
HAL Id: hal-01450879
https://hal.univ-brest.fr/hal-01450879v1

Submitted on 31 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The STEP standard as an approach for design and
prototyping

Alain Plantec, Vincent Ribaud

To cite this version:
Alain Plantec, Vincent Ribaud. The STEP standard as an approach for design and prototyping. Ninth
International Workshop on Rapid System Prototyping (RSP 1998), May 1998, Leuwen, Belgium. pp.89
- 94, �10.1109/IWRSP.1998.676674�. �hal-01450879�

https://hal.univ-brest.fr/hal-01450879v1
https://hal.archives-ouvertes.fr


The STEP Standard as an Approach for Design and Prototyping
�

Alain Plantec
SYSECA, 34 quai de la Douane,

29285 Brest Cedex, France
plantec@univ-brest.fr

Vincent Ribaud
Faculté des Sciences, BP 809,

29285 Brest Cedex, France
ribaud@univ-brest.fr

Abstract

STEP is an ISO standard (ISO-10303) for the computer-
interpretable representation and exchange of product data.
Parts of STEP standardize conceptual structures and usage
of information in generic or specific domains. The standard-
ization process of these constructs is an evolutionary ap-
proach, which uses generated prototypes at different phases
of the process. This paper presents a method for the build-
ing of prototype generators, inspired by this standardization
process, together with a tool used to support the method.
Throughout stages of model integration, the embedded logic
of prototype generators is defined. The successive stages fo-
cuse on data model integration but this integration relies on
a common agreement about construct functionalities under
elaboration.

Introduction

STEP is a standard developed to facilitate product infor-
mation sharing by specifying sufficient semantic contents
for data and their usage. Parts of ISO 10303 are intended
to standardize conceptual structures of informations either
generic, or within a subject area (e.g. mechanics). STEP
advocates an evolutionary approach in development of data
specifications and uses prototypes at each phase of this de-
velopment.

Prototyping cycles build different kinds of prototypes,
from screen mock-up to pilot systems. Horizontal proto-
typing tends to produce horizontal layers of the software
like user interface with forms and menus, or functional layer
such as database transactions. Vertical prototyping com-
pletely implements a selected part of the application [4].

This paper describes a method inspired from the STEP
standardization process, for the generation of application
prototypes and a tool for its support. It is used to generate
some horizontal layers such as database access interface and

�

Final version submitted at RSP’98

user interface, and vertical components related to a particu-
lar subject area.

The paper is organized as follows: section 1 introduces
STEP terminology and concepts, section 2 discusses the in-
tegration process and architecture of the STEP approach.
Section 3 describes our method and section 4 presents some
applications and perspectives.

1 STEP

As described in [5], STEP is an InternationalStandard for
the computer-interpretable representation and exchange of
product data. The objective is to provide a neutral mecha-
nism capable of describing product data throughout the life
cycle of a product independent from any particular system.
The nature of this description makes it suitable not only for
neutral file exchange, but also as a basis for implementing
and sharing product database and archiving.

A fondamental concept of STEP is the definition of con-
sensus data specifications that describe the data to be ex-
changed or shared and that cover some particular applica-
tion domain. These data specifications are called applica-
tion protocols [12]. In order to define and implement appli-
cation protocols, the information modelling language EX-
PRESS [6], the standard file exchange format [7] and a stan-
dard data access interface (SDAI) [8] was developed.

1.1 The EXPRESS language

EXPRESS is an object-oriented modelling language and
EXPRESS-G is a graphical subset of EXPRESS. The ap-
plication data are described in schemata and a schema can
reference other schemata. This allows the designer to write
generic schemata referenced by more specific ones. A
schema owns the type definitions and the object descriptions
of the application called Entities. An entity is made of at-
tributes and constraint descriptions (see an example in fig-
ure 1).



FUNCTION leap year (year : year number) : BOOLEAN;
IF (((year MOD 4) = 0) AND ((year MOD 100 ��� 0)))

OR ((year MOD 400) = 0)
THEN RETURN (TRUE);
ELSE RETURN (FALSE);

END IF;
END FUNCTION;

ENTITY ordinal date SUBTYPE OF (date);
day : day in year number;

WHERE
WR1 : (NOT leap year(SELF.year) AND 0 � day � 365)

OR (leap year(SELF.year) AND 0 � day � 366)
END ENTITY;

Figure 1. An EXPRESS entity

1.2 The STEP physical file format

A STEP file is an exchange structure using a clear text
encoding of product data for which a conceptual model is
specified in the EXPRESS language.

