N
N

N

HAL

open science

MODEL DRIVEN ENGINEERING: TWO
APPROACHES THROUGH THE SAME CASE
STUDY
Vincent Ribaud, Philippe Saliou, Mickaél Kerboeuf

» To cite this version:

Vincent Ribaud, Philippe Saliou, Mickaél Kerboeuf. MODEL DRIVEN ENGINEERING: TWO
APPROACHES THROUGH THE SAME CASE STUDY. 13th Interdisciplinary - Information Man-

agement Talks, Sep 2005, Budweis, Czech Republic. hal-01447509

HAL Id: hal-01447509
https://hal.univ-brest.fr /hal-01447509
Submitted on 26 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.univ-brest.fr/hal-01447509
https://hal.archives-ouvertes.fr

MODEL DRIVEN ENGINEERING : TWO APPROACHES
THROUGH THE SAME CASE STUDY

V. Ribaud, P. Saliou, M. Kerboeuf

EA3883, LISyC, Université de Bretagne Occidentale, C.S. 93837 29238 Brest Cedex 3, France
E-mail: {Mickael.Kerboeuf, Vincent.Ribaud, Philippe.Saliou} @univ-brest.fr

Abstract

The work described in this article presents two model -driven engineering approaches through the
same case study. The case study is an shared electronic agenda used as a representative from
medium and small sized Information Systems. The first approach relies on the Unified Process,
supplied with IBM/Rational Rose. The second approach relies on CADM (CASE Application
Development Method), a waterfall process belonging to the family of systemic methods, supplied
with Oracle CASE Designer.

1 Introduction

Methods and tools are essential for the achievemeatproject. Formerly, the CASE tools are
often confined to the analysis and design phasele whe programming environments are used for
the implementation. Presently, tools vendors prenobl suites which should be able to support an
integrated development process driven through aehariven approach. We present a case study,
built into two different methods and environmen@ADM/Designer and UP/Rose.

1.1 Thedevelopment cycle

Approaches presentation follows the developmenkecyat especially defines role and progress
of project phases. 7 phases are hold :

0 - Project set-up from a statement of work

1 - Requirement capture

2 - Analysis

3 - Design

4 - Coding and unit testing

5 - Integration and integration testing

6 - Validation

Phases 0 and 6 relies on common documents for &gphoaches : a statement of work is
provided to define the case study and a validgpian is used to evaluate software at the end of
the development process to ensure compliance hatlstatement of work.

1.2 Casestudy : statement of work (excerpts)

Each user freely creates his/her artifact as aopens the system. Agenda let users to create
meetings, to register/cancel for a meeting andotwsglt existing meetings along several criteria :
participant, meeting room, subject, temporal irdérv

A meeting is attended by one to many persons andceated in an unique room that must be
available at meeting time. A room can successiield up different meetings. A person can take
part to several disjoint meetings.

Some operations are right-restricted. Generallyusgr can perform any update on objects that
he/she created. An administrator is provided with agenda in order to manage common data ;
management right is transmissible and irrevocable.

1.3 Validation plan

The statement of work is not structured in ordendae no influence on the approach used. It does
not contain detailed requirements but rather remuénts titles, presented within a numbered list
ordered alphabetically. This list order indexes\héfication plan too; this presents no sense with
the real verification plan issued from each appmpaout should permit the comparison of
compliances through the indexed list.

N.| Requirement N.Requirement

1 | Cancel participation to a meetirp | Participate in a meeting

2 | Create a meeting 1Retrieve meetings by attendee

3 | Create a person 1Retrieve meetings by date

4 | Create a room 1Retrieve meetings by meeting ropm
5 | Connect [Register] lI/Retrieve meetings by subject

6 | Delete a meeting 1%)pdate a meeting

7 | Delete a person 18@pdate a person

8 | Delete a room 1[Mpdate a meeting

9 | Deregister

2 First approach : the Unified Processwith Rational Rose

The development process belongs to the unifiedgsses family. « The unified process is first
and foremost a software development process ...uhifeed process uses the Unified Modelling
Language (UML) in order to create elaboration amdlding plans of the software system ...
Nevertheless, the truly specific features of théiech process are as follows: use case driven,
architecture-centered, iterative and incremental.»

