N

N

Data Management: From EXPRESS Schemata to User
Interface
Alain Plantec, Vincent Ribaud

» To cite this version:

Alain Plantec, Vincent Ribaud. Data Management: From EXPRESS Schemata to User Interface.
International Journal of Computing and Information Sciences (IJCIS), 1996, 2 (1), pp.1243-1264.
hal-01450872

HAL Id: hal-01450872
https://hal.univ-brest.fr /hal-01450872
Submitted on 31 Jan 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.univ-brest.fr/hal-01450872
https://hal.archives-ouvertes.fr

Data Management:
From EXPRESS Schemata To User Interface !

A .Plantec and V.Ribaud
LIBr & Syseca

LIBr: Faculté des Sciences, BP 809,

29285 Brest Cedex, France
Syseca: 34 quai de la Douane, 29200 Brest, France
E-mail: {plantec,ribaud } @univ-brest.fr

Abstract

User Interface Management Systems (UIMS) allow interface designers to
create a complete and working user interface. UIMSs considered in this article
are those based on object oriented technology. Inside the UIMS, the interface
is described in a distinctive interface specification language. This specification
is then translated into programming toolkit functions.

STEP is an ISO standard (ISO-10303) for the computer-interpretable repre-
sentation and exchange of product data. Within STEP, EXPRFESS language is
meant to describe object-oriented data models called schemata.

For a data management application, user interface can be generated from
data schemata. A mapping between EXPRESS language constructions and
interactive objects classes can be established. This states the representation
rules of an FXPRFESS schema. User interface specification can be inferred from
EXPRESS schemata by using the building rules for graphic objects and for
objects behaviour. The generation is partly automatic, partly controlled by
the designer.

The alterations of the building rules enables the designer to work at the
meta-generation level. This meta-generation is supported by a structured de-
scription of the building rules.

The capabilities for meta-generation allow the designer to adapt the gener-
ation. The main goal remains the generation of an abstract interface specifi-
cation. This specification will then be translated into the distinctive toolkit
target. Both the generated interface and the building process have reflective
aspects.

!Final version submitted to Journal of Computing and Information, Vol. 2, No. 1, 1996

1 Introduction

Data management uses a lot of formal models (entity-relationship, relational, object-
oriented...) at different phases of system life cycle. The programming environments
often offer the possibility to describe all the used models. This description is struc-
tured in a dictionary or meta-model, which, following Codd’s idea [4] is usually imple-
mented with the same programming environment constructions as the models them-
selves. Software engineering tools and programmers use these meta-informations to
transform models from one phase to another or to generate programs and documen-
tation.

STEP is an ISO-10303 standard for the computer-interpretable representation and
exchange of product data [10]. The data models, called schemata, are described in the
EXPRESS language [11]. The data manipulation functions in a given programming
language are drawn automatically from these schemata. This automatically-obtained
component is called an SDAT (Standard Data Access Interface) [8].

Parallel with the idea of data independence used in database-management (and in
the SDAI), human interface construction tools and methods benefit from the notion of
user interface independence, unbinding the user interface design from the underlying
implementation [5].

The basic idea in this article is that, for a data management application, the user
interface can be generated from the data schemata. The generated user interface
and the generated SDAI can be put together to give a stand-alone data management
application. This application aims to insert, delete, update and query data in a
database.

User interface is built in three main steps: transformation, elaboration and trans-
lation. These three steps act on an intermediate representation of the user interface,
modeled in FXPRESS schemata. This intermediate representation is named User
Interface Specification.

Initially, the transformation step automatically builds a first version of the specifi-
cation, drawn from the conceptual schema of application data.
During the elaboration step, the interface designer is able to update the specifica-
tion. Finally, the translation step automatically produces a working interface which
depends on the execution environment of the application.

An interesting perspective of this building process is that both the generated
interface and the building process itself have reflective aspects.

This article is organized as follows. In Chapter 2, we detail the STEP point of view.
In Chapter 3, we present User Interface Management Systems (UIMSs). In Chapter
4, we describe the data management application building process. In Chapter 5 we
describe the user interface specification. In Chapter 6 we talk about reflection. In
Chapter 7 we give the designer interactions in greater detail. We finish with related
work, perspectives and conclusion.