1.3 The Standard Data Access Interface

The SDAI [8] defines an access protocol for EXPRESS-
defined databases and is defined independently from any
particular system and language. The representation of this
functional interface in a particular programming language is
referred to as a language binding in the standard. As an ex-
ample, ISO 10303-23 is the STEP part describing the C++
SDAI binding [9].

The main goals of the SDAI are to access and manipu-
late data which are described using EXPRESS, to allow ac-
cess to multiple data repositories by a single application at
the same time, to allow commit and rollback on a set of op-
erations, to allow access to EXPRESS definition of all data
elements and to allow the validation of the constraints de-
fined in EXPRESS.

1.4 Application protocols

An application protocol (AP) is a part of STEP that de-
fines the context, scope and information requirements for
designated domain(s) and specifies the STEP ressource con-
structs used to satisfy these requirements [12]. APs were
first proposed as a means of ensuring that STEP would
enable a more reliable way of exchanging product data.
APs define the form and contents of a block of data that
is to be exchanged in such a way that claims of confor-
mance to the standard for particular software products can
be properly tested. In order to avoid overlapping between
APs, STEP provides integrated resources (IR) that are com-
mon generic data constructs used by APs and application
interpreted constructs (AIC) that are common usages of

the same generic data constructs taken from integrated re-
sources. Figure 1 shows the ordinal date IR. The entity
drawing revision id presented in figure 2 is taken from the
standard AIC Draughting.

ENTITY drawing definition;
drawing number : identifier;
drawing type : OPTIONAL label;

END ENTITY;

ENTITY drawing revision SUBTYPE OF (presentation set);
revision identifier : identifier;
drawing identifier : drawing definition;
intended scale : OPTIONAL text;

INVERSE
sheet : SET [1:?] OF drawing sheet revision FOR in sets;

UNIQUE
UR1 : revision identifier, drawing identifier;

WHERE
WR1 : �����

END ENTITY;

Figure 2. An AIC

An AP is made of three kinds of information models: the
applicationactivity model (AAM), the applicationreference
model (ARM) and the application interpreted model (AIM).

An AAM describes the activities and processes that use
and produce data in a specific application context. An ARM
is dependent upon the AAM and contains the conceptual
structures and constraints used to define the information re-
quirements of an application context. An AIM consists of
a selected set of integrated resources which are specialized,
constrained or completed to satisfy the requirements of the
ARM.

2 The STEP integration framework

2.1 A conceptual integration framework

The STEP integration framework is defined as establish-
ing an explicit architecture for the conceptual models that
are part of STEP. An application is related to a domain (such
as manufacturing, avionics). Each domain may dispose of
one or several application protocols which define the form
and the contents of the data used by the business activities
of the domain.

The goal of an AP development process is the definition
of an AIM. The AIM specification is based on the reuse of
generic resources: an AIM is an EXPRESS schema that se-
lects the applicable constructs from the integrated resources
as baseline conceptual elements. Then, this schema is spe-
cialized with additional constraints, relationships and en-
tities inheriting from generic constructs. This process is
called application interpretation (see figure 3), it assigns a

2



meaning to generic resources in the context of a particu-
lar ARM. The application interpretation process is a formal
and well established part of the AP development process.

�����
�����
�����
�����

���
���
���
���

Application Interpreted Model 2Application Interpreted Model 1

Generic resources

Application Interpreted
Constructs

In
te

rp
re

ta
tio

n

Several AIMs can reuse the same data structures. The standard
integrated resources provide these common data structures. Sev-
eral AIMs can have the same interpretation of the same generic
resources. This common usage of generic resources is specified
in AICs.

Figure 3. Generic resources reuse in the STEP
application interpretation process

As an example, in the ISO standard application proto-
cole 201, Explicit draughting, an Approval is information
that indicates that a drawing has been reviewed and ac-
cepted. The date of an Approval is the integrated resource
depicted in figure 1. A Drawing is a pictorial and textual
presentation of product data. Drawing definition and draw-
ing revision are taken from the application interpreted con-
struct partly presented in figure 2.

