
HAL Id: hal-01450893
https://hal.univ-brest.fr/hal-01450893

Submitted on 3 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiences using an Application Generator Builder
A Plantec, Vincent Ribaud

To cite this version:
A Plantec, Vincent Ribaud. Experiences using an Application Generator Builder. 12th IEEE In-
ternational Conference on Software Engineering and Knowledge Engineering (SEKE’99), Jun 1999,
Kaiserlautern, Germany. �hal-01450893�

https://hal.univ-brest.fr/hal-01450893
https://hal.archives-ouvertes.fr

Experiences using an Application Generator Builder

A.Plantec and V.Ribaud
Syseca & LIBr

Syseca: 34 quai de la Douane, 29200 Brest, France
LIBr: Faculté des sciences, Département d’Informatique, 29285 Brest Cedex, France

E-mail:{plantec,ribaud}@univ-brest.fr

Abstract
Application generators translate specifications into products (programs, documentations. An application
generator builder offers a way to define specification languages and associated parsers, to describe and
traverse the meta-models structure and to specify the derivation on this structure.
 STEP is an ISO 10303 standard developed to facilitate product information sharing by specifying
sufficient semantic content for data and their usage. STEP technology offers very useful software tools
and can be applied for the design and the implementation of application generators. EUGENE is a STEP-
based framework, that is intended for the building of application generators.
After a concise presentation of EUGENE, this paper presents different application generators built with
this framework within an industrial project. Then, different properties of generators are examined to
establish the kind of generators which can be successfully built with EUGENE. Finally, we conclude with
the main benefits of our approach.

1 Introduction

 Application generators translate source specifications
into target products as programs or documentations. They
use data structures called dictionaries or meta-models to
store the source specifications and intermediate
representations. As in compilers, there are two main
functions in a generator: parsing of the source
specifications and the target code generation.

 An application generator builder offers a means to
define specification languages and associated parsers, to
describe and traverse the meta-model structure and to
specify the derivation on this structure. In most builders,
derivation is specified with templates (or skeletons) of
code. Templates contain a mixture of commands operating
on the meta-models and "real" code directly inserted into
the products.

STEP is an ISO 10303 standard developed to facilitate
product information sharing by specifying sufficient
semantic content for data and their usage. Within STEP,
data are modelized and manipulated with a dedicated
technology, mainly an object oriented modelling language
EXPRESS and a data access interface.

Application generator building can benefit from the STEP
technology at specification and implementation levels. We
used these capabilities in a tool, called EUGENE, that is
intended for the building of application generators [6].

The meta-models are defined with EXPRESS schemata;
code templates are programmed in EXPRESS and are
interpreted by a STEP data access interface.

EUGENE is briefly presented in chapter 2 with a small
example to illustrate the concepts. Chapter 3 discuss
different generators built with EUGENE. Chapter 4 tries
to characterize the « suitable » candidates to build with
EUGENE.

2 Building application generators with

EUGENE

An application generator built with EUGENE uses meta-
data in order to generate a target textual representation.
Meta-data come from a source specification analysis and
are stored in different kind of meta-model. Derivations
are programmed with imperative functions, called
translation functions. They are made of fixed parts that are
mainly either meta-model traversal routines or string
constants directly put into the target and made of variable
parts that are values fetched from the meta-models.
Figure 1 shows that an application generator built with
EUGENE is only a process that consumes meta-data and
produces some realization. The meta-data are themselves
produced by other processes or tools that can use the
automatically built SDAI in order to write standard STEP
files.

STEP description and implementation methods

The EXPRESS language [1] is an object-oriented modelling language. The application data are described in
schemata. A schema has the type definitions and the object descriptions of the application called Entities. An entity is
made up of attributes and constraint descriptions.

The STEP physical file format defines an exchange structure using a clear text encoding of product data [2], for
which a conceptual model is specified in the EXPRESS.

The Standard Data Access Interface (SDAI) [3] defines an access protocol for EXPRESS-modelled databases and
is defined independently from any particular system and language.
The five main goals of the SDAI are: (1) to access and manipulate data which are described using the EXPRESS
language, (2) to allow access to multiple data repositories by a single application at the same time, (3) to allow
commit and rollback on a set of SDAI operations, (4) to allow access to the EXPRESS definition of all data elements
that can be manipulated by an application process, and (5) to allow the validation of the constraints defined in
EXPRESS.