2 STEP

STEP (ISO 10303) is an international standard for the computer interpretable rep-
resentation and exchange of product data [10]. This standard provides a modelling
language, FXPRFESS (ISO 10303-11) [11], a neutral data encoding (ISO 10303-21)
[12] and an application program interface to data called Standard Data Access In-
terface (SDAI ISO 10303-22) [8]. The NIST (National Institute of Standard and
Technology) pioneered work in this field and promotes public domain tools [17, 13].
The data are kept in a storage facility called a repository. STEP considers three
kinds of repositories: (1) the memory, (2) ASCII files in which data are encoded in
the STEP neutral exchange format, and (3) a database.
From a traditional point of view in the field of database management, FXPRESS
can be considered as a Data Definition Language (DDL) and the SDAI as the Data
Manipulation Language (DML).

2.1 The EXPRESS language

EXPRESS is an object-oriented modelling language. The application data are de-
scribed in schemata and a schema can reference other schemata. This allows the
designer to write generic schemata referenced by more specific ones.

A schema owns the types definitions and the objects descriptions of the application
called Entities. An entity is made of attributes and constraints descriptions and can
inherit from others entities. The constraints expressed in an entity definition can be
of several kinds [11], briefly:

o the UNIQUF constraint allows entity attributes to be constrained to be unique
either singly or jointly (e.g any one value of that (these) attribute(s) is (are)
associated with only one instance of the owner entity),

o the DERIVFE constraint is used to represente computed attributes. Such con-
straint specifies the way derived attributes are computed,

o the WHERF clause of an entity constraints each instance of an entity individ-
ually,

o the INVERSE clause is used to specify the inverse cardinality constraints.

FEXPRESS allows the definition of global rules. These rules are used when either
all instances of a given entity or instances of at least two entities need to be examined
concurrently to determine whether a given constraint is satisfied. An example of

EXPRESS schema is shown in figure 1.

schema BarAndBeverages;

type BeerColor = enumeration of (lager, stout);
end _type;

entity Bar;

name : string

town : string;

beverages : list [1:7] of Beverage;
end _entity;

entity Beverage abstract supertype of (Wine, Beer);
name : string;
percentage : real;

inverse
bars : set [0:7] of Bar;
where
wrl : percentage >= 0;
end_entity;

entity Wine subtype of (Beverage);
vintage : string;
year : integer;
where
wr2 : Beverage\percentage <= 14.0;
end_entity;

entity Beer subtype of (Beverage);
color : BeerColor;
derive
maxCans : real:= computeMaxBeerCans(percentage);
end_entity;

end_schema;

Figure 1: A simple EXPRESS schema

2.2 The SDAI
The SDAI defines an access protocol for EXPRFESS-defined databases and is defined

independently from any particular system and language.
The representation of this functional interface in a particular programming lan-
guage is referred to as a language binding in the standard. As an example, ISO

10303-23 is the STEP part describing the C++ SDAI binding [9].

The existence of the SDATI enables each vendor to write a repository interface that
corresponds to a common standard. In turn, an application developer can then insure
portability of his application among all systems supported by these vendors.

Usually, a STEP implementation platform includes not only an SDAI binding in a
particular programming language and for particular repositories but also a database
physical schema builder, parsing EXPRFESS schemata and producing DDI. and DML
programs for a specific repository. The main point is that those specific repositories
features are not and need not be known by the SDAT user.

The main goals of the SDAT are [8]:

e to access and manipulate data which are described using FXPRESS language so
that access to a database happens through a conceptual schema, not a physical
schema,

e to allow access to multiple data repositories by a single application at the same
time,

e to allow commit and rollback on a set of SDATI operations,

e to allow access to the FXPRESS definition of all data elements that can be
manipulated by an application process, and

o to allow the validation of the constraints defined in EXPRESS.

3 UIMS

User interface is built on the libraries of the operating system or on windows system
like Windows, X- Window, etc. Programming toolkits attempt to hide the complexity
of programming these systems by providing especially designed routines that handle
standard widgets such as windows, scroll-bars, menus, data-entry fields, buttons, and

dialog bozes [25].

The family of toolkits we are considering in this article, organizes interface objects
in a hierarchy of classes, in an object-oriented way. (In this article, the name toolkit
is used to refer to these graphics interface toolkits).

In [18], D.A.Norman and S.W.Drapper talk about the use of a User Interface
Management Systems (UIMS) and its functionalities:

An UIMS allows a user interface designer to specify his interface in a
high-level language. The UIMS transforms these specifications into inter-
face objects, the management of these objects and the management of the
dialogue with the application.

