An example of early scheduling analysis
with AADL

S. Rubini+, N. Tran+, M. Dridi+, V. Gaudel+, J. B oukhobza+,
A. Plantec+, C. Fotsing+, F. Singhoff+,
P. Dissaux*, J. Legrand*, A. Schach*

* Ellidiss Technologies
+ Lab-STICC UMR CNRS 6285/UBO

w » . .
@STI e g @ *EllldlSS
0 www.ellidiss.com

occidentale

About scheduling analysis

O Simplified models of functions : e.g. periodic task: processor
demand + deadline.

O Analysis: feasibility tests, simulations, formal methods, ...

- Em o wm o Wm o Wm0 w0

Taskname=T1 Period= 5; Capacity= 1, Deadline= 5; Start time= 0; Priority= 1; Cou=cpua

1. SChedU”ng | o—— | —— | —]
i i . Task name=T2 Period= 10; Capacity= 2; Desdling= 10; Start time= 0; Priority= 1; Cou=cpua
Simulation :
o — — S S b |
......... |

Taskname=T3 Period= 30; Capacity= 12; Deadling= 30; Start time= 0; Priority= 1; Cou=cpus

R=C+ Z

2. Schedulability tests
J'th(i){

le

3. Formal methods (e.g. model checking)

Not used as much we can expect &

2/34

1. About scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis

4.Example of AADL software modeling and
scheduling analysis

5.Example of AADL execution platform
modeling and scheduling analysis

6. Conclusion

3/34

About scheduling analysis and early
verification =

1 Motivations for early verification (source
AMRDEC):

0 70% of fault are introduced during the design step ; Only 3%
are found/solved. Cost : x1

O Unit test step: 20% of fault are introduced ; 16% are
found/solved. Cost : x5

U Integration test step: 10% of fault are introduced ; 50% are
found/solved. Cost : x16

1 Objective: increase the number of faults found at
design step!

4 Early verification: multiple verifications, including
expected performances, i.e deadlines can be met?

4/34

About scheduling analysis and early
verification

1. How and what to model, in order to achieve early verifications?

2. Scheduling analysis requires advanced skills:
O Numerous theoretical results: how to choose the right one ?
O Numerous assumptions for each result.
O What to model ? What to abstract ?

3. Engineers must be helped to use tools and methods
O With which design languages ?
O How to use scheduling tools ?

What is the role of an Architecture
Description Language?

5/34

1. About scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis

4.Example of AADL software modeling and
scheduling analysis

5.Example of AADL execution platform
modeling and scheduling analysis

6. Conclusion

6/34

Cheddar project : context and motivations

d Motivations : how to apply real-time scheduling
analysis at early steps?

0 Started in 2002 by U. of Brest, partnership with Ellidiss Tech. since
2008 (industrial support).

O Cheddar tool (open source, educational, research), AADLInspector
(commercial product)

O Modeling language : AADL as a driving line since 2004

O Other contributors : Télécom-Paris-Tech (L. Pautet, E. Borde),
ISAE (J. Hugues), Univ. Lisboa (J. Rufino), Univ. Sfax (B. Zalila),
IUC (C. Fotsing)

0 Main supports : Ellidiss Tech., Brittany council, Brest City,

Finistere council, Thales communication, EGIDE/Campus France
7/34

Cheddar project : context and
motivations

1. Propose, implement (early) scheduling analysis
(Cheddar), investigate how to use them with AADL
(AADLInspector)

2. What to abstract from software and execution
platform to achieve early scheduling analysis ?

O AADL (modeling language), Cheddar ADL (analysis language)
O Scalability? Accuracy? Sustainability? To enforce analysis.

