sys-
tem below) is generated. This requires naturally an
SDAI generator suited to the target system, but such
an SDAI generator is re-used for each CASE tool
available within this target system.

The SDAI is useful for each source CASE-tools:
meta-data produced by a source CASE-tool are im-
ported into the new CASE tool. For such a task, a
specific program (i.e. a program parser or a meta-
data converter) is implemented. An SDAI can be
generated within the source system and used for this
implementation.

CASE tool development The development of the new
CASE tool is based on the SDAI, which provides
a standard access to the meta-data exported from the

Meta-data
converter

Meta-data
files

parser

Generated
SDAI

Generated
SDAI

Generated
SDAI

Generated
SDAI

CASE tools
Existing

New
CASE tool

new CASE tool
repository

Instances of

Meta-models
written in
EXPRESS

STEP repository

SDAI
generator

SDAI
generator

Target systemSource system

CASE tools
Future other

Other
meta-data
importer

External world

New CASE tool world

Figure 2. Using generated SDAI to interoperate with a given CASE tool

existing CASE tool and managed by a STEP reposi-
tory.

2 Working with different CASE tools
� ��� ��� �������	� ��
��

At Syseca Brest, a small team (3-6 persons) has been
developing new software within a global project named
ARIANE : the management of the textile department of a
supermarket chain. Technical choices made at the begin-
ning of the project (1995) and still valid are Oracle7 (now
Oracle8) for the database management system and Visu-
alBasic and SQL for the client software. System analy-
sis and design is done with the help of Designer/2000; the
repository is continually updated and SQL DDL code (the
database schema) used in the project is always obtained by
the code generators of Designer/2000.

Since 1998, a part of the team’s effort has been de-
voted to developing and maintaining a family of VisualBa-
sic generators, called GARI (for Generator ARIane). Eu-
gene is the environment used to build the generators. In-
put to these generators are either SQL select statements or
EXPRESS schemata hand-made from Designer/2000 in-
formation.
� ���
 � �����	�
����� ���	�	�

Oracle Designer/2000 is a suite of software toolsets
for designing Windows-based client/server applications
that interact with an Oracle database. Designer/2000 in-
corporates support for busines process modeling, system
analysis, software design and code generation [8]. De-
signer/2000 provides a multi-user repository implemented
using Oracle’s RDBMS. The repository consists of tables
that store information on the system we are analysing,
designing and producing. A good introduction to De-
signer/2000 software toolsets and also a software devel-
opment method using these tools can be found in [2]. De-
signer/2000 provides an Application Programming Inter-

face (API) to the repository. The API is a set of database
views and PL/SQL packages that allow safe access to the
repository data (meta-data).
� ��� ��� �
���� �!� �����#" ���
���$�%���	� �

The GARI family is used throughout the projects. Some
generators use EXPRESS schema as inputs and still pro-
duce VB code. These schemata need to be hand-written
from the meta-data of the repository. They may include
entities and their attributes or tables and their columns, all
of which have individual properties useful for the genera-
tors. The re-writing in EXPRESS schema of the informa-
tion still present in the Designer/2000 repository is a te-
dious task, prone to errors and requiring repeated efforts to
maintain the mapping between Designer/2000 information
and VB code generated.

So the problem lies on providing inputs to GARI gen-
erators with a guaranteed and automatic consistency with
the Designer/2000 repository. This will provide a seamless
integration of all CASE tools used in the project.
� �'& �(� ������)*� � �+�	�
,�-���	�
�

2.4.1 Generating EXPRESS from repository data

A first solution will be making a translation tool able to
produce EXPRESS schema from the repository meta-data.
The seamless integration is obtained through three steps
(see our current implementation depicted in figure 3): anal-
ysis and design using Designer/2000 tools, generation of
the EXPRESS schema, generation of the VB code with the
GARI family.

Pros and cons It took three weeks to make the above
translation tool (called Malam) [7]. It works as expected
and provides consistency. But this consistency is possible
because there is no semantic loss between the information
needed in the repository and the translation in EXPRESS.

