
An example of early scheduling analysis
with AADL

S. Rubini+, N. Tran+, M. Dridi+, V. Gaudel+, J. B oukhobza+,
A. Plantec+, C. Fotsing+, F. Singhoff+,
P. Dissaux*, J. Legrand*, A. Schach*

* Ellidiss Technologies
+ Lab-STICC UMR CNRS 6285/UBO

2/34

About scheduling analysis

� Simplified models of functions : e.g. periodic task: processor
demand + deadline.

� Analysis: feasibility tests, simulations, formal methods, …

1. Scheduling
Simulation :

2. Schedulability tests :

3. Formal methods (e.g. model checking)

Not used as much we can expect �

j
ihpj j

i
ii C

P

R
CR ⋅












+= ∑

∈)(

Summary

1.About scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis
4.Example of AADL software modeling and

scheduling analysis
5.Example of AADL execution platform

modeling and scheduling analysis
6.Conclusion

3/34

About scheduling analysis and early
verification

� Motivations for early verification (source
AMRDEC):
� 70% of fault are introduced during the design step ; Only 3%

are found/solved. Cost : x1
� Unit test step: 20% of fault are introduced ; 16% are

found/solved. Cost : x5
� Integration test step: 10% of fault are introduced ; 50% are

found/solved. Cost : x16

� Objective: increase the number of faults found at
design step!

� Early verification: multiple verifications, including
expected performances, i.e deadlines can be met?

4/34

5/34

About scheduling analysis and early
verification
1. How and what to model, in order to achieve early verifications?

2. Scheduling analysis requires advanced skills:
� Numerous theoretical results: how to choose the right one ?
� Numerous assumptions for each result.
� What to model ? What to abstract ?

3. Engineers must be helped to use tools and methods :
� With which design languages ?
� How to use scheduling tools ?

4. ...

What is the role of an Architecture
Description Language?

Summary

1.About scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis
4.Example of AADL software modeling and

scheduling analysis
5.Example of AADL execution platform

modeling and scheduling analysis
6.Conclusion

6/34

7/34

� Motivations : how to apply real-time scheduling
analysis at early steps?

� Started in 2002 by U. of Brest, partnership with Ellidiss Tech. since
2008 (industrial support).

� Cheddar tool (open source, educational, research), AADLInspector
(commercial product)

� Modeling language : AADL as a driving line since 2004

� Other contributors : Télécom-Paris-Tech (L. Pautet, E. Borde),
ISAE (J. Hugues), Univ. Lisboa (J. Rufino), Univ. Sfax (B. Zalila),
IUC (C. Fotsing)

� Main supports : Ellidiss Tech., Brittany council, Brest City,
Finistère council, Thalès communication, EGIDE/Campus France

Cheddar project : context and motivations

8/34

Cheddar project : context and
motivations

1. Propose, implement (early) scheduling analysis
(Cheddar), investigate how to use them with AADL
(AADLInspector)

2. What to abstract from software and execution
platform to achieve early scheduling analysis ?

� AADL (modeling language), Cheddar ADL (analysis language)
� Scalability? Accuracy? Sustainability? To enforce analysis.

3. How to automatically perform scheduling analysis?

4. How to achieve tools interoperability ?
� Various involved tools: model editors (Stood), code generators

(Ocarina), WCET (aiT), system-C simulators, design exploration tools
(Ramses), scheduling analysis (Cheddar), tool chains (TASTE)

� Relationships between tools, formalize data interoperability

Summary

1.About Scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis
4.Example of AADL software modeling and

scheduling analysis
5.Example of AADL execution platform

modeling and scheduling analysis
6.Conclusion

9/34

10/34

What to model to achieve early
scheduling analysis
1. Software side:

� Workload: release time, execution time

� Timing constraints

� Software entity interferences, examples:

� Tasks relationships/communication or synchronization : e.g. shared data, data flow

� Task containers : ARINC 653 partition, process

2. Hardware (should be called execution platform) si de:
� Available resources, e.g. computing capabilities
� Contention, interference, examples:

� Processing units, cache, memory bus, NoC, …

3. Deployment

=> Architecture models
=> It is the role of an Architecture Description

Language to model those elements

AADL to the rescue?
� Why AADL helps:

� All required model elements are given for the analy sis
�Component categories: thread, data, processor
�Feature categories: data access, data port, …
�Properties: Deadline, Priority, WCET, Ceiling Priority, …
�Annexes (e.g. behavior annex)

� AADL semantic: formal and natural language
�E.g. automata to define the concept of periodic thread
�Close to the real-time scheduling analysis methods

� Model engineering: reusability, several levels of abstraction
� Tools & chain tools: AADL as a pivot language (international

standard)
�VERSA, OSATE, POLA/FIACRE/TINA, CARTS, MAST, Marzhin,

Cheddar, … by Ocarina/AADLInspector/RAMSES/MOSART/OSATE …

11/34

AADL to the rescue?