3. How to automatically perform scheduling analysis?

4. How to achieve tools interoperability ?

g

g

Various involved tools: model editors (Stood), code generators
(Ocarina), WCET (aiT), system-C simulators, design exploration tools
(Ramses), scheduling analysis (Cheddar), tool chains (TASTE)

Relationships between tools, formalize data interoperability
8/34

1. About Scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis

4.Example of AADL software modeling and
scheduling analysis

5.Example of AADL execution platform
modeling and scheduling analysis

6. Conclusion

9/34

What to model to achieve early
scheduling analysis

1. Software side:
U Workload: release time, execution time
O Timing constraints
O Software entity interferences, examples:
O Tasks relationships/communication or synchronization : e.g. shared data, data flow
O Task containers : ARINC 653 partition, process
2. Hardware (should be called execution platform) si de:
O Available resources, e.g. computing capabilities
O Contention, interference, examples:
O Processing units, cache, memory bus, NoC, ...

3. Deployment

=> Architecture models

=> |t Is the role of an Architecture Description
Language to model those elements

10/34

AADL to the rescue?

O Why AADL helps:

O All required model elements are given for the analy sis
L Component categories: thread, data, processor
Feature categories: data access, data port, ...
UProperties: Deadline, Priority, WCET, Celiling Priority, ...
JAnnexes (e.g. behavior annex)

O AADL semantic: formal and natural language
UE.g. automata to define the concept of periodic thread
L Close to the real-time scheduling analysis methods

U Model engineering: reusability, several levels of abstraction

U Tools & chain tools: AADL as a pivot language (international
standard)

LQVERSA, OSATE, POLA/FIACRE/TINA, CARTS, MAST, Marzhin,
Cheddar, ... by Ocarina/AADLInspector/RAMSES/MOSART/OSATE ...

11/34

AADL to the rescue?

1 But AADL does not solve everything:
O AADL is a complex language

O How to ensure model elements are compliant with analysis
requirements/assumptions, sustainability, accuracy, ...

O Not a unigue AADL model for a given system to model

O Not a unigue mapping between a design model and an analysis
model

O Having AADL scheduling analysis tools is not enough too, how to
use them?

a...

12/34

1. About scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis

4.Example of AADL software modeling and
scheduling analysis

5.Example of AADL execution platform
modeling and scheduling analysis

6. Conclusion

13/34

AADL “design pattern” approach to automatically
perform scheduling analysis

1 Let assume we have to evaluate a given
architecture model in a design exploration
flow.

J Problem statement:

U Numerous schedulabllity tests ; how to choose the right
one?

L Numerous assumptions for each schedulability test ;
how to enforce them for a given model?

U How to automatically perform scheduling analysis ?

14/34

AADL “design pattern” approach to automatically
perform scheduling analysis

d Approach:

0 Define a set of AADL architectural design patterns of real-time
(critical) systems:

= models a typical thread communication or synchronization + a
typical execution platform

= set of constraints on entities/properties of the model.

0 For each design pattern, define schedulability tests that can be
applied according to their applicability assumptions.

0 Schedulability analysis of an AADL model:

1. Check compliancy of his model with one of the design-patterns ...
which then gives him which schedulability tests we can apply.

2. Perform schedulability verification.

15/34

Example : «kRavenscar» design pattern

0 Specification of various design patterns:
« Time-triggered : sampling data port communication between threads
« Ravenscar : PCP shared data communication between threads
 Queued buffer/ARINC653 : producer/consumer synchronization
 Black board/ARINC653 : readers/writers synchronization

« Compositions of design patterns.
L Ravenscar. used by TASTE/ESA

L Constraints defining “Ravenscar” to perform the analy sis with a given
schedulability test:

 Constraint 1 : all threads are periodic

 Constraint 2 : threads start at the same time

 Constraint 3 : shared data with PCP

« Constraint n : fixed preemptive priority scheduling + uniprocessor

16/34

Example : «kRavenscar» design pattern

d Properties related to processor component:

Preemptive _Scheduler . aadl bool ean applies to (processor);

Scheduling_Protocol
i nherit |ist of Supported Scheduling Protocols
appl i es to (virtual processor, processor);
-- RATE_MONOTONIC_PROTOCOL,
-- POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL, ..