As a general rule, the designer does not program in this high-level language, but
uses an interactive interface construction tool.

In this article, the high-level language is made of EXPRESS schemata and their
instances. We think that our ideas apply to different object-oriented toolkits. The
validation of some ideas required the implementation of software components, first
with the tel/tk environment [19], currently with the ILOG Views library [7].

4 The data management application building pro-
cess

The purpose of this section is to show how a complete and working data management
application can be built from data model specifications. The functionalities of the
generated application are those offered by the SDAI, mainly update and query data
hold in a repository. The key components of this process are a SDAI and a User
Interface Specification directly produced from the EXPRESS application data schema.

4.1 A Compilation problem

The problem can be seen as belonging to the field of compilation: an intermediate
representation is built through an FXPRESS schema analysis process and this rep-
resentation is used by a synthesis process to produce a data management program
target for a particular toolkit or language.

The user interface building rules are then defined in the synthesis program itself.
The wellknown feature of this approach is that only the synthesis program has to be
rewritten in the case of another toolkit target.

We feel that the toolkits share many common features and are organised in a simi-
lar manner. So, it is possible to describe the user interface in a common specification
language and translate this specification into a given toolkit.

Then, the compilation process can be re-specified (figure 2). The data structure in-
tended to store any EXPRESS schema representation is usually called the EXPRESS
dictionary (meta-schema level). In the same manner, the data structure intended
to store a user interface specification is named the user interface dictionary (meta-
schema level).

_ User
interf ace
generation

N N N\

EXPRESS User .
Application EXPRESS Interface Application
Data Schema Dictionary Dictionary

Figure 2: The compilation point of view

The user interface dictionary is defined by a set of EXPRFESS schemata referred
to as the user interface dictionary schema. Assuming that the specification language
is well designed for a given toolkit, translating user interface specification into this
toolkit 1s a simple process.

4.2 The building process

Figure 3 shows the entire building process. This process is made of four sub-processes.
The Analysis process reads the EXPRESS application data schema and fills an EX-
PRESS dictionary. This dictionary is used by the Transformation process which
builds the user interface specification. The Translation process translates from the
user interface specification to a user interface program and a SDAI is constructed
directly from the FXPRESS application data schema. Finally, the user interface
program, the toolkit and the SDAI libraries are linked together to build the data
management application.

4.2.1 The analysis sub-process

This process reads the EXPRESS application data schema and builds an internal rep-
resentation. This internal representation is made of instances of the EXPRESS dic-
tionary. This dictionary stores information about the object-oriented data structures
and about the constraints expressed in the model, especially about the collections
cardinalities, the unicity constraint of attributes, the relationships between entities
and the derived attributes computation.

EXPRESS
Application
Data Schema

Reverse
Design
7 ' \\
4—= Elaboration =g/ User Interface | 'y SDAI
- —™ | Spedification |) Building
N\ /
__’//
Trandation
V
Tool User Interface SDAI

Kit Program

Data Management
Application

Figure 3: The Data Management Application Building Process

4.2.2 The transformation sub-process

This process takes place after the analysis process and uses the EXPRFESS dictionary

to build a user interface specification. There are eight kinds of building rules.

1.

Correlation rules. These rules map EXPRFESS built-in types to the toolkit basic
objects and to type dependent behaviour. As an example, the INTEGER,
REAL and STRING EXPRESS types are represented by an entry object and a

procedure which is intended to check the input.

Context dependent correlation rules. They allow multiple presentation for EX-
PRESS types. The choices are context driven. For example, the representation
of an entity reference could be the complete presentation of the referenced entity
(we call it direct representation), a button or menu item (indirect representation)
allowing access to the direct representation. Another example is the collection
building rules. They describe the way collections are represented. The represen-
tation of a collection depends on the base element type. A collection of simple
element type is represented by a vector of direct representations. A collection
of collections can be represented by a matrix. The basic element of the matrix
can be an entry (collection of collections of simple type), or a button (collection
of collections of entity reference or of another collection) allowing access to the
base collection base type representation.

. EXPRESS constructors rules. They map EXPRESS constructors (ENTITY,

SELECT, ENUMFERATION) to their representation. For example, an FN-
TITY is represented by a frame containing the attributes representation, an

ENUMERATION or a SELECT type by a listbox.

Inheritance rules. They describe the representation of the inherited entities at-
tributes in an entity representation. If an entity named A inherits from another
named B, the representation of A is the union of the B and A representation.