� But AADL does not solve everything:
� AADL is a complex language
� How to ensure model elements are compliant with analysis

requirements/assumptions, sustainability, accuracy, …
� Not a unique AADL model for a given system to model
� Not a unique mapping between a design model and an analysis

model
� Having AADL scheduling analysis tools is not enough too, how to

use them?
� …

12/34

Summary

1.About scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis
4.Example of AADL software modeling and

scheduling analysis
5.Example of AADL execution platform

modeling and scheduling analysis
6.Conclusion

13/34

14/34

� Let assume we have to evaluate a given
architecture model in a design exploration
flow.

� Problem statement:
�Numerous schedulability tests ; how to choose the right

one?
�Numerous assumptions for each schedulability test ;

how to enforce them for a given model?
�How to automatically perform scheduling analysis ?

AADL “design pattern” approach to automatically
perform scheduling analysis

15/34

� Approach:
� Define a set of AADL architectural design patterns of real-time

(critical) systems:
= models a typical thread communication or synchronization + a

typical execution platform

= set of constraints on entities/properties of the model.

� For each design pattern, define schedulability tests that can be
applied according to their applicability assumptions.

� Schedulability analysis of an AADL model:
1. Check compliancy of his model with one of the design-patterns …

which then gives him which schedulability tests we can apply.

2. Perform schedulability verification.

AADL “design pattern” approach to automatically
perform scheduling analysis

16/34

Example : «Ravenscar» design pattern

� Specification of various design patterns:
• Time-triggered : sampling data port communication between threads
• Ravenscar : PCP shared data communication between threads
• Queued buffer/ARINC653 : producer/consumer synchronization
• Black board/ARINC653 : readers/writers synchronization
• …
• Compositions of design patterns.

� Ravenscar: used by TASTE/ESA

� Constraints defining “Ravenscar” to perform the analy sis with a given
schedulability test:
• Constraint 1 : all threads are periodic
• Constraint 2 : threads start at the same time
• Constraint 3 : shared data with PCP
• Constraint n : fixed preemptive priority scheduling + uniprocessor
• …

Example : «Ravenscar» design pattern

Preemptive_Scheduler : aadlboolean applies to (processor);

Scheduling_Protocol :
inherit list of Supported_Scheduling_Protocols
applies to (virtual processor, processor);

-- RATE_MONOTONIC_PROTOCOL,
-- POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL, ..

�Properties related to processor component:

17/34

Example : «Ravenscar» design pattern

Compute_Execution_Time : Time_Range
applies to (thread, subprogram, …);

Deadline : inherit Time => Period applies to (thread, …);

Period : inherit Time applies to (thread, …);

Dispatch_Protocol : Supported_Dispatch_Protocols
applies to (thread);

-- Periodic, Sporadic, Timed, Hybrid, Aperiodic, Backg round,
...

Priority : inherit aadlinteger applies to (thread, …, data);

Concurrency_Control_Protocol :
Supported_Concurrency_Control_Protocols applies to (data);

-- None, PCP, ICPP, …

� Properties related to threads/data components:

18/34

thread implementation ordo_bus.impl

properties

Dispatch_Protocol => Periodic;

Compute_Execution_Time => 31 ms .. 50 ms;

Deadline => 250 ms;

Period => 250 ms;

end ordo_bus.impl;

data implementation black.impl

properties

Concurrency_Control_Protocol

=> PRIORITY_CEILING_PROTOCOL;

end blanck.impl;

process implementation Application.impl
subcomponents

camera : thread camera.impl;
ordo_bus : thread ordo_bus.impl;
target : data black.impl;
. . .

processor implementation leon2

properties
Scheduling_Protocol =>

POSIX1003_HPF_PROTOCOL;

Preemptive_Scheduler => true;

end leon2;

system implementation finder
subcomponents

process1 : process soft.impl;
cpu1 : processor leon2;
. . .

Example : «Ravenscar» design pattern

19/34

20/34

� Top right part: real-time system architecture model
to verify.