References
[1] ISO 10303-11. Part 11 : EXPRESS Language Reference Manual, 1994.
[2] ISO 10303-21. Part 21 : Clear Text Encoding of the Exchange Structure, 1994.
[3] ISO DIS 10303-22. Part 22 : Standard Data Access Interface, 1994.

Figure 1 The building and the using of an application generator

Most application generators builders produce the
generators while exploiting the definition of the syntax and
the semantic of the source specification language.
EUGENE differs from this way, because the generator is
not produced from a grammar-like specification, but from
the structure and the organization of the meta-data
(globally referred to as the meta-models). Thus the tool
which feeds the meta-models with meta-data can be a

classical parser (generally automatically built in other
environments than EUGENE) but another tool not relying
on a precise and formal concrete syntax.
Let us take the example of the classical work done by an
interface generator between a programming language and
a Relational Data Base Management System (RDBMS).
The generator uses the SQL table definitions and produces
data access functions embedding SQL.

META-LEVEL

Meta-data

Application
generator

Eugene

CASE tool

Parser

Meta-models
&

Translation functions

Source
specification

Realization

STEP toolkit

STEP file

2.1 The meta-models

The specification of the generator being built consists in
several meta-models. A precise explanation of the nature
of these meta-models can be found in [6]. To simplify the
example, we will use one source meta-model.

The source language meta-model consists in a set of
EXPRESS schemata that describes the source language
data constructs. The main components of a source
language meta-model are types and entities, describing
concepts that can be used with the source language.
Entities provide buckets to store meta-data while global
and local EXPRESS constraints are used to ensure meta-
data soundness.

 Considering the classical example of building data
access functions from SQL table definitions, the source
language is SQL and figure 2 shows a simplified SQL
meta-model. The table definition is related to a list of
columns.

SCHEMA sql_dictionary;

 ENTITY simple_type ABSTRACT SUPERTYPE OF

(ONEOF(real_type, integer_type, string_type));

 END_ENTITY;

 ENTITY table;

 name : STRING;

 columns : LIST [1:?] OF column; ...

 END_ENTITY;

 ENTITY column;

 name : STRING;

 domain : simple_type;

 END_ENTITY;

END_SCHEMA ;

Figure 2 An example of source meta-model: a simple
SQL dictionary

2.2 The translation functions

The translation functions are written in EXPRESS and are
specified in the translation schema. The specification of
translation functions is a programming activity in which
EXPRESS is used as an imperative language. A typical
translation function returns a string and is parameterized
with types that are entities defined in the source language
meta-model. The resulting string represents part of the
target textual representation. Because of the nature of
parameter types, this activity is often called meta-
programming [1, 5].

Figure 3 shows two skeletons of translation functions
related to the paper example. column_to_field and
table_to_function can be used in order to produce code for
a column and a table.

SCHEMA sql_traduction;

USE FROM sql_dictionary ;

FUNCTION column_to_field (c : column) : STRING ;

LOCAL

 result : STRING := ‘’;

END_LOCAL ;

 (* build statements for the management of a

 column in a programming langage*)

 RETURN (result) ;

END_FUNCTION ;

FUNCTION table_to _function(t : table) : STRING ;

LOCAL

 result : STRING := ‘’;

END_LOCAL ;

 (* build statements to read/write a table *)

 REPEAT no := 1 TO HIINDEX(t.columns) ;

 ….

 END_REPEAT ;

 RETURN (result) ;

END_FUNCTION ;

END_SCHEMA ;

Figure 3 An example of translation functions

3 Experiments

EUGENE has been experimented at Brest University with
a lot of research projects described in [7].

At Syseca Brest, EUGENE is currently used for an
industrial project : the management of the textile
department of a supermarket chain. This application uses
ORACLE and is implemented with Visual Basic (VB).
Expected benefits for the use of EUGENE were the
software quality of generated code and the productivity
gain (initially estimated at 10%).

Four generators have been built :
• gari_iobdd generates interface VB data access

functions from SQL table descriptions,
• with gari_prc functions calling stored procedures are

generated from the procedures descriptions,
• gari_sql embeds SQL clauses in VB functions,
• gari_taico handles the mapping between VB two-

dimensional matrices and flat SQL tables.

The table below shows the ratio of input specification to
generated code and the main advantage of each generator.

 ratio main advantages
gari_iobdd 1/25 leverage effect, reliability
gari_prc 1/3 code homogeneity
gari_sql 1/3 reliability
gari_taico 1/30 leverage effect, code complexity

Using these generators, we delivered the first subsystem
including 17000 generated lines. Comparing with another
hand-made subsystem (for the same project) these 17,000
lines represent about 60 man-day work. The four
generators have been built in 30 days. This demonstrates
that building specific generators can be profitable even for
a single project.