17/34

Example : «kRavenscar» design pattern

 Properties related to threads/data components:

Compute Execution _Time :Time_Range

appl i es to (thread, subprogram, ...);
Deadline : inherit Time => Period applies to (thread, ...);
Period : i1nherit Time applies to (thread, ...);
Dispatch_Protocol : Supported_Dispatch_Protocols

applies to (thread);
-- Periodic, Sporadic, Timed, Hybrid, Aperiodic, Backg |
Priority : inherit aadlinteger applies to (thread, ..., data);
Concurrency_Control_Protocol

Supported _Concurrency_Control_Protocols applies to (date
-- None, PCP, |CPP, 18/34

Example : «Ravenscar» design pattern

thread implementation ordo_bus.impl
properties
Dispatch_Protocol => Periodic;

Compute_Execution_Time => 31 ms .. 50 ms;

Deadline => 250 ms;
Period => 250 ms;
end ordo_bus.impl;

data implementation black.impl
properties
Concurrency_Control_Protocol

=> PRIORITY_CEILING_PROTOCOL;

end blanck.impl;

process implementation Application.impl

subcomponents
camera : thread camera.impl;
ordo_bus : thread ordo_bus.impl;
target : data black.impl;

processor implementation leon2
properties

Scheduling_Protocol =>
POSIX1003_HPF_PROTOCOL,;

Preemptive_Scheduler => true;
end leon2;

system implementation finder
subcomponents
processl : process soft.impl;
cpul : processor leon2;

19/34

Design pattern compliancy verification

A real-time
system 86080 Platypus o
architecture (Tamaris | (o) S)@ELENE) (02 A5G (&x%) B DB)@ ¥ 7 x&) [(2)a 'RTPattems’ md 3]
T i q A
model |] HSimultaneous_Ar®| DATA;
DemoP I mc_TASKU. 29,29,0,1,0);
Expressy ‘. Lli— J #2=PERIODIC_TASK(3, 10, 10, 0, 1, 0);
express ® #1=PERIODIC_’ 3P§g.|0DIC-TASm‘ el]
mmhﬂd_w—otmnmr&"d ENUE S 4
| (Tamaris | o) E)@ELBNE) (A2 X005 A5) (587 D 8) /T8, [@) Simultaneoud)
<tamaris[- [@express2cheddar RULE-8imultaneous Release Time FOR (Peffedic Task);
DemoPlal ~@cheddar_data ACAL
Sxprace § @cheddar_data_ma nbpt : INTEGER := SIZEOF (Periodic_Task);
|~ @jcheddar_data e)
express t|v @RTPatterns p1 : Periodic_Task := Periodic_Task [1];
morphtre| - suFeasibility_tests END_LOCAL; [ibili
: platypus-| »sSimultaneous A WHERE N~ A feas.lblllty‘test
Evaluation settings | rswSimultaneous Re (ANl 1sice share the same relosss lneL’) applicability
result \ - Etlggrace r1:(nbpt<2)OR assumption
3 llr (SIZECOF (QUERY (p <* Periodic_Task |
) p.Release_Time <> p1.Release_Time)) =0
»5tiPeRod_qual_Deiy 8. RULE:;
w2 = 2 —_————

Top right part: real-time system architecture model

to verify.

Bottom right part. modeling of a feasibility test
applicability assumption.

Left part: result of the model compliancy analysis.

20/34

Example : «kRavenscar» design pattern

File View Wizards Tools ?
) & mlme 8|88 6

E AADL Inspector (C:/Users/singhoff/Desktop/data/public_html/ENS/UE_SEE/TP-AADL/CORRECTIONS/EXO2/exo2.aadl)

‘Eemﬂ 4
85 end mesure;
86
87 thread implementation mesure.Impl
88 end mesure.Impl;
89
90 thread meteo
91 features
92 fe : requires data access black.Impl:
93 properties
94 Dispatch_ Protocol => Periodic;
95 Period => 5000 ms;
96 Deadline => 5000 ms;
97 Compute_Execution Time => 50 ms .. 75 ms;
98 Priority => 4 :
99 end meteo;