Relationships rules. They describe the representation of the FXPRESS IN-
VERSFE clause. The INVERSE clause of an entity is represented by a button

which is intended to call a list representation of the inversed attribute.

Constraints rules. They map FXPRESS expressions to procedures. These pro-
cedures are called by a button (in case of a EXPRESS WHERFE clause) or for

computation of the derived attributes values.

Default behaviour rules. They state the link between the user interface and the
SDAI The default behaviours are represented by buttons or menu items calling

the SDAT functions. There are four kinds of default behaviour: (1) the reading
and the writing of data, (2) the commit/rollback functionalities, (3) the query
functionality and (4) the constraints validation.

8. Default schema navigation rules. They allow the representation of a root menu
in a root window. The default root menu consists in items for the calling of the
representation of the schema entities, for the calling of the referenced schemata
navigation root window, for the execution of the schema global rules.

4.2.3 The designer’s elaboration

The Analysis and Transformation processes transform the FXPRESS application data
schema into a first version of the user interface specification. Within the process of
interacting on the user interface specification, the interface designer elaborates a more
and more accurate version until a satisfying solution is obtained.

Designer interactions are detailed in section 7.

4.2.4 The translation sub-process

This process consists in the translation between the user interface specification and the
user interface program. The translation rules are toolkit dependent. This is a direct
translation from objects of the user interface specification to the toolkit objects since
representations choices have already been made during the Transformation process
and by designer’s elaboration.

4.2.5 The reverse design sub-process

Since all components of an EXPRESS schema are stored in the EXPRESS dictionary
[8], it is possible to rebuild the EXPRFESS application data schema. Because of the
possible structural changes made by designer’s elaboration, the original schema must
be regenerated in order to build the SDAT or to use the schema for documentation.

The feature of reverse design appears as an implementation choice because another
solution would be to rebuild the SDAT directly from the user interface specification
which owns the KXPRESS dictionary. But this second solution excludes the use of
the tools now available.

5 The user interface specification

The application of the building rules produces the description of interface objects:
the User Interface Specification. The structure of these description is specified with

EXPRESS schemata. The user interface specification is then a set of instances of the
user interface specification schemata.
These schemata are:

o the existing SDAIdictionary schema [8], which describes the application data,
o the Core Widget schema, which describes the toolkit objects,
e and three different schemata for user interface objects:

1. the SDAldictionaryPresentation schema describes how the EFXPRESS

schema structures are represented.

2. the SDAldictionaryAccess schema allows SDAldictionary entity references
from the SDAldictionaryPresentation schema, and

3. the SDAlentityBehaviour schema contains the names of functions called
for the default behaviour of an entity representation.

The user interface specification schemata and their relationships are shown in
figure 4

SDAldictionary | SDAlentityBehaviour | | CoreWidget = CoreWidgetDefaults

\ \ i
\

SDAldictionaryAccess = SDAl dictionaryPresentation

-

A ——» B meansAisreferencing B

Figure 4: The user interface specification schemata

5.1 SDAIdictionary
The SDAldictionary is the EXPRESS dictionary schema. 1t defines the SDAT data

dictionary which stores information about schemata describing instances operated on
by the SDAI [8]. Because the schemata SDAI operates on are defined in EXPRESS,
the structure of this dictionary schema reflects the structure of EXPRESS itself.

Figure 5 shows the EXPRESS entity entity_definition describing an KXPRESS
entity type.

entity named_type abstract supertype of (oneof (entity_definition, defined_type));
name : express_id; '
where_rules : list [0:?] of where_rule;

end _entity;

entity entity_definition subtype of (named_type);
supertypes : list [0:?] of unique entity_definition;
attributes : list [0:?] of unique attribute;
uniqueness_rules : set [0:7] of uniqueness_rule;
complex : boolean;
instantiable : boolean;
independent : boolean;
parent_schema : schema_definition;

end_entity;

Figure 5: The EXPRESS entity_definition entity

5.2 CoreWidget

The Core Widget schema aims to describe all toolkit base widgets. It should be as
general as possible and should not reflect the structure of a specific toolkit.

