
HAL Id: hal-01450886
https://hal.univ-brest.fr/hal-01450886

Submitted on 9 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using and Re-using Application Generators
A Plantec, Vincent Ribaud

To cite this version:
A Plantec, Vincent Ribaud. Using and Re-using Application Generators. ICSE’99 - International
Workshop on Constructing Software Engineering Tools (COSET’99), May 1999, Los Angeles, United
States. �hal-01450886�

https://hal.univ-brest.fr/hal-01450886
https://hal.archives-ouvertes.fr

Using and Re-using Application Generators

A.Plantec and V.Ribaud
Syseca & LIBr

Syseca: 34 quai de la Douane, 29200 Brest, France
LIBr: Faculté des sciences, Département d’Informatique, 29285 Brest Cedex, France

E-mail:{plantec,ribaud}@univ-brest.fr

Abstract
Application generators translate specifications into products (programs, documentation). They

parse specification statements into data structures (called dictionaries or meta-models), from which
desired products can be derived. An application generator builder offers a way to define specification
languages and associated parsers, to describe and traverse the meta-models structure and to specify the
derivation on this structure.

 STEP is an ISO 10303 standard developed to facilitate product information sharing by specifying
sufficient semantic content for data and their usage. STEP offers very useful technology, such as an
object oriented modelling language EXPRESS and a data access interface, and can be applied for the
design and the implementation of application generators.

EUGENE is a STEP-based framework, that is intended for the building of application generators.
After a concise presentation of EUGENE, this paper presents different application generators built

with this framework, mainly data management tools, a browsing tool and conversion tools. Then, we
discuss the main benefits induced from our approach.

1. Introduction
Application generators translate source specifications

into target products as programs or documentation. They
use data structures called dictionaries or meta-models to
store the source specifications and intermediate
representations. As in compilers, there are two main
functions in a generator: parsing of the source
specifications and the target code generation.

Typically, an application generator builder offers a
means to define specification languages and associated
parsers, to describe and traverse the meta-model structure
and to specify the derivation on this structure. In most
builders, derivation is specified with templates (or
skeletons) of code. Templates contain a mixture of
commands operating on the meta-models and "real" code
directly inserted into the products. With classical tools
and methods, specifying and implementing a generator is
very much like specifying and implementing a language.

In this paper, we describe a way of building
application generators directly from the object-oriented
specification of meta-models. We used this possibility in
a tool, called EUGENE [8]. Meta-models and code
templates are programmed with the object-oriented data
modelling langage, EXPRESS.

We argue that building generators from the
specification of meta-models can simplify their design
and implementation and makes their use and re-use in
industrial projects easier. As a consequence, generators
can be implemented for specific problems and generated
realizations can be well integrated.

EUGENE is briefly presented in chapter 2. In chapter
3, we show different generators built with EUGENE. We
discuss the main benefits of EUGENE in chapter 4.

2. Building application generators with EUGENE
An application generator built with EUGENE uses

meta-data in order to generate a target textual
representation. Meta-data come from a source
specification analysis and are stored in different kind of
meta-models. Derivations are programmed with
imperative functions, called translation functions. They
are made of fixed parts that are mainly either meta-model
traversal routines or string constants directly put into the
target and made of variable parts that are values fetched
from the meta-models.

Figure 1 shows that an application generator built
with EUGENE is only a process that consumes meta-data
and produces some realization. The meta-data are
themselves produced by other processes or tools. Meta-
data consist of a representation of the source specification
called intermediate representation. With EUGENE, any
meta-data producer can be used. Most application
generators builders produce the generators while
exploiting the definition of the syntax and the semantic of
the source specification language [2, 3, 4]. EUGENE
differs from this way, because the generator is not
produced from a grammar-like specification, but from the
structure and the organization of the meta-data (globally
referred to as the meta-models).

STEP description and implementation methods

The EXPRESS language [1] is an object-oriented modelling language. The application data are described in
schemata. A schema has the type definitions and the object descriptions of the application called Entities. An
entity is made up of attributes and constraint descriptions.

The constraints expressed in an entity definition can be of four kinds: (1) the unique constraint allows entity
attributes to be constrained to be unique either solely or jointly, (2) the derive clause is used to represent computed
attributes, (3) the where clause of an entity constraints each instance of an entity individually and (4) the inverse
clause is used to specify the inverse cardinality constraints. Entities may inherit attributes and constraints from
their supertypes.

The STEP physical file format defines an exchange structure using a clear text encoding of product data for
which a conceptual model is specified in the EXPRESS language. The mapping from the EXPRESS language to
the syntax of the exchange structure is specified in [2].