Designing the data schema is a kind of model integra-
tion. While data semantic is the sound of this integration,
we should not forget that each application protocol relies on
an application activity model (a functional point of view re-
lated to the domain) and that the SDAI defines a set of data
management operations. Hence, there is a lot of functional
services expressed in the data model by the underlying ser-
vices and operations expected.

2.2 The resulting architecture

We have specified a method for building generators and
implemented a generator builder (see figure 5 depicting this

generator builder). We have adopted a solution similar to
Stage, described in [2]. Generators translate specifications
described in a source language into products written in a
target language. The source specifications handled by gen-
erators are those specified from classical application de-
sign: OMT class models, database data definition language
(DDL) schemata or EXPRESS schemata. The target lan-
guage is typically a programming language, a database data
manipulation language (DML) or an hypertext documenta-
tion.

Using generators built with our approach, code com-
ponents are generated: SDAI set of operations, applica-
tion protocol services, neutral file exchange, user help or
instances browser. These components need to interoper-
ate with the application specific code and the infrastructure
components (the services offered by the target platform).
Mixing specific code, generated code and reusable libraries,
requires some architectural decisions. As programming tool
writers, we are influenced by the architecture proposed in
PCTE and by the different levels of integration defined in
[14]. The kind of integration furnished by the architecture is
a data integration, supported by the overall use of the SDAI
in each component. The platform furnishes some infrastruc-
ture components (database, GUI, communications). The
SDAI manages the shared repository. Instances browser,
help and neutral file exchange are kind of horizontal tools.
Application protocol services are kind of vertical tools, such
as specific code components (see figure 4).

Components
Specific

Application

Shared repository (SDAI)

Platform
(database, GUI, communication, ... toolkits)

Neutral file exchange facilities
Instance browser

Protocol
Application

A B
Protocol

ApplicationVertical Components

Horizontal Components

Figure 4. Architecture of the STEP integrated
framework

3 Application prototyping with STEP

3.1 Method overview

The method specified in this section is based on the STEP
technology: EXPRESS is used to describe data, the SDAI is

3



used to instanciate EXPRESS schemata, to compute derived
attributes and to process traduction functions.

The method is first based on the description of the source
and of the target language data constructs and on the de-
scription of traduction parameters that shall be used by the
traduction process. These descriptions are defined in EX-
PRESS within two meta-models and the traduction param-
eter schemata. These schemata are used by another schema
that consists in the target language meta-model interpreta-
tion. The resulting description, called the interpreted meta-
model, serves as the basis for evaluation of traduction func-
tions that are written in EXPRESS within the traduction
model. The result of this evaluation consists in one part of
the target application prototype. Figure 5 shows the specifi-
cation, the building and the utilisation of a generator.

building
Generator

Generator

SDAI early binding

specifications
Source

Target prototype
component

Generator conceptor domain
Generator user domain

Traduction functions

Traduction parameters

language meta-models
Source and target

Figure 5. Building of a generator

3.2 Data models

We illustrate the main concepts of this section with exam-
ples taken from a generator intended to translate from OMT
class models to SQL schemata.

3.2.1 Source and target language meta-models

The source and target language meta-models consist of a set
of EXPRESS schemata that describe the source and target
language data constructs. These schemata are instanciated
with definitionsof the type, attribute, object and data schema
concepts. This is called Metaprogramming in [1].

The building-block entities used by the language meta-
models consist in a description of a common set of basic
language description concepts. Schemata containing those
basic entities are considered as the generic resources (e.g.
SCHEMA metamodels IR).

Parallel to the idea of STEP application protocol, the
source (e.g. SCHEMA omt dictionary) and target (e.g.

SCHEMA metamodels IR;

ENTITY model def;
name : STRING;
objects : LIST OF object;

END ENTITY;

ENTITY object;
name : STRING;
attributes : LIST OF attribute;

END ENTITY;

ENTITY attribute;
name : STRING;
domain : attribute domain;

END ENTITY;

END SCHEMA; – metamodels IR

SCHEMA sql dictionary) language meta-models are consid-
ered as application interpreted constructs.