100/ thread implementation meteo.Impl
101| end meteo.Impl:

105| process Application
106 end Application;

108/ process implementation Application.Impl
109/ subcomponents

110 ordo_bus : thread ordo_bus.Impl;
111 donnees : thread donnees.Impl;
112 pilotage : thread pilotage.Impl;
313 radio : thread radio.Impl:

114 camera : thread camera.Impl;

115 mesure : thread mesure.Impl;

116 meteo : thread meteo.Impl;

117 black : data black.Impl:
118/ connections

119 cxl : data access black -> donnees.fe;
120 cx2 : data access black -> pilotage.fe;
121 cx3 @ data access bhlack -> mesure. fe:

’ Static Analysis Schedulability |Prolog Facts| AT Scripts| Debug Tools|

S me s
cpul A
& processi
ordo_bus I
donnees - -
pilotage | —
radio o ——
camera e R,
mesure
meteo
black

B b

7] [ol

> O @& = 0 5 1015202530 354045 50 55 60 65 70 75 80 85 90 95100031

]

21/34

1. About scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis

4.Example of AADL software modeling and
scheduling analysis

5.Example of AADL execution platform
modeling and scheduling analysis

6. Conclusion

22/34

AADL Modeling of Multiprocessor Systems

 Problem statement:
1. Which design patterns for multiprocessor architectures?

2. From scheduling analysis point of view: how to model classical
multiprocessor scheduling analysis concepts:

partitioned scheduling or global scheduling
Various multiprocessor architectures?
With (or without) shared resources? cache unit, NoC?
Which analysis methods?
Scalabllity, accuracy and sustainability? To enforce analysis.

o ok W

1 Example of a SoC with two Leon4 cores, with L1 cache
and a multimedia application

23/34

Example: Design-Pattern for Partitioned
Scheduling

System : board::SoC_LEON4::Processor_Bus_System / unnamed Process : edgeDetection::System1::processing /
line
Corel Core2

Processor_Bus Processor_Bus rm . getline) sharp @) edge

N &) cameraline i inputLine { : inputLine
| line p» | i {
i i outputLine p» imageLine 4
DDR2_ctrl cameraCtrl ! | f

= AHB_Processor_Bus v

Processor_Bus <{|——

{JHemory—Bus4{] DDR2_Bus0 L
VGA_Framebuffer <d-aeqCir

image

{Hvemery—Bus¥|] DDR2_Busl

> Processor_Bus

VGA [

<
¢
v

Procesgor_Bus

SYSTEM IMPLEMENTATION product.impl

SUBCOMPONENTS
hard : SYSTEM soc_leon4::soc.asic_leon4;
bankO : MEMORY ram.ddr2;
bank2 : MEMORY ram.ddr2;
soft : PROCESS edgeDetection.impl;

PROPERTIES
actual_processor_binding => (REFERENCE(hard.Proc_System.Corel)) JAPPLIES TO soft.getLine:
actual_processor_binding => (REFERENCE(hard.Proc_System.Core2)) APPLIES TO soft.sharp:
actual_processor_binding => (REFERENCE(hard.Proc_System.Core2)) APPLIES TO soft.edge:
Scheduling_Protocol => (Rate_Monotonic_Protocol) applies to hard.corel;
Scheduling_Protocol => (Rate_Monotonic_Protocol) applies to hard.core2;

END product.impl;
24/34

Design exploration, I.e. task partitioning

AADL model before partitioning

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System))
APPLIES TO soft.getLine;

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System))
APPLIES TO soft.sharp;

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System))
APPLIES TO soft.edge;

Partitioning tools:
RAMSES,

AADL model after partitioning DL

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System)) ULl
APPLIES TO soft.getLine;

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System))
APPLIES TO soft.sharp:

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System))
APPLIES TO soft.edge;

Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel))
APPLIES TO soft.getLine;

Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel)) |
APPLIES TO soft.sharp;

Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Core2))
APPLIES TO soft.edge;

25/34

Example: Design-Pattern for Global
Scheduling

Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel),
REFERENCE (hard.Proc_System.Core2))
APPLIES TO soft.getLine;
Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel),
REFERENCE (hard.Proc_System.Core2))
APPLIES TO soft.sharp; Byt s S0 Lion. ¢
Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel),

ssor_Bus_System / unnamed

REFERENCE (hard.Proc_System.Core2))

APPLIES TO soft.edge;

DDR2_ctrl

Scheduling_Protocol => Rate_Monotonic_Protocol applies to hard.Corel; Pocesor s

Scheduling_Protocol => Rate_Monotonic_Protocol applies to hard.Core2; Ctr=wjoomses

<Memery-Busi{] DDR2_Busl

Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel),

REFERENCE (hard.Proc_System.Core2)) applies to soft;

26/34

Example of analysis with AADLInspector

0 AADL Inspector (C/Program Files (x86)/AADLInspector/Al-1.5/examples/multicore/app.aad = O X
File View Wizards Tools ?
CoER¥MBMAORNB
 10_Bus_Systems X processor_core * soc_leond X Processor_Bus_Syst ¥ Static Analysis Schedulability Prolog Facts Al Scripts Debug Tools
S5/4[SYSTEM IMPLEMENTATION product.impl o
575|SUBCOMPONENTS ——
576/ hard : SYSTEM soc_leon4::soc.asic_leor core] M— — —
577/ bank0 : MEMORY ram.ddr2;: B Oea_cor.e1 _--———
578/ bank2 : MEMORY ram.ddr2; getline — - T
579| soft : PROCESS edgeDetection.impl; core2 -
580/-— Use the Processor Placement Wizard tc = ‘ea_corez —_————————————————s e
581|-- Actual Processor_ Bindings sharp | T 2
582|PROPERTIES edge S I 49242 S
583/ allowed processor binding => (
584 REFERENCE (hard.Proc_System.Corel),
585 REFERENCE (hard.Proc_System.Core2))
586 APPLIES TO soft.getLine;
587 allowed_processor_binding => (
588 REFERENCE (hard.Proc_System.Corel), > < 55 |
589 REFERENCE (hard.Proc System.Corel2))
590 LPPLIES TO soft.sharp: [0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80885 90 95 1001051101151201251301351 ..
591 allowed processor binding => (corel S —
592 REFERENCE (hard.Proc_System.Corel), & ca_corel I
593 REFERENCE (hard.Proc_System.Core2)) getline m— e 1
594 APPLIES TO soft.edge; core2 — —
ggg i 0 Edit real time properties —XE .
597 MEMOK (yshers Priorities Processor Placement e —
S598END
599 ‘FFEF NF ST 6T
| |600 MEMOE| Name Actual Processor(s) |A¥Iowed Processor(s) 2
601[END 2| softgetline hard.proc_system.corel hard.proc_system.core1,hard.proc_system.core2
| 602 soft.sharp hard.proc_system.core1,hard.proc_system.core2
603|DATR |[softedge + [hard.proc_system.core1,hard.proc_system.core2 v
| |604[END 1 =
605 :
606 DATA
607[END {1
608
< >

Simulator Stop

27/34

Shared resource example: cache unit

O Problem statement: What to model to priority assignment?
U Thread code: to compute execution time and CFG

O Cache and memory configuration: to compute thread cache access
profile

O Scheduling parameters

O AADL: is able to model thread execution time, scheduling parameters,
cache and memory configuration

0 CFG? Behavior annex?
L Cache access profile (computed)? Properties? Behavior annex?

28/34

Shared resource example: cache unit

O Example: an example of user-defined property sets

PROCESSOR IMPLEMENTATION core.leoné
SUBCOMPONENTS

11 inst_cache

B

11 data cache

}:
END

: MEMORY cache.impl {

BYTE COUNT => 8192 Byte;