The Standard Data Access Interface (SDAI) [3] defines an access protocol for EXPRESS-modelled
databases and is defined independently from any particular system and language. The representation of this
functional interface in a particular programming language is referred to as a language binding in the standard. As
an example, ISO 10303-23 is the STEP part describing the C++ SDAI binding [4].

The five main goals of the SDAI are: (1) to access and manipulate data which are described using the
EXPRESS language, (2) to allow access to multiple data repositories by a single application at the same time, (3)
to allow commit and rollback on a set of SDAI operations, (4) to allow access to the EXPRESS definition of all
data elements that can be manipulated by an application process, and (5) to allow the validation of the constraints
defined in EXPRESS.

An SDAI can be implemented as an interpretor of EXPRESS schemata or as a specialized data interface. The
interpretor implementation is referred to in the standard [3] as the SDAI late binding. An SDAI late binding is
generic in nature. The specialized implementation is referred to in the standard as the SDAI early binding.

References
[1] ISO 10303-11. Part 11 : EXPRESS Language Reference Manual, 1994.
[2] ISO 10303-21. Part 21 : Clear Text Encoding of the Exchange Structure, 1994.
[3] ISO DIS 10303-22. Part 22 : Standard Data Access Interface, 1994.
[4] ISO CD 10303-23. Part 23 : C++ Programming Language Binding to the SDAI Specification, 1995.

Figure 1 The building and the using of an application generator

Thus the tool which feeds the meta-models with meta- data can be a classical parser (generally automatically

META-LEVEL

Meta-data
(intermediate
representation)

Application
generator

Eugene

CASE tool

Parser

Meta-models
&

 Translation
 functions

Source
specification

Realization

STEP toolkit

STEP file

built in other environments than EUGENE) but another
tool not relying on a precise and formal concrete syntax.

Let us take the example of the classical work done by
a screen generator of a Relational Data Base Management
System (RDBMS). The generator uses the SQL table
definitions (usually stored in a dictionary) and produces a
graphical form (a window with fields, buttons,etc.) for a
given user interface toolkit (Windows, X, etc.).

2.1 The meta-models

The specification of the generator being built consists
in several meta-models. A precise explanation of the
nature of these meta-models can be found in [8]. To
simplify the example, we will use one source meta-
model.

The source language meta-model consists in a set of
EXPRESS schemata that describes the source language
data constructs. The main components of a source
language meta-model are types and entities, describing
concepts that can be used with the source language.
Entities provide buckets to store meta-data while global
and local EXPRESS constraints are used to ensure meta-
data soundness.

Considering the classical example of building form
screens from SQL table definitions, the source language
is SQL and figure 2 shows a simplified SQL meta-model.
The table definition is related to a list of columns.

SCHEMA sql_dictionary;

 ENTITY simple_type SUPERTYPE

 OF (ONEOF(real_type, integer_type, string_type));
 END_ENTITY; ...

 ENTITY table;
 name : STRING;
 columns : LIST [1:?] OF column; ...
 END_ENTITY;

 ENTITY column;
 name : STRING;
 domain : simple_type;
 END_ENTITY; ...
END_SCHEMA ;

Figure 2 An example of source meta-model: a simple
SQL dictionary

2.2 The translation functions

The translation functions are also written in
EXPRESS and are specified in the translation schema.
The specification of translation functions is a
programming activity in which EXPRESS is used as an
imperative language. A typical translation function
returns a string and is parameterized with types that are
entities defined in the source language meta-model. The
resulting string represents part of the target textual
representation. Because of the nature of parameter types,
this activity is often called meta-programming [1, 5].

Figure 3 shows two skeletons of translation functions

related to the paper example. column_to_field and
table_to_form can be used in order to produce the
definitions of widgets for, respectively, a column and a
table.

SCHEMA sql_traduction;
 USE FROM sql_dictionary ;

 FUNCTION column_to_field (c : column) : STRING ;
 LOCAL
 result : STRING := ‘’;
 END_LOCAL ;
 (* build statements for the management of a
 * column in a graphical form*)
 RETURN (result) ;
 END_FUNCTION ;

 FUNCTION table_to_form(t : table) : STRING ;
 LOCAL
 result : STRING := ‘’;
 END_LOCAL ;
 (* build statements for the management of a
 * table in a graphical form *)
 REPEAT no := LOINDEX(t.columns) TO IINDEX(t.columns) ;
 ….
 END_REPEAT ;
 RETURN (result) ;
 END_FUNCTION ;

END_SCHEMA ;

Figure 3 An example of translation functions

3. Applications
As most application generator builders, EUGENE can

be used to produce software components from source
specifications of a high abstraction level.