� Bottom right part: modeling of a feasibility test
applicability assumption.

� Left part: result of the model compliancy analysis.

Design pattern compliancy verification

Example : «Ravenscar» design pattern

21/34

Summary

1.About scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis
4.Example of AADL software modeling and

scheduling analysis
5.Example of AADL execution platform

modeling and scheduling analysis
6.Conclusion

22/34

AADL Modeling of Multiprocessor Systems

� Problem statement:
1. Which design patterns for multiprocessor architectures?
2. From scheduling analysis point of view: how to model classical

multiprocessor scheduling analysis concepts:
partitioned scheduling or global scheduling

3. Various multiprocessor architectures?
4. With (or without) shared resources? cache unit, NoC?
5. Which analysis methods?
6. Scalability, accuracy and sustainability? To enforce analysis.

� Example of a SoC with two Leon4 cores, with L1 cache
and a multimedia application

23/34

Example: Design-Pattern for Partitioned
Scheduling

24/34

Design exploration, i.e. task partitioning

Partitioning tools:
RAMSES,

AADLInspector,
Cheddar

AADL model before partitioning

AADL model after partitioning

25/34

Example: Design-Pattern for Global
Scheduling

26/34

Example of analysis with AADLInspector

27/34

Shared resource example: cache unit

� Problem statement: What to model to priority assignment?
� Thread code: to compute execution time and CFG
� Cache and memory configuration: to compute thread cache access

profile
� Scheduling parameters

� AADL: is able to model thread execution time, scheduling parameters,
cache and memory configuration
� CFG? Behavior annex?
� Cache access profile (computed)? Properties? Behavior annex?

28/34

Shared resource example: cache unit

� Example: an example of user-defined property sets

29/34

� In fixed priority preemptive scheduling context, tasks can preempt
and evict data of other tasks in the cache.

� Cache related preemption delay (CRPD): additional time to refill the
cache with the cache blocks evicted by the preemption.

� Problem statement:
� CRPD may be high, non-negligible preemption cost (Pellizzoni et

al., 2007).
� No fixed priority assignment algorithm takes CRPD into account.

Cache/CRPD-Aware Priority Assignment
Algorithm

30/34

� Approach:
�Extend Audsley’s priority assignment algorithm (Audsley,

1995) to take into account CRPD.
�CRPD-aware priority assignment algorithms (CPA) that

assign priority to tasks and verify theirs schedulability.
�5 algorithms with different levels of schedulability efficiency

(1) and complexity (2), scalability (3).
�Implemented into Cheddar, Not available in AADLInspector

today

Cache/CRPD-Aware Priority Assignment
Algorithm

CPA-PT-Simplified CPA-PT CPA-Tree Exhaustive Search

(1) 0.65 0.72 0.80 0.87

(2) Low Medium High

(3) 100 tasks 30 tasks 10 tasks

31/34

� Problem statement:
� How to model shared resources? Abstraction level?
� Tick accurate versus cycle accurate
� Take into account various parameters from different sources (tools)
� Theoretical issues (feasibility interval, sustainability, accuracy)

� Focus on instruction cache, NoC
� Not available in AADLInspector today

� Example with NoC:
� Dual Task and Flow Model (DTFM) : computes the flow model from a task

model, task mapping, precedence constraints on a NoC
� Identify/compute delays induced by Wormhole XY NoC and perform

scheduling analysis for AADL data port software design
� Evaluation with tick + cycle accurate simulator (SHOC SystemC NoC

simulator + Cheddar)

Scheduling Simulator with execution
platform shared resources

32/34

Summary

1.About scheduling analysis for early
verification

2.Cheddar projet
3.AADL features to scheduling analysis
4.Example of AADL software modeling and

scheduling analysis
5.Example of AADL execution platform

modeling and scheduling analysis
6.Conclusion

33/34

Conclusion

� AADL & early scheduling analysis:
�Design-pattern approach
�Constraints on model entities (e.g. component categories, feature categories,

properties, annexes) to enforce analysis
�One model for a given intend
�Examples of both software and execution platform modeling/analysis
�Current work: multiprocessor architectures
�Evaluation, details => see publications

� Lessons learnt:
�AADL v2 is enough to model (most of) the software/execution platforms we

investigated
�Tools can interact: STOOD, RAMSES, AADLInspector, Ocarina, OSATE,

WCET tools, System-C simulators, Cheddar, …
�Analysis features developed by the Lab-STICC: prototyped with Cheddar,

available for AADL with AADLInspector

34/34