CACHE PROPERTIES:
CACHE PROPERTIES:
CACHE PROPERTIES:
CACHE PROPERTIES:
CACHE PROPERTIES:
CACHE_PROPERTIES:
CACHE PROPERTIES:
CACHE PROPERTIES:

:LINE SIZE => 32 Byte;

:CACHE TYPE => Instruction Cache;
:SET_ASSOCIATIVITY => Set Associative;

:WRITE POLICY => No Allocated Write Through;
:REPLACEMENT POLICY => LRR;

:CACHE_LEVEL => 1;

:SET SIZE => 2;

:CACHE_COHERENCY PROTOCOL => Private Invalid;

: MEMORY cache.impl {

BYTE COUNT => 4096 Byte;

CACHE PROPERTIES:
CACHE_PROPERTIES:
CACHE PROPERTIES:
CACHE PROPERTIES:
CACHE_PROPERTIES:
CACHE PROPERTIES:
CACHE PROPERTIES:
CACHE PROPERTIES:

core.leon44

:LINE_SIZE => 32 Byte;

:CACHE_TYPE => Data_Cache;

:SET_ASSOCIATIVITY => Set Associative;

:WRITE POLICY => No Allocated Write Through;
:REPLACEMENT_POLICY => LRR;

:CACHE LEVEL => 1;

:SET_SIZE => 2;

:CACHE_COHERENCY PROTOCOL => Private_ Invalid;

29/34

Cache/CRPD-Aware Priority Assignment
Algorithm

O In fixed priority preemptive scheduling context, tasks can preempt
and evict data of other tasks in the cache.

O Cache related preemption delay (CRPD): additional time to refill the
cache with the cache blocks evicted by the preemption.

1 Problem statement:;

1 CRPD may be high, non-negligible preemption cost (Pellizzoni et
al., 2007).

O No fixed priority assignment algorithm takes CRPD into account.

30/34

Cache/CRPD-Aware Priority Assignment
Algorithm

O Approach:

UExtend Audsley’s priority assignment algorithm (Audsley,
1995) to take into account CRPD.

L CRPD-aware priority assignment algorithms (CPA) that
assign priority to tasks and verify theirs schedulability.

Q5 algorithms with different levels of schedulability efficiency
(1) and complexity (2), scalability (3).

QdImplemented into Cheddar, Not available in AADLInspector
today

(1) 0.65 0.72 0.80 0.87
(2) Low Medium High
(3) 100 tasks 30 tasks 10 tasks

31/34

Scheduling Simulator with execution
platform shared resources

U Problem statement:
U How to model shared resources? Abstraction level?
U Tick accurate versus cycle accurate
U Take into account various parameters from different sources (tools)
U Theoretical issues (feasibility interval, sustainability, accuracy)

U Focus on instruction cache, NoC
U Not available in AADLInspector today

O Example with NoC:

U Dual Task and Flow Model (DTFM) : computes the flow model from a task
model, task mapping, precedence constraints on a NoC

U Identify/compute delays induced by Wormhole XY NoC and perform
scheduling analysis for AADL data port software design

U Evaluation with tick + cycle accurate simulator (SHOC SystemC NoC
simulator + Cheddar)

32/34

1. About scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis

4.Example of AADL software modeling and
scheduling analysis

5.Example of AADL execution platform
modeling and scheduling analysis

6. Conclusion

33/34

Conclusion

1 AADL & early scheduling analysis:
U Design-pattern approach

d Constraints on model entities (e.g. component categories, feature categories,
properties, annexes) to enforce analysis

L One model for a given intend

U Examples of both software and execution platform modeling/analysis
O Current work: multiprocessor architectures

U Evaluation, details => see publications

L Lessons learnt:

U AADL v2 is enough to model (most of) the software/execution platforms we
investigated

U Tools can interact: STOOD, RAMSES, AADLInspector, Ocarina, OSATE,
WCET tools, System-C simulators, Cheddar, ...

U Analysis features developed by the Lab-STICC: prototyped with Cheddar,
available for AADL with AADLInspector

34/34