SCHEMA omt dictionary;
USE FROM metamodels IR;

ENTITY omt model SUBTYPE OF (model def);
SELF � model def.objects : LIST OF class;

END ENTITY;

ENTITY class SUBTYPE OF (object);
superclasses : LIST OF class;

END ENTITY;

END SCHEMA; – omt dictionary;

SCHEMA sql dictionary;
USE FROM metamodels IR;

ENTITY sql schema SUBTYPE OF (model def);
SELF � model def.objects : LIST OF table;

END ENTITY;

ENTITY table SUBTYPE OF (object);
SELF � object.attributes : LIST OF column;

END ENTITY;

ENTITY column SUBTYPE OF (attribute);
SELF � attribute.domain : simple type;

END ENTITY;

END SCHEMA; – sql dictionary

We use a similar approach in another tool, idefix [13], in-
tended to automatically build database management appli-
cations from managed object descriptions.

3.2.2 The traduction parameter schema

The traduction parameter schema (e.g. SCHEMA traduc-
tion parameters) consists of a set of entities that describe
data that are used by the traduction process. It is specific
to the application and target system, and is defined or al-
tered by the generator conceptor. It aims to describe data
useful for the naming of target programming constructs such
as the class or type names. It can also contain target system
descriptions such as the name of basic classes used by pro-
duced classes. The traduction parameter schema is a kind of

4



descriptions of programming rules used by a project team.

SCHEMA traduction parameters;
ENTITY naming;

prefix : STRING;
END ENTITY;

END SCHEMA; – traduction parameters

3.2.3 The interpreted meta-model

The interpreted meta-model (IMM) schema (e.g. SCHEMA
omt to sql) contains all constructs of the target meta-model
schema. Subtypes of the entities from the target meta-model
schema are created. The creation of subtypes enable more
specific attribute definitions to be given in the context of the
source language meta-model schema and of the traduction
parameters schema. The context is represented in the sub-
types by associations between them and entities from the
source language meta-model and the traduction parameters.

The goal is to redefine all attributes of the created sub-
types of the target meta-model schema as derived attributes
in order to compute their value in the given context. The
idea is very similar to the STEP application interpretation
process described in section 2.1.

3.3 The traduction model

The traduction functionsare written in EXPRESS and are
specified in the traduction model schema (e.g. SCHEMA
omt to sql traduction). Inputs of these functions consist of
instances of the interpreted meta-model. The outputs consist
of a textual target program or documentation.

Parallel with the idea of a STEP application protocol,
the traduction model is considered as a representation of the
AAM. The basic idea is that, for a particular AP, containing
data descriptions in the AIM and underlying functionalities
description in the AAM, a target representation of the AP in
a given programming language can be automatically gener-
ated. The method enables the constitution of high level li-
braries which are a form of design reuse.

4 Practical experiments

4.1 The tools daigen and adoc

daigen is a generator that is able to automatically trans-
late source application data schemata written in EXPRESS
to a target textual representation. daigen is now used by
three projects: to generate an early binding of the SDAI in
Smalltalk-80and in Java, and to generate Java graphical data
browsers.

SCHEMA omt to sql;
REFERENCE FROM traduction parameters;
REFERENCE FROM omt dictionary;
USE FROM sql dictionary;

ENTITY omt2sql schema SUBTYPE OF (sql schema);
from model : omt model;
naming : naming;

DERIVE
SELF � sql schema.objects : LIST OF omt2table

:= build tables(SELF);
END ENTITY;

ENTITY omt2table SUBTYPE OF (table);
from class : class;

DERIVE
naming : naming := sql schema.naming;
SELF � object.name : STRING

:= naming.prefix + from class.name;
SELF � table.attributes : LIST OF omt2column

:= build columns(SELF);
INVERSE

sql schema : omt2sql schema FOR objects;
END ENTITY;

ENTITY omt2column SUBTYPE OF (column);
from attribute : attribute;

DERIVE
naming : naming

:= table.sql schema.naming;
SELF � attribute.name : STRING

:= naming.prefix + from attribute.name;
SELF � column.domain : simple type

:= from attribute.domain;
INVERSE

table : omt2table FOR attributes;
END ENTITY;

END SCHEMA; – omt to sql

adoc is a generator that produce LaTeX programmer ref-
erence documentation from the analysis of comments con-
tained in sources of programs.