The schema is mainly made of the abstract entity Widget and all of its subclasses:
Label, Entry, Text, Button, Menu, Listbozx, etc. Figure 6 shows the Widget and the
Button entities.

entity Widget abstract supertype of (oneof (Menu, Text, Button, Entry, Label,

)i ,
class : string;
backgroundColor : string; ...

unique
ul : class;
end_entity;

entity Button supertype of (oneof (CheckButton, RadioButton, MenuButton))
subtype of (Widget);
height : optional Size;
sensitive : boolean;
clientDataName : string;
end_entity;

Figure 6: The Widget and Button entities

For each of these entities a default values entity is defined which owns the at-
tributes default values. If A_Default is the name of the default values entity of A,
then A_Default inherits from A and sets all the mandatory attributes to their default
value in a WHERE clause. Those particular entities are defined in the Core Wid-
getDefaults schema. The inheritance use for representation of particular values has

already been specified by Kramer, Morris and Sauder in [13].

5.3 The building rules schemata

entity entity_definition_access;
access'To : entity_definition;
inverse
presentation : set [0:7] of entity_definition_presentation for subject;
end_entity;

entity entity_definition_presentation subtype of (named_type_presentation);
subject : entity_definition_access;
globalframe : Frame;
attributes_presentation : list [0:7] of attribute_presentation;
behaviour : entity_definition_behaviour; ...
end_entity;

Figure 7: The presentation rules of an EXPRESS entity

The SDAldictionaryPresentation defines how EXPRESS application data schema
structures are represented. It aims to connect the SDAldictionary and the Core Wid-
get entities.

For each SDAIdictionary type, entity or rule definition, an SDA IdictionaryPresen-
tation presentation definition entity which describes its representation is defined.

The types of attributes of presentation definition entities consist in SDAIdictio-
naryPresentation types, SDAldictionaryAccess types or Core Widget types.

The SDAIdictionaryPresentation schema indirectly references the SDAIdictionary
schema via the SDAIdictionaryAccess schema. The SDAldictionaryPresentation and
SDAIdictionaryAccess schemata specify the static aspects of the building rules. They
are called the building rules schemata.

As an example, the entity presentation rules are partly reproduced in figure 7.

5.4 SDAIlentityBehaviour

The SDAlentityBehaviour schema describes a part of the entity presentation be-
haviour. This schema defines one entity: the entity_definition_behaviour entity
shown in figure 8. These entity attributes are the names of the SDAI procedure
for creating, updating or deleting an entity. These names are defined in the de-
rived clause since they can be computed from both the entity_definition and the
entity_definition_presentation attributes.

entity entity_definition_behaviour;
subject : entity_definition;
derive
create : string:= ComputeEntityCreatingProcName(subject, presentation);
update : string:= ComputeEntityUpdatingProcName(subject, presentation);
delete : string:= ComputeEntityDeletingProcName(subject, presentation);
inverse
presentation : set [1:1] of entity_definition_presentation for behaviour;
end_entity;

Figure 8: The entity_definition_behaviour entity

6 Reflection

A reflective system is a system which incorporates structures representing (aspects
of) itself. The sum of these structures is called the self-representation of the system.
The system and its self-representation are causally connected: if one of them changes,
this leads to a corresponding effect on the other [15].

6.1 Reflection of the generated interface

The set of schemata described in section 5 are meta-schemata. They contain meta-
objects which hold knowledge about the objects to generate, the interface objects.
According to Patti Maes’s definition in [16], a meta-object holds, in an exhaustive
manner, information concerning the object implantation, inheritance, instanciation,
behaviour, etc.

Inside the building process, the meta-schemata and their meta-objects are the self-
representation of the generated user interface. The final aim of this building process
is to get a stand-alone interface, separated from the building process and hence of its
self-representation. We can say that the generated application is not reflective.

The translation process should be either a compiler or an interpreter. The inter-
preter allows the designer to measure the effects of the specification while elaborating
the interface. This is defined in [3] as a user interface specification environment rather

than a UIMS.

In the building process, the self-representation is stored in FEXPRESS schemata
and then manipulated through a SDAI The final generated application is a data
management application, and therefore owns a SDAT in order to manipulate its own
data. Incorporating the meta-schemata and an interpreter into the final generated

application makes the application reflective. Because it owns a self-representation
(the meta-schemata) and the causal connection (the interpreter), the application is
able to alter its own user interface.

The perspectives of this reflection are of two types:

e The application alone is allowed to alter itself. The application tracks the user’s
actions and tries to adapt to improve its performances: by creating new menus
or keyboard short-cuts following frequently used paths, by proposing defaults
values after detecting repeated value entry in a given field, etc.

e The user itself is allowed to act on the system. Using the same (or limited)
functionalities of the building process, the user is able to act upon the interface.
He can specify an alteration, which the application will carry out by altering
his self-representation.