Two conditions are a prerequisite, namely :
 the intermediate representation of the source

specification can be described with an EXPRESS
meta-schema;

 the realization can be produced with imperative
processing applied to meta-data.

3.1 Data management tools

EUGENE was primarily intended to build data
management components generators. The semantic of the
domain is well-known (roughly query, insert, update and
delete data). Data types are the variable part, they
parametrize the realization. The way the implementation
is carried out depends on data types and on the storage
system (file, database, …) called a repository. Hence,
generators for the data management domain are widely
used.

Specifications for such generators are essentially data
structures as records, classes, schemas. Realizations, built
from these specifications, manage repository in a specific
language such as C, SQL, C++. The SDAI is an
abstraction of the data management domain. From the
conceptual description (in EXPRESS) of the domain
entities, the SDAI implementation is produced (the
functionalities of the SDAI are shown in the box STEP

given above). Another kind of generator, called IO,
provides the basic access interface to SQL tables through
a host language; embedded SQL for query and update is
generated from a data structure description.

As depicted in figure 1, a complete generator is made
up of a parser and an application generator. The table
below presents the realization time (in man-month) of
several parsers (we re-used empty yacc-parsers):

Specification language Development time
C structures 0.1
SQL schemas 0.5
EXPRESS schemas 1.5

We used EUGENE to build various generators,
mainly SDAI generators. The next table presents the
different generators built and the development time (in
man-month) :

Source lang.
Target lang.

C
structure

SQL
schema

EXPRESS

C+SQL 0.5 (IO)
C++ 2 (SDAI)
Smalltalk 1 (SDAI)
Java 1 (SDAI)
Vis Basic+SQL 0.5 (IO) 0.5 (IO)

3.2 Browsing tool

EUGENE was used to build an instance browser
generator (see figure 4). Given a data schema as
specification source, a data management application in
Java is generated. The generated application enables the
user to browse the instances of a repository, to read and
write the values associated with the instances and to
navigate along their relationships. This instance browser
generator produces two components : a graphical user
interface and a SDAI to manage the instances. The
second component is produced by the Java SDAI
generator described in a previous paragraph. A three-
layered generator produces the graphical user interface,
each layer consuming meta-data produced by the former
layer.

Figure 4 Java data browser generation

3.3 Conversion tools

A conversion tool transforms a source system

Meta-data

STEP file

Tranformation
process
(Prolog)

Java SDAI
generator
(Eugene)

Application
data

description
(EXPRESS)

EXPRESS
schema
parser

Meta-data

STEP file

Java GUI
generator
(Eugene)

JAVA graphical
user interface

Eugene
part

JAVA browser JAVA SDAI

representation into a target system representation. Unlike
former tools, a conversion tool has no leverage effect, i.e.
the complexity of generated products is similar to the
source representation.

Documentation tools are kinds of conversion tools.
These tools use a meta-model which describes
information extracted from source documents. This meta-
model is used to reproduce the document according to the
target representation.

This architecture was used in two tools: ADOC, a
program documentation generator and an indexation and
navigation tool for blind people.

ADOC produces Latex program documentation from
the analysis of structured comments contained in
programs sources. The comments should be structured
according to a BNF grammar. ADOC uses a Lex/Yacc
parser and a generator built with EUGENE. The meta-
schema, derived from the BNF grammar, is populated by
the parser. It is then used by the generator to produce
Latex documents.

The second tool aims to make it easier for blind

people to navigate within Web documents. Such
documents are originally written using a word processor
(e.g. Latex) and then generated in HTML using a
converter (e.g. Latex2HTML). The tool consists in a
HTML scanner and a HTML generator built with
EUGENE. The tree of Web pages is scanned to construct
a word index and the hierarchical organization in chapter,
section, and so on. The scan result, in the form of a STEP
file exchange, is consumed by the generator to produce a
table of contents, a plan and a word index, all hyperlinked
to the original tree. Rather than exploring in depth the
Web tree, blind people consult these meta-structures prior
to navigating in the Web pages.

The joint use of both tools provides meta-structures to
navigate in program documentation. As depicted in figure
5, inter-operability between these two tools can be
achieved in two ways : either by the Latex2HTML
converter, or by a gateway built with EUGENE which
populates the meta-schema used by the HTML generator
from the meta-data resulting from the comments analysis.

Figure 5 Conversion tools

4. Discussion

4.1 Usability

EUGENE uses an unique language, EXPRESS, for
the meta-model specification and translation functions.
Using EUGENE requires essentially data design and
imperative programming. These activities are familiar to
software engineers.