4.2 An example of a vertical component

Telecommunications use a lot of formal methods and
languages to describe various models of systems, using
GDMO. GDMO uses ASN.1 syntax but has no rigourous
way to describe the behaviour of managed objects. An
achieving PhD Thesis [10] has pointed out the interest of
STEP/EXPRESS in the OSI management area. As an appli-
cation of this work, the V5 interface (used between telecom-
munication network and management network) was fully
specified using GDMO/EXPRESS. This specification was
used to produce a prototype of a V5 handler in Smalltalk-
80.

5 Conclusion

This paper has presented a method and a tool to build gen-
erators. The method is closely related to the STEP integra-

5



SCHEMA omt to sql traduction;
USE FROM omt to sql(omt2sql schema);

FUNCTION create table (table : omt2table) : STRING;
LOCAL

text : STRING;
attr : LIST OF column := table.attributes;

END LOCAL;
text := ’CREATE TABLE ’ + table.name + ’(’;
REPEAT no := LOINDEX(attr) TO HIINDEX(attr);

text := text + attr[no].name + ’ ’;
text := text + get attribute type(attr[no]);
IF no � HIINDEX(attr) - 1 THEN

text := text + ’, ’;
END IF

END REPEAT;
text := text + ’);’
RETURN (text);

END FUNCTION;

END SCHEMA; – omt to sql traduction

tion framework as it is used to standardize application pro-
tocols. The generators are intended to produce toolkit pro-
totypes (horizontal layers) as well as functional component
prototypes (vertical layers).

As stated before, STEP concentrates on data specifica-
tions consensus and provides a structured, pragmatic and re-
liable method to realize this consensus. This consensus is re-
lated to a more informal functionalmodel integration. When
integrating data models (AIMs), it supposes a kind of inte-
gration of AAMs. The integration process of activity mod-
els, even formally defined with IDEF0, can not be so precise
and reliable as data models integration. It relies more on sys-
tem analysts, designers and programmers.

Usually, a good design reuses practical implementation
experiments. The effervescence around design patterns
shows that the reuse problem has moved from code reuse
to design reuse [3]. The traduction functions for the vari-
ous experiments recalled above were written and tuned after
a successful hand-made implementation, relying on a good
comprehension of the domain requirements and function-
alities. In a sense, these traduction functions capture de-
sign and ”know-how” of the application, in similar tech-
nique such as templates or schemas [11]. The successful de-
velopment of traductions functions for a given domain needs
a narrow cooperation among domain experts, system ana-
lysts and prototype designers, exactly as preconised in STEP
for an application protocol development.

References

[1] Y. Ait-Ameur, F. Besnard, P. Girard, G. Pierra, and J. C.
Potier. Formal Specification and Metaprogramming in the
EXPRESS langage. In Int’Conf’ on Software Engineering
and Knowledge Engineering (SEKE), 1995.

[2] J. C. Cleaveland. Building Application Generators. IEEE
Software, July 1988.

[3] E. Gamma and al. Design patterns. Addison-Wesley, 1996.
[4] M. S.-H. H. Lichter and H. Zullighoven. Prototyping in In-

dustrial Software Projects – Bridging the Gap Between The-
ory and Practice. IEEE Transaction on Software Engineer-
ing, 20(11), November 1994.

[5] ISO 10303-1. Part 1: Overview and fundamental principles,
1994.

[6] ISO 10303-11. Part 11: EXPRESS Language Reference
Manual, 1994.

[7] ISO 10303-21. Part 21: Clear Text Encoding of the Ex-
change Structure, 1994.

[8] ISO 10303-22. Part 22: Standard Data Access Interface,
1994.

[9] ISO 10303-23. Part 23: C++ Programming Language
Binding to the Standard Data Access Interface Specification,
1995.

[10] C. Jacolot. La technologie STEP/EXPRESS dans le domaine
de la gestion des réseauxde télécommunications. PhD thesis,
CNET Lannion, 1998 (to appear).

[11] C. W. Krueger. Software Reuse. ACM Computing Surveys,
24(2), June 1992.

[12] M. Palmer. Guidelines for the development and approval
of STEP application protocols. Technical report, ISO
TC184/SC4/WG4 N511, 1995.

[13] A. Plantec and V. Ribaud. Data Management: From EX-
PRESS Schemata To User Interface. Journal of Computing
and Information, 2(1), November 1996.

[14] A. I. Wasserman. Tool Integration in Software Engineering
Environments. In Lecture Notes in Computer Science, Soft-
ware Engineering Environments, pages 137–149. Springer-
Verlag, 1989.

6