2.1 Requirement capture

Requirement key point is to establish the importaoicrequirements as a contract between client
and provider. A requirement is defined from IEEHE 329-1983 « Condition or capacity which a
system or subsystem must exhibit to satisfy a eshtistandard, specification, or other obligatory
formal document ».

Use case model is employed. A use case capturasti@act between the stakeholders of a system
about its behaviour. The use case as a contradiefoaviour relies on two models described by
Alistair Cockburn [2] : -1- the system providesardctions between actors with goals, -2- the
system has the responsibility to protect the irstisref all the stakeholders.

2.2 Analysis

The unified process presents analysis as a transigtween an external view of the system (written
in the client’s language) to an internal view (dait in the developer's language). The analysis
structure is as follows : package, classifier &l@ssociation, interface), element.

The goal is to get a static analysis of the sygtienthe form of a class and/or an object diagram)
and a dynamic analysis (in the form of collabortidiagrams : one for each use case). Each
analysis class belongs to one of the base stem®typ « boundary », « entity », « control ». The
analysis class diagram is structured (through pge®ain sub-diagrams, overlaying several use
cases. Each use case is a collaboration into thigss® model that describes the way a given use
case is realized and executed in term of analyasses and interactions between instances of these
classes. Technical requirements that are not dkfivgh use cases (sometimes called non-
functional requirements) are analysed in a comnudlalworation if several use cases are concerned
else in a peculiar collaboration. Collaboratioagtams are structured into packages independently
of class diagrams structure. Services packagebearsed at a lower level in order to structure the
system from the services that it provides; thisams important step in the development process
because it gives the system its initial structurect is subject to further refinement in the design
phase.

2.3 Design

Product design consists of two broad phases that awarlap in execution: preliminary and
detailed design. Preliminary design establisheslymb capabilities and the product architecture,
including product partitions, product-componentniifgcations, system states and modes, major
intercomponent interfaces, and external produceriates. Detailed design fully defines the
structure and capabilities of the product compan £3it

The unified process presents design as a shapitigtyagn order to give a form and an
architecture to the system that meet requiremégsa fundamental basis for design, the analysis
model assigns a system structure that we should tkgep. However, the design model is an object
model which is an abstract vision of the system l@amgntation ; this model is depicted in a
hierarchical system with subsystems and desigisetas

There are so many design class stereotypes thanfilementation language and its architecture
are providing with. The architectural model useéC (Model-View-Controller).

! Collaboration diagrams are called communicati@gdims in UML 2.0 and moved from the structurabcians to
the behaviour diagrams.

A « View » design class models the interactionhef $ystem with the actors and often represents
abstractions of forms, windows... mostly deriveahir« boundary » analysis classes. A « Model »
design class is used to represent information &mé\our of a phenomena or a concept; there are
mostly stemming from « entity » and « control » algmis classes. A « Control » design class
represents coordination, scheduling, transactiomd ether objects control, as also complex
processing that cannot be linked to a given « Med#ass.

The design model establishes an obvious mappingeleet design artifacts and implementation
constructs of used tools : « Views » are OCX adstand VB forms, « Models » are relational
tables (possibly with object/relational persisteace query service), «Controllers» are SQL stored
procedures or queries as also VB procedures. Taafgation of a design artifact uses the same
language as the implementation tool ; then operatiparameters, types, ... are specified in the
tools syntax.

Component diagrams are used to represent desigeeslaand their dependencies. Interaction
overview diagranfsare used to depict high-level control (referrimgdesign classes rather than
interaction diagrams).

24 Coding and unit testing

Once the design has been completed, it is implesdersts a product component. The
characteristics of that implementation depend entype of product component. Then, unit testing
of the product component is performed as appragriamit testing involves the testing of individual
software units or groups of related items priointegration of those items.