6.2 Reflection of the building process

We consider now instances of meta-schemata no longer as meta-objects about user
interface objects but as building process objects. The production of these objects is
controlled by rules. These rules are described in section 4.2.2.

Most of these rules are structured in FXPRESS schemata. This allows us to store
a representation of these rules in a dictionary. This rules dictionary is a structure
within the building process which describes the knowledge that the building process
has about itself, and is a self-representation of the building process. The building
process is then reflective and is able to alter itself: we called this feature meta-
generation.

7 The designer interactions

As shown in figure 3, the designer can interact on the user interface specification.
Designer interactions fit into three categories of operations:

1. Resources edition. The presentation of the interface is updatable through mod-
ifications of graphic attributes such as color, size, font, etc,

2. Customization. Composition of objects can be modified, as well as the access
path between interface components,

3. Migration. Major changes of the objects structure are allowed, such as adding
an attribute or modifying the hierarchy path.

7.1 Evolution

Once an initial user interface specification is obtained by transformation of the FX-
PRESS application data schema, the designer elaborates this specification by making
successive changes. We then use the two major approaches of object oriented design:
transformation and elaboration.

The transformation approach makes an explicit distinction between conceptual
level (data schema) and logical level (interface specification) and advocates a trans-
formation process between levels [24]. The elaboration approach is based on a unique
level and advocates a process by successive refinements [21, 2].

A problem arises when a change is needed in an EXPRESS application data schema
after successive elaborations of the user interface specification.
The existence of two independent levels makes its difficult to go back from the in-
terface level to the data schema level, and it is sometimes impossible to maintain
consistency between the two levels. Regenerating the interface from the updated
EXPRESS application data schema while keeping the user’s transformations would
take a sophisticated mechanism to apply all the user’s elaborations to the initially
retransformed interface.
The fashion in which data schema changes are done solve the problem: these changes
are made both in the user interface specification and in the EXPRESS application
data schema.

EXPRESS schemata migration is discussed in [22, 23]. D.Sanderson follows the
point of view of object-oriented data schema evolution exposed in [1, 20, 14]. This
approach is based on invariants and on operations. Operations allow schema modifi-
cations, and invariants must be preserved across alterations.

For each data schema evolution operation, changes to be made in the corresponding
user interface are defined. The building process owns a description of the EXPRFESS
application data schema, the SDAldictionary. Fvolution operations are applied to
this description, while corresponding changes are applied to the user interface spec-
ification. In fact, we could say that in order to elaborate a structural change on the
interface, we elaborate a change on the EXPRESS application data schema and we
apply a local transformation to get the new presentation.

7.2 Consistency

User interface under construction is stored as instances of several schemata. The
meaning of the interface is controlled by the constraints of the schemata. These
constraints are meant to be well-designed so that any meaningless interface cannot

happen. Assuming the schemata design is correct, we are able to judge the effects of
these operations according the following simple principle which guarantees interface
consistency:

Any effects which respect the constraints are valid and the corresponding
operation is allowed.

The functionalities of the application are those provided by the SDAI. Interface
callbacks call on SDAT functions. Consistency between the interface and the SDAI
should be guaranteed too. This is discussed in the next section.

7.3 Resources edition

Resources editing consists in the modification of the basic parameters of the presen-
tation. These functions are standard in an UIMS. They are similar to the functions
available in an interactive resource editor such ResFdit on the Macintosh or a resource
description language such User Interface Language (UIL) in the X environment. Re-
sources editing alter only interface presentation, there are no effects on the SDAI and
callbacks do not need to be updated.

7.4 Data structure representation customization

Customization allows the designer to change the representation structure (it aims to
alter the ordering and the assembling of objects) and to alter the navigation path
through the application.

Again, these functions are standard in a UIMS. As an example of structure al-
teration, the designer can change the attributes representation order in an entity
presentation, suppress an attribute presentation or choose an indirect representation
in place of a direct presentation.

One cannot alter just anything. To sum up, only restrictive changes are allowed.
It means that, once a component is initially generated, the elaborated component
resulting from the user’s modifications is always a subset of the original one. This
restriction is due to the necessary coherence with the SDAI The SDAI contains the
data access functions which are coupled with the interface. Inserting, updating or
deleting data through the SDAT forces the interface to respect the definition of the
functions of the SDAIL This idea is similar to the notion of updatable view in a
relational database system. Updates through a view are allowed providing the view
definition takes into account some restrictive conditions.