BarsBeverages

Bar

name
town
licence

Beverage

name
percentage
vintage
year
color

Relational Models

2000
Designer

Designer
repository

Designer
repository

BarsBeverages

Bar

name
town
licence

Beverage

name
percentage
vintage
year
color

Meta-data
(STEP files)

meta-model
written in
EXPRESS

MalamAPI API

Relational Models

2000
Designer

describes

Instances of

EXPRESS
Schemata
used by

the GARI
family

Futur developpmentsOur current implementation

converter
Meta-data

family of
Eugene tools

Future

Figure 3. Cooperation between Designer/2000 and GARI with an intermediate translation tool

We are working essentially on table definition which are
easy to translate.

2.4.2 Meta-modeling the repository structure in EX-
PRESS

As stated in conclusion of section 1, cooperating with De-
signer/2000 will be made easier by an SDAI operating on
the repository, this SDAI being generated from a meta-
model of the repository.

Since the repository is a standard SQL database, the
translation tool above depicted in 2.4.1 can be used to pro-
duce automatically an EXPRESS schema of the repository
structure. We did so but we now need to refine the schema.
As a matter of fact, the repository consists of a relatively
small number of tables that store the meta-data. These ta-
bles have complex (undocumented) relationships. There
are, however, many views of these tables that represent
repository objects, such as entities and attributes. These
views are an important part of the API because they al-
low us to examine the definition of objetcs created through
the toolsets [2]. Unfortunately, if translating automatically
SQL DDL statements is straightforward, this is not true
with SQL DML statement, specially if they are complex.

Pros and cons The generated schema contains more than
5000 EXPRESS statements. Generating an SDAI for this
schema provides a complex API, usable in many situations.
Until now, we haven’t built new tools that will use this
SDAI. Intuitively, we expect that using this SDAI will be
so complicated that it requires company investments.

3 Perspectives
Perspectives depends on the quality and the readibil-

ity of the Designer/2000 repository meta-modeling. Com-
mercial tools often change but our experience with Oracle

CASE tools indicates that the repository (formerly named
Case*Dictionary in previous version of Oracle CASE) is
stable, at least for the analysis and design phase. So, we
are pursuing our efforts in repository understanding and
meta-modeling refinements. The data-flow between De-
signer/2000 and the futur family of tools is depicted in
figure3.

The difference of paradigm between a relational
database (the repository) and an object-oriented schemata
causes some problems, which may not be solved automat-
ically.

4 Conclusion

We need a cooperation between different CASE tools,
especially if we wish to guarantee consistency. This re-
quires access to the CASE tool repositories. STEP is an
ISO standard (ISO-10303) for the computer-interpretable
representation and exchange of product data. We success-
fully used STEP framework to produce SDAI automati-
cally from the repository meta-modeling, and using this
standard meta-data access more easily than the dedicated
repository API. However, when the repository structure is
complex, following this approach requires investments. In
fact it depends on the quality of the meta-model. Hence
in some situations, dedicated translation tools using the
repository API are easier to develop.

References

[1] UML metamodel 1.1. Technical report, Object Man-
agement Group, 1997.

[2] Paul Dorsey and Peter Koletzke. Designer/2000
Handbook. McGraw-Hill, 1998.

[3] EIA. CDIF - Framework for Modeling and Extensi-
bility, 1994.

[4] Divi Lainé et Armelle Prigent. Modélisation UML
et SDL dans le développement des systèmes temps-
réel. Technical report, Université de Bretagne Occi-
dentale, 1999.

[5] Céline Courbalay et Jean-Marc Douarinou. Traduc-
teur d’UML vers SmallTalk-80. Technical report,
Université de Bretagne Occidentale, 1999.

[6] ISO/IEC 10027. Information technology - Informa-
tion Resource Dictionary System (IRDS) framework,
1990.

[7] Mikael Le Moal. Intégration d’oracle designer dans
smalltalk-80. Technical report, Université de Bre-
tagne Occidentale, 1999.

[8] Oracle. Oracle Designer/2000 A Guide to Repository
Administration, 1995.

[9] Alain Plantec. Exploitation de la norme STEP pour
la spécification et la mise en œuvre de générateurs
de code. PhD thesis, Université de Rennes I, 35065
Rennes cedex, France, 1999.

[10] Jason Elliot Robbins. Argo/UML.
http://www.ics.uci.edu/pub/c2/uml/index.html.

[11] Telelogic. SDT. http://www.telelogic.com.

[12] A. I. Wasserman. Tool Integration in Software Engi-
neering Environments. In Lecture Notes in Computer
Science, Software Engineering Environments, pages
137–149. Springer-Verlag, 1989.