Coding uses relational tables; an ODBC-like driteeraccess to data sources; SQL queries and
stored procedures, VB procedures and OCX contrald@ms.

An environment must be established to enable uestirtg to take place. Testing units
incrementally promotes early detection of problemd can result in the early removal of defects.

2.5 Integration and integration testing

The purpose of Product Integration is to assentt@detoduct from the product components, ensure
that the product, as integrated, functions propeahyd deliver the product. A critical aspect of

product integration is the management of intermad axternal interfaces of the products and
product components to ensure compatibility amoegrterfaces [3].

Product integration can be conducted incrementalfing an iterative process of assembling
product components, testing them, and then assegnivlore product components. Testing consists
in verifying that a component conforms to its basehnd satisfies all specified requirements. Tests
define :

nominal input data,

foreseen operator’s actions,

expected results,

functions scheduling.

2 Novelty in UML 2.0

2.6 Softwaretesting

The purpose of Validation is to demonstrate thataaluct or product component fulfils its intended
use when placed in its intended environment [3].

Tests organization relies on validation plan, dtreed as follows :
- Validation is divided into operations.

- A validation operation consists in verifying a s#tfunctionalities, services, documents or
system constraints. An operation is structuredagess.

- A stage is decomposed in actions. Actions defimetfanalities to verify at each stage.

- Each action is constituted with trials. Trials shibwerify results conformance with
requirements.

3 Second approach : the CADM method with Oracle Designer

3.1 Designer and the associated CADM method

Oracle Designer is an extremely powerful integra@&$SE tool. It allows the whole building of
an Information System all along the phases of tfevare life cycle. To this end, it relies on a
unique common repository stored in an Oracle datba

The development approach relies on CADM (CASE Aggtion Development Method), a
waterfall process (Analysis->Design->Build->Implemi&Production)) by Paul Dorsey and Peter
Koletzke [4]. This approach is a derivative of tGase*Method by Richard Barker [1]. CADM
revise and expand the Case*Method in order to useigber. CADM does not describe how to
build systems or how to use Designer, but how ilwllmystems using Designer.

CADM belongs to the family of systemic methods. Tdeta and processing have first to be
separately modelized, and then coupled to constautnique and integrated system. The building
of the system gets through different abstractioele analysis, design and implementation.

3.2 Requirements capture

There is no requirements capture model in Desigbaring the preliminary analysis phaske
requirements capture materializes mostly in a @xtarm casually laid out or structured by a
requirements plan. During the general analysis @lthe requirements capture becomes elaborate,
detailed and reshaped through a function hieraacitdyan Entity/Relationship data model.

The requirements capture materializes as a funtiienarchy. Through this approach, the point of
view is the one of the system: what are the fumstithat the system must offer to fulfil the final
user needs ? In the use cases, the point of vidgheisne of the system users: what do the various
users expect from the system, what are their aims ?

We wish to use a “light” use case model in ordedéscribe this external point of view ; so we
use a short textual form : use cases summariesinfesy. It is then possible to transform
automatically an external point of view (use casetd an internal point of view (function
hierarchy), by relying on the organization of useses in terms of relations as well as functional
grouping in packages.

Below, an incomplete list of summaries related &etings.

N. | Actor | Goal Summary
1 |User Cancel participatioi person is removed from the meeting attendees’ lis
to a meeting
2 | User Create a meeting A new meeting is creatdditgi own characteristics as well|as
an available meeting room.
6 |User/ |[Delete a meeting The user/grantee deletes its ownéaxisting meeting.
Grantes Attendees’ participation to this meeting is careetll

10 [User Participate in [gA person is added to the meeting attendees’ liistibhe/she is
meeting available at the meeting time.

=)

17 | Granteg Update a meeting Some characteristics of an egistiom are updated. Updating

the capacity requires that meetings’ needs areagteed.

Depending on the complexity of the business arektlaa level of knowledge of the project team
and users, it may or may not be appropriate taidelan Entity-relationship Diagram (ERD) in this
phase; in this case, it is called a Strategy ERD iarshould identify the key entities and their
relationships to provide an overall perspectivéhefbusiness area data.