Parsers are not built with EUGENE, rather with well-
known compiler-compiler such as Yacc. Meta-model
implementation is automatically derived from
specification. Parsers that have to be developed can use

this implementation in order to create an intermediate
representation.

4.2 Re-use

As mentioned in §3.1, EUGENE was used to build
three SDAI-subset generators, for C++, Java and
Smalltalk-80. While the specification source language is
the same, the three SDAI-subset generators re-use the
same parser and source meta-model. While the target
languages (C++, Java, Smalltalk-80) are object-oriented,
the translation functions of the C++ generator serve as a
good example for the translation functions of the two

/**M**
Mod APL;
Class Str;
…
M/

Latex
documentMeta-data

STEP file

HTML
document

HTML
index

Hypertext
index

generator
(Eugene)

Comments
parser

(Lex+Yacc)

ADOC
(Eugene)

HTML
scanner

LaTeX2HTML
Gateway
(Eugene)Eugene

part

Meta-data

STEP file

latter generators.
The HTML scanner of §3.3 was developed in a

separate project. It was re-used without changes, adding
only a feature intended to flush the scan results in a STEP
file, while using the SDAI built for the meta-model of the
HTML generator.

A design and validation method of data models is
defined in the STEP standard [6]. EUGENE applies a part
of this method in order to develop and re-use the meta-
models.

4.3 Interoperability

Thanks to the STEP standard, meta-data can be
automatically encoded in neutral ASCII files. It enables
generators to read meta-data independently from their
producers. Then a generator built with EUGENE is easily
interoperable.

The instances browser depicted in § 3.2 is made up of
two components, sharing the same meta-model (the same
specification language), thus making it possible for the
two generators to inter-operate. The overall project was
implemented by different people over a period of three
years, and thanks to the integration method no major
problem has arisen.

In § 3.3, figure 5 shows that the hypertext index
generator consumes meta-data produced by an HTML
parser. In order to build HTML indexes for programs
comments, a first solution consists in using ADOC
generator and Latex2HTML. In order to re-use the
hypertext index generator, a second solution could be to
produce meta-data needed by this generator directly from
the meta-data produced by the comments parser.

5. Conclusion
This paper has briefly described the EUGENE

environment, a STEP-based application generator builder.
A generator is automatically built from the specification
of the intermediate representation manipulated by the
generator (the meta-schema) and from the specification of
translation functions.

Different generators are presented: data management
tools, browsing tool, conversion tools.

Using EUGENE offers three main benefits :
1. easy use: half of projects had be done within the

context of final-year coursework (postgraduate
students) and the other half in a software compagny.
All the projects succeeded in producing valid
prototypes or operational generators.

2. re-use: several meta-schemata and software
components (parsers or converters) were re-used
between the different projects and are suitable for
future re-use.

3. inter-operability: all the projects demonstrated that
software integration through meta-data exchange is a
suitable characteristic for both the integration of the

generator into its environment and its re-use.

References

 [1] Y. Ait-Ameur, F. Besnard, P. Girard, G.
Pierra, and J. C. Potier. Formal Specification and
Metaprogramming in the EXPRESS langage. In
Int'Conf' on Software Engineering and
Knowledge Engineering (SEKE), 1995.

[2] P. Borras, D. Clément, Th. Despeyroux, J.
Incerpi, G. Kahn, B. Lang, and V. Pascual.
CENTAUR: the system. In ACM SIGSOFT'88,
Third annual symposium on software
development environment, 1988.

[3] J. C. Cleaveland. Building Application
Generators. IEEE Software, July 1988.

 [4] Paul Klint. A Meta-Environment for
Generating Programming Environments. In
ACM Transaction on Software Engineering and
Methodology, volume 2, 1993.

[5] David A. Ladd and J. Christopher
Ramming. A*: A Language for Implementing
Language Processors. IEEE Transactions on
Software Engineering, 21(11), November 1995.

 [6] M. Palmer. Guidelines for the
development and approval of STEP application
p r o t o c o l s . T e c h n i c a l r e p o r t , I S O
TC184/SC4/WG4 N511, 1995.

[7] Alain Plantec and Vincent Ribaud.
EUGENE: a STEP-based framework to build
Application Generators. AWCSET’98, CSIRO-
Macquarie University, 1998.

[8] Alain Plantec. PhD thesis, Université de
Rennes I, 35065 Rennes cedex, France, 11
Février 1999.

	1. Introduction
	2. Building application generators with EUGENE
	2.1 The meta-models
	2.2 The translation functions

	3. Applications
	3.1 Data management tools
	3.2 Browsing tool
	3.3 Conversion tools

	4. Discussion
	4.1 Usability
	4.2 Re-use
	4.3 Interoperability

	5. Conclusion