4 To use or not to use EUGENE

4.1 Non-relevant application domains

Most application generator builders first focus on the
formal definition of the concrete and abstract syntax of the
source specification. From these definitions, an internal
representation structure and specialized tools, such as
structured editors and parsers, are automatically derived.
Stage [3], Centaur [2] or the meta-environment described
in [4] are examples of such application generator builders.
In these tools, the automatic derivation from a syntax
definition to an internal representation structure is enabled
because the langage used to specify the syntax is itself
defined in an orthogonal way, i.e. there is only one
possibility to describe a given situation.

EXPRESS is not defined in an orthogonal way. It can not
be used in order to describe concret or abstract syntaxes.
When the source specification can be described with a
grammar, the lack of formal syntax definition denies
EUGENE the capacity to generate parsers automatically.
Hence, EUGENE is not suited to build syntax-directed
translators such as compilers or structured editors.

Using EUGENE essentially requires data design and
imperative programming. EUGENE is not adapted to build
generators which use non-imperative features such as
inference or deductive capabilities.

4.2 Relevant situations

 The benefits of using EUGENE will be apparent in many
different circumstances :
• the same language, EXPRESS, is used overall during

the building process; this facilitates learning and the
use of the environment,

• a generator is designed in (relative) independence of
the system and of the target language in which the
generator should be implemented; this facilitates the
diffusion and the portability of the generator,

• meta-schemata can be re-used as they are, either from
one generator to another, or from another project
which needed some meta-modeling (especially from
standardized STEP constructs).

• the source specification does not have to be a textual
language described by a grammar; this allows the
building of a generator dealing with irregular cases
and exceptions, provided that it can be expressed
explicitly in the meta-schemata or by the meta-data.

• as instances of EXPRESS schemata, meta-data can
be exchanged by means of the STEP neutral exchange
structure; it provides inter-operability between
application generators as well as between an
application generator and another CASE tool.

From its very nature, EXPRESS can be used as a
substitute source specification language. EXPRESS is a
very powerful modeling language. Because the EXPRESS
parser belongs to the EUGENE environment, it can be re-
used to produce meta-data. Specifications using models of
other methods (like E-R or UML) can be manually
translated into EXPRESS, and it is possible to avoid the
development of a source specification parser. In this case,
the source language used manually acts as a specification
language and EXPRESS is used as a design language
while the transformation from specification to design is
done manually.

5 Conclusion

This paper has presented the EUGENE environment, a
STEP-based application generator builder. A generator is
automatically built from the specification of the
intermediate representation manipulated by the generator
(the meta-schema) and from the specification of
translation functions.

EUGENE is not suitable to build syntax-directed
translators, such as compilers, interpreters or structured
editors. Because the lack of a formal meta-language to
define the grammar of the source language, EUGENE is
unable to produce software components automatically,
namely parsers dealing with the specification source.

Different generators are briefly described. It demonstrates
the power of the approach for relatively straightforward
applications. This result meets the justification of the
approach because simple solutions can be implemented in
a simple and profitable way with EUGENE and therefore
applicable to a software company.

REFERENCES

 [1] Y. Ait-Ameur, F. Besnard, P. Girard, G.
Pierra, and J. C. Potier. Formal Specification and
Metaprogramming in the EXPRESS langage. In
Int'Conf' on Software Engineering and
Knowledge Engineering (SEKE), 1995.

[2] P. Borras, D. Clément, Th. Despeyroux, J.
Incerpi, G. Kahn, B. Lang, and V. Pascual.
CENTAUR: the system. In ACM SIGSOFT'88,
Third annual symposium on software
development environment, 1988.

[3] J. C. Cleaveland. Building Application
Generators. IEEE Software, July 1988.

 [4] Paul Klint. A Meta-Environment for
Generating Programming Environments. In ACM
Transaction on Software Engineering and
Methodology, volume 2, 1993.

 [5] David A. Ladd and J. Christopher Ramming.
A*: A Language for Implementing Language
Processors. IEEE Transactions on Software
Engineering, 21(11), November 1995.

 [6] Alain Plantec and Vincent Ribaud.
EUGENE: a STEP-based framework to build
Application Generators. AWCSET’98, CSIRO-
Macquarie University, 1998.

[7] Alain Plantec and Vincent Ribaud. Using and
re-using application generators. COSET’99,
CSIRO-Macquarie University, 1999.