3.3 Analysis

If not still defined, the Entity-relationship Diagn (ERD) should be established. It is a
communication tool as well as an analysis tool. Ahalysis ERD attempts to capture as many of
the data-related business rules as possible iagrain. No consideration is given to performance or
to the feasibility of implementation of a rule. Tgeal is to represent business requirements. Rules
that cannot be implemented in the ERD as statéexas

The function hierarchy is the model proposed byi@es to analyse processing. Processing in the
information system are hierarchically divided imt@et of activities known as functions. Therefore
a function is a more or less important activity géhcan be automatized or manual. Some functions
can be shared, in that case they appear severd timthe hierarchy with a distinctive sign.

3.3.1 General analysis

The general analysis phageduces a function hierarchy and an Entity/Reteship Data model.

The ERD model for the agenda is given below.

MEETING
DATE
BEGINNING HOUR
* END HOUR
* KIND
* SUBJECT
* CANCELLATION
- take place in bring together
take partin
reserved for p PERSON
ACRONYM
ROOM PARTICIPANT is * SURNAME
ROOM NUMBER * REGISTRATION DATE T | * FIRSTNAME
* BUILDING 0 CANCELLATION DATE ' | * FUNCTION
o CAPACITY ~ PHOME
o EMAIL

Attention should be paid to domains. A domain isea of business validation rules, format
constraints, pre-defined values that apply to ao$eittributes. Domains are used to standadize
characteristics of attributes and are used latdddsigner generators.

For example, the kind of meetings can define a dorsiatic (all values are defined) or dynamic
(values can be added during the agenda use). Thaid®_KIND_ MEETINGis given below

— Allowable Dorain Y alues
equenc| Yalue [h Vabhreviati Meaning
1GM B3] General Mesting
2ICDMB CDOkB Computer Department banagement Board
JDIe DB Departemnent Improvement Board
4D Dk C Departmental b anagement Committee]
BOTH OTH Other

From the requirement list, we will get a functiaerarchy given below.

.
A3 :
AGENDA INFORMATION
SYSTEM
I & T o 1 &
ADA ASA : 1M
Agenda Database AGENDA SYSTEM MEETING MANMAGEMENT
Administration ADMINISTRATION 0
| [. 1 : [I 1
ADADT-CU-USR ASADM-CU-ROO ASADZ-CU-PER MM01-CU-MEE MMO2-CU-PAR MM03-R-MEE
Createfpdate database Create/Update Room CreateflUpdate Person Create/Update Meeting Participation/Cancellation Search for meelings by
user in meeting criteria

Little attempt should be made at this point to tdgnfunctions that will map to application
modules. The requirements capture is quite rarglycwired, so it is not possible to map the

functions and entities obtained throughout thisseh&ery often the function hierarchy and the E/R
model are used as elements of work and discussitim tiwe users to validate and approve
requirements.

3.3.2 Detailed analysis

During the detailed analysis pha#ige function hierarchy is refined and completetdities usages
are defined for every function as well as attrigutesages while cross-reference controls are
performed between data and functions. Let us tellenabout the important feature of the definition
of usages : which entities (tables) are used bgtians (modules) and how functions (modules) use
entities (tables) i.e. does the function (moduledie, Retrieve, Update, or Delete instances of the
entity (table) ? The CRUD matrix is a two-dimensibichart that summarizes usages between
functions (modules) and entities (tables). Definusgages is a part of security policy, because it
defines data access control inside application nesdu

As an example, the CRUD matrix for the Create/Updideeting is given below
Entity usages

E ritity Create || Retrieve | Update || Delete I]
MEETING
ROOM O I:| (I
Meeting attribute usages

Aftribute Inzert | Retrieve | Update | Mullify
BEGIMMING HOUR [~} (|
ICANCELLATION (]
IpaTE =] O
[END HOUR =] O
KIND [~] E|
SUBJECT [+] O
Room attribute usages