Cross-reference of entities in the EXPRESS application data schema generates a
navigation graph in the interface. It means that if an A entity is related to an B

entity, there is a way to go from the presentation of A to the presentation of B. The
designer is able to modify this navigation graph by adding or removing access paths
between interface components. He can also modify a menu item or a callback name.

7.5 Data structure representation migration

The data structure representation migration operates changes in the data structure
itself. The third category groups together structural changes on the interface, such as
adding a computed attribute or merging two components into one. This category is
distinctive of both others because it is intended to solve two problems: the regenera-
tion of the interface which preserves the designer’s modifications, discussed in section
7.1 and the coherence with the SDAI discussed here.

Presentation components are strongly related to their data definition because the
underlying behaviour of a data management application is meant to be the behaviour
of the SDAI So, structural changes made in a presentation component should affect
the underlying SDAT functions. Moreover, we think that the need for a structural
change in the user interface is in fact a need for an evolution of the data conceptual
schema. For example, we consider that adding a computed attribute is not an interface
modification but an application modification and that this modification should appear
in the application data schema.

Considering all this, providing this kind of user interactions is very similar to
providing schema evolution features in section 7.1.

7.6 Migration
7.6.1 Migration of the generated application

As discussed above, the building process should offer evolution operations for EX-
PRESS schemata of the application.

While the application is being designed, the application schemata are not instan-
ciated (there are no application data). Therefore, we agree with D.Sanderson in [22]
who uses the term of schema migration to distinguish it from schema evolution:

Schema evolution systems are designed to alter a schema as it changes
over time while retaining compatibility to earlier definitions. A schema
migration system allows radical changes to be made as a schema migrates
from one format to another. Hence, a migration system will need opera-
tions that would be prohibited in an evolution system.

Sanderson’s works are implemented in a prototype system based on a version of
a commercial migration system, ST-Developer [26]. Migration operations, called mi-

grators, should be accompanied by user interface changes. Using an open commercial
migration system makes it possible to add functions to the migration operations.

So, a schema migrator operates (1) on the EXPRESS application data schema
and (2) on the user interface specification. For example, the designer can decide
to add the definition and the representation of an attribute. In such a case, he
applies the operator addAttribute to the entity target. The EXPRESS application
data schema is then updated, and an attribute representation is added in the wuser
interface specification.

Some operators may imply some loss in the user interface specification because a
default representation may be produced, erasing a customized one.

7.6.2 Migration of the building process

As discussed in 6.2, the building process is reflective.

Bringing alterations to the building process means that the designer changes the
way that the user interface specification is generated. This is called meta-generation.
The self-representation of the building process is made up of EXPRESS schemata.
Changing the self-representation consists in evolving EXPRESS schemata.

The interface designer should be familiar with schema evolution, which is intensively
used through the interface design process.

Hence, he should be able to use the same features at the meta-generation level, no
longer acting on the application schemata, but on the building rules schemata.

Schema migration Evolving the building rules schemata at the meta-generation
level can be dealt with as evolving the application schemata at the generation level:
there are no instances to preserve. This means in fact that the designer must meta-
generate before generating. The building process has to be tuned first so that the
building rules are suitable to the designer’s choices. Then the designer can use this
same building process to design the desired interface.

Instances migration Another point of view is to allow the designer to meta-
generate while generating. This means that while elaborating his interface, the de-
signer may want to change the building rules. Building rules schemata are part of the
user interface specification schemata. These schemata store instances which represent
the interface under construction. This construction should be preserved. Keeping this
interface (instances) while altering the rules (schemata) is no longer a schema migra-
tion problem but a database evolution problem: we need to migrate schemata and
instances.

D. Sanderson in [23] describes the semantic effects of migration operations on
EXPRESS schemata. Loss of semantics in the elaborated interface specification can

occur while using migrators. But the feature is interesting to maintain existing ap-
plications.

8 Related work

Delphia Object Modeler (DOM) [6] of SLIGOS Inc is closest to our work. DOM is
a commercial tool. The conceptual method is OMT like [21], hence behaviour is
specified by the designer. The main difference is that the behaviour must be specified
by the designer. There is no way to elaborate the user interface, changes are made
on the conceptual model and new interfaces are obtained by transformation.