Attribute Inzert | Retieve | Update | Mullify
[BUILDING O EI (I
lcapaciTy N O | O
[FOOM NUMEBER: N 0| O

3.4 Design

3.4.1 Model transformation

At the beginning of the design phasenctions are mapped to the application moduleast tae
E/R model is mapped to a relational model. A modsletructured into modules components,
which can ben fine translated either Oracle 4GL constructs (FormsHK)lceither in a package of
Java classes, or a set of Web pages. In the PligrDgsase, the various design standards, including
GUI standards, coding standards, and design naoongentions are determined along with the
ways in which Designer will support these standards

3.4.2 Server Model Diagram

Server Model diagrams present a picture of variplugsical structures in the Oracle database
(e.g., tables, views). The logical relational mddelthe agenda is given below.

[EMEETING EPARTICIPANT
5 e s 5 B e

Ta’® MEE_ID

oK 7o MEE_ID

¥ A ROOM_MUMBER #% A ACRONYM
:i FAKIND X = REGISTRATION_DATE
SUBJECT
0 CANCELLATION_DATE
¥ MEETING_DATE AL TAS H o ?ER S =
£ PAR_PER_FK_
% BEGINMING_HOUR %1 PAR_MEE_FK_|
Y END_HOUR # PAR_PK
*E A §JCANCELLATION > PAR_PER_FK
FIMEE_ROO_FK | > PAR_MEE_FK
MEE_PK
2 MEE_MEE_UK T
> MEE_ROO_FK EI
o
i &
3 «
=L
O o
L
Ve
u“jl [HEPERSON
= i 22 3 e 2 S
#* ACRONYM
[EIROCM A
" Aols * A FIRST_MNAME
ﬁ|ﬂ£|€_il# ul ¢/| _| * A SURMAME
#3k A ROOM_MUMBER KEBA EFUNCTION
*EA BULDING nl PHONE
O s CAPACITY c A EMAIL
% RO0 K # PER_PK

3.4.3 Application modules

For each atomic function we obtain an applicatiadale.

@ AGENDA[]
|— [Reusable Module Components

Modules
AEADE-CU-F‘ER
Mb01-CLU-MEE
Ew MMO2-CL-PAR
Mh03-R-MEE

There is a traceability link between design modaled analysis functions.

3.4.4 Model refining

During the design phas#&eses modules and database objects are refimedoampleted: tables
usages as well as columns usages are defined dormeadule while cross-reference controls are
still performed. The Design phase includes two drazb phases :

- physical design of the database (there are alraactymplete ERD from the Analysis phase
and a conceptual design of the applications fraerRte-Design phase);

- physical design of applications : to specify inallehow the application will interface with
every field of the database.

As an example, the column display properties oMiEETING table are given below.

N I I:Dlumnsl Display Contrals |U| |

Column dizplay properties entered here will be used as default values
when the table iz used by a generated application.

Calurnn Prannpt Dizplay type width |Height
ROOM_MUMBER R oo humbe Text LI 10
MEETIMG_DATE teeting date Tent 10
BEGINMIMG_HOUR Beginning hour Tent g
END_HOUR End hour Tent g

KIMD Kind Fop list 4

SUBJECT Subject Text 20 4
CAMCELLATION Cancellation Check box 1

Security and access control is designed duringothese.

3.5 Coding and unit testing

The build phasevolves two areas : the database and applications

Database building is a straightforward SQL genematioperation, including physically
configuration and building a quantity of test datand/or data migration.

Application (module) building is a generative pgss, except for the design and implementation
of stored procedures (in this particular case, §resi facilitates modules editing, code generation
and ensures the consistency of the repository).uldogdeneration is an iterative process : generate
the modules and assess how different they are thendesired modules. Completing the internal
control system can take different approaches : ngakhange to the design and regenerating the
module; otherwise editing code modifications andgrening reverse engineering where possible.

3.5.1 Data View Model

Each module has his own data view model, like bdtmvwhe “Create/Update Meeting” module.

EE MEETIHG

= MEETING ROOM
MEE_ROO_FK

Py
E]BEGINMING_HOUR B A4 BUILDING
AN CANCELLATION Pog CARLCITY
EMND_HOUR
A HIND
MEETIMG _DATE
?8aMEE_ID
A\ ROOM_MUMBER,
A SUBJECT

3.5.2 Display View Model

Each module has his own display view model, likioweor the “Create/Update Meeting”
module.

Meeting management

EE Meeting

[akz Weeting date
[sk= Beginming hor
sk Encd hiour
[I=kind of mesting
= Cancellstion
eeting Room ———
[at= Rioom
= Building
[ats Capacity

[abz SLhject

3.6 Integration and integration testing

The application and the database cannot be testagletely separately. Both components must
be tested and tuned together. The unit testingepitre should proceed as follows : to generate the
application; to develop the application using dumtast data sets; to work with the application
until satisfied; to test applications and repodsg a database populated with a sample of realisti
data; to run the application using a productioedizest database that will ensure adequate
performance. The next step is performance tunimgchwvill not be discussed in this paper.

3.7 Softwaretesting

Some of the activities and control executed dueadier phases contribute significantly to the
success of the software testing phase, especi#tisnaal acceptance of the testing process with the
users (through a validation plan); the mappingegfuirements to functions and modules; column
level usages carefully peer-reviewed. One of thestmimportant features of CADM is that as
moving into the software testing phase, theredsraplete audit trail allowing to logically follow a
system requirement (gathered in the Analysis phaehe way through the completed system.
Theoretically, all that is left in the final teshgse is system-level performance tests and user
acceptance testing for the application. Howevernymphases are subject to changes and will
require change control, but the discussion is bth@scope of this paper.

4 Conclusion

Model-driven approaches to systems development niowdocus from programming language
(3GL or 4GL) to models. The key challenge of modieen development is in transforming
higher-level models to so-called platform-speaifiodels that can be used to generate code.

For the model-driven vision to become reality, soolust be able to support the automation of
model transformation. Many tools are now matui@s article has presented two approaches using
model transformation and code generation.

We believe that some further questions need tedieed.

The complexity of a system description can onlydescribed from different viewpoints, hence
through the use of multiple models. Models can &tsbe decomposed into other models. Thus,
models are used either in a horizontal mannerd(ifft system aspects) or in a vertical manner
(from higher to lower levels of abstraction) [8]hi$ 2-dimensional space squares problems and
tools complexity.

The two major approaches of system developmenttraresformation and elaboration. The
transformation makes an explicit distinction betwesbstraction levels (for example, between
conceptual and logical level [7]) and advocatesamsformation process between levels. The
elaboration approach is based on a unique levebdudcates a process by successive refinements
[6]. UML/UP moves progressively from elaborationttansformation (through the MDA), while
CADM/Designer relies on a transformation paradigmotigh an elaboration process. There is a
kind of confusion of genders, may be detrimentdésoning and mastering any approach.

% In the MDA terminology sense

5 References

[1] Richard Barker, Case Method: Tasks and Deliverables, Addison-Wesley Longman, 1990.
[2] Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley Longman, 2001.

[3] CMMI for Systems Engineering and Software Engineering (CMMI-SE/SW, V1.1) Continuous
Representation, http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr011.pdf

[4] Paul Dorsey and Peter Koletzke, Designer/2000 Handbook, Oracle Press, 1997.

[5] Ivar Jacobson, Grady Booch, James Rumbaugh, The Unified Software Development Process, Addison-
Wesley Longman, 1999

[6] James Rumbaugh and al., Object-oriented Modeling and Design, Prentice Hall, 1991
[7] Sally Schlaer and al., A deeper look at the transition from analysis to design, JOOP, Feb. 1993
[8] Shane Sendall and Wojtek Kozaczynski, Model Transformation — the Heart and Soul of Model-Driven

Software Development, IEEE Software, Special Issue on Model Driven Software Development,
Sept/Oct 2003