9 DPerspectives and further work
Some opportunities for future work are to:

e extend the default behaviour (not only the SDAI), to add general facilities such
as cut/paste between objects, intelligent help or nested undo/redo.

o develop reflective aspects of the generated interface,

e expand meta-generation concepts and related migration.

10 Conclusion

This article has presented a building process of a data management application. The
process reads an application data schema written in FXPRESS and produces a com-
plete and working user interface program linked with a standard behaviour. The
standard behaviour is made of the functions of the STEP SDAI

The building rules are themselves made of EXPRESS schemata. The interface
spectfication definition consists in the building rules, the EXPRESS dictionary schema
and a core widget schema describing the user interface toolkit objects. So, the user
interface specification is composed of all these schemata instances.

The designer can operate changes on the produced interface specification. Those
alterations are carried over on the original schema through a reverse design process.

At a meta-generation level, the designer can also operate changes on the building
process itself, using the operators of the generation level.

References

1]

[10]

[11]

[12]

[13]

[14]

Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Forth. Semantics
and Implementation of Schema FEvolution in Object-Oriented Databases. In

Proceedings of the ACM SIGMOD 1987 Annual Conference, 1987.
Grady Booch. Conception orienté objet et applications. Addison Wesley, 1992.

J. Coutaz. Interface homme-ordinateur, Conception et réalisation. Dunod-
Bordas, Paris, 1990.

C. J. Date. An Introduction to Database Systems, vol. 1. Addison Wesley,
Reading MA, 1990.

H.R. Hartson and D. Hix. Human-computer interface development : Concepts
and systems for its management, volume 5-93. ACM computing Surveys 21,1,

March 1989.

Eric Hubert. DOM : un atelier de génie logiciel objets pour la génération au-
tomatique d’applications interactives. Génie Logiciel, Juin 1995.

ILOG. ILOG VIEWS Reference Manual, 1995.
ISO TC184/SC4 CD 10303-22. Part 22: Standard Data Access Interface, 1994.

ISO TC184/SC4 CD 10303-23. Part 23: C++ Programming Language Binding
to the Standard Data Access Interface Specification, 1995.

ISO TC184/SC4 1S 10303-1. STEP Part 1: Overview and fundamental princi-
ples, 1994.

ISO TC184/SC4 1S 10303-11. Part 11: EXPRESS Language Reference Manual,
1994.

ISO TC184/SC4, IS 10303-21. Part 21: Clear Text Encoding of the Fxchange
Structure, 1994.

T. R. Kramer, K. C. Morris, and D. A. Sauder. A Structural EXPRESS Editor.
NISTIR 4903, 1992.

Barbara Staudt Lerner and A. Nico Habermann. Beyond schema evolution
to database reorganization. In ECOOP/OOPSLA’90 Proceedings. ACM Press,
1990.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Pattie Maes. Concepts and experiments in computational reflection. In OOP-

SLA’S87 Proceedings. ACM Press, 1987.
Masini and al. Les langages a objets. InterEditions, 1989.

K. C. Morris. Architecture for the Validation Testing System Software. Technical
Report NISTIR 4742, National Institute of Standards and Technology, Gaithers-
burg, Maryland, 1991.

D.A. Norman and S.W. Draper. User Centered System Design. Lawrence Erl-
baum Associates, 1990.

John K. Ousterhout. Tel and Tk Toolkit. Computer Science Division, University
of California, Berkeley, CA 94720, 1993.

D. Jason Penney and Jacob Stein. Class modification in the GEMSTONE
Object-Oriented DBMS. In OOPSLA’87 Proceedings. ACM Press, 1987.

James Rumbaugh and al. Object-oriented Modeling and Design. Prentice Hall,
1991.

Donald B. Sanderson. A schema migrator for EXPRESS: Theory and practice.
In Fourth Annual EXPRESS User’s Group, EUG’9/, Conference Notes, 1994.

Donald B. Sanderson. Semantics effects of migration operations on EXPRESS

schemas. In EXPRESS User Group Conference Proceeding, EUG’95, 1995.

S. Schlaer and al. A deeper look at the transition from analysis to design. Journal
of Object-Oriented Programming, Feb. 1993.

B. Schneiderman. Designing the User Interface, Reading MA. Addison Wesley,
1990.

STEP TOOLS INC., New York. ST-Developer - ROSE Library Reference Man-
ual, 1992.

