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Abstract. Network security is a crucial issue of Software Defined Network-

ing (SDN). It is probably, one of the key features for the success and the future 

pervasion of the SDN technology. In this perspective, we propose a SDN reac-

tive stateful firewall. Our solution is integrated into the SDN architecture. The 

application filters TCP communications according to the network security poli-

cies. It records and processes the different states of connections and interprets 

their possible transitions into OpenFlow (OF) rules. The proposition uses a re-

active behavior in order to reduce the number of OpenFlow rules in the data 

plane devices and to mitigate some Denial of Service (DoS) attacks like SYN 

Flooding. The firewall processes the Finite State Machine of network protocols 

so as to withdraw useless traffic not corresponding to their transitions’ condi-

tions.  

In terms of cost efficiency, our proposal empowers the behavior of Open-

flow compatible devices to make them behaving like stateful firewalls. There-

fore, organizations do not need to spend money and resources on buying and 

maintaining conventional firewalls. Furthermore, we propose an orchestrator in 

order to spread and to reinforce security policies in the whole network with a 

fine grained strategy. It is thereupon able to secure the network by filtering the 

traffic related to an application, a node, a subnetwork connected to a data plane 

device, a sub SDN network connected to a controller, traffic between different 

links, etc. The deployment of rules of the firewall becomes flexible according to 

a holistic network view provided by the management plane. In addition, the so-

lution enlarges the security perimeter inside the network by securing accesses 

between its internal nodes. 

Keywords: Software Defined Networking, Stateful Firewall, Security, Orches-

tration, TCP 
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1 Introduction 

Classical networks are complex due to the lack of abstraction and due to the heter-

ogeneity of the network infrastructure. They are costly in terms of deployment, 

maintenance and reconfiguration. Also, their structure is statically defined which 

makes tedious their provisioning and upgrading. In this context, Software Defined 

Networking (SDN) proposes new network architecture [1] to face the challenges of 

legacy networks. It is based on the physical separation of the data plane and the con-

trol plane. 

The SDN architecture is organized in two layers. The data plane is responsible for 

forwarding the network traffic. It is organized into a set of SDN compatible devices 

connected to each other. The control plane embeds the network intelligence: the con-

troller and the network applications. It is responsible for network configuration and 

for programming the data plane devices. It offers also an interface to the network 

applications, to enable them manipulating the data plane layer. They interact with the 

controller by a Northbound API which allows them also to collect network data and to 

transfer their commands to the controller, via a specific interface. 

The controller interacts with the data plane via a standardized southbound API. 

OpenFlow [2] [3] is the most common interface. It enables the controller to install 

Openflow rules in the data plane layer and reprogram it through its flow tables. A 

flow table is a collection of flow entries. Each entry is a composition of matching 

fields, an instruction describing the way of executing a set of actions and many coun-

ters to keep traffic statistics. The data plane devices process the traffic according to 

their OpenFlow tables. The inward packets’ headers are compared to the matching 

fields. If there is a correspondence between them then the instruction is executed. 

More, the controller can add, modify and delete flow entries. It collects the counters 

and may receive encapsulated packets in Openflow format (packet-in) from the data 

plane devices to process them. 

Potentially, SDN will offer [4] advanced abstractions by adding visibility to net-

work applications and services and by simplifying network administration. It will 

enable transparent levels of scalability while elevating user experience. It will save 

costs of network provisioning, deployment and maintenance. Additionally, it will 

enhance network agility by easing network function virtualization and automating 

network configuration. 

SDN security is challenging and two sided [5]. On one side, SDN facilitates the 

development and the integration of flexible, efficient and controllable security solu-

tions. It empowers security applications by providing them a network holistic view.  

However, on the other side, it introduces new vulnerabilities into the network. Some 

of them can have major impacts on the network. For example, breaching the control-

ler will put the entire network beneath the attacker’s control. 

We propose a SDN stateful reactive firewall to protect the network from illicit ac-

cess. SDN firewalls offer many advantages compared to traditional firewalls. They 

are cost effective because they enable to elevate the data plane with firewalling be-

havior. Thus, legacy firewall devices are no longer needed. They are also flexible 

since the controller can at any time reconfigure them and deploy them in any place. 

They offer a management interface for administrators to ease their tasks. Also, they 



enable them to apply efficiently the network security policies in the data plane devic-

es. 

Many stateless SDN firewall had been proposed in the SDN realm. We are the first 

to propose an operational stateful SDN firewall. Moreover, our solution can also han-

dle stateless communications. 

The proposed firewall behaves in a reactive mode according to a generic algorithm. 

The later takes in entry the Finite State Machine (FSM) of any network protocol and 

produces the appropriate Firewall machine. In each transition, it incorporates as set of 

OF rules to express the corresponding action. We propose a first implementation to 

process TCP traffic. It receives connection synchronization packets, verifies their 

legitimacy against the security policies and validates them. The reactive behavior of 

the firewall saves flow table’s space in the data plane devices by reducing the number 

of the installed flow rules. Besides, the firewall processes the traffic according to the 

states of the connection. For each connection’s state, it receives only the traffic corre-

sponding to the transitions from this state. This mechanism enables to restrict the 

traffic to useful communications and to mitigate some DoS attacks like Syn flooding. 

Our solution is entirely integrated into the SDN architecture. We take full ad-

vantage of the SDN paradigm in terms of automatization, flexibility, abstraction and 

efficiency. In this regards, the firewall spreads dynamically the security policies ac-

cording to its global view and adapts its behavior whenever the topology is updated. It 

installs its rules in any OpenFlow compatible device and enables the later to behave 

according to the access control decisions alike a firewall. Besides, it enables the user 

to express its policies without worrying about their installation and maintenance in the 

network. In addition, it enables to save costs related to repetitive firewall maintenance 

and provisioning tasks.  

The architecture of the solution is as following. The application layer runs above 

the controller. It expresses the logic of the firewall. Below, in the data plane layer, we 

integrate a set of Openflow rules. These rules express the security policies according 

to OpenFlow. Besides the two conventional SDN layers, we propose a management 

level to orchestrate and reinforce the security policies. It enables the configuration of 

the firewall management and provides the administrator with a global view on the 

network. 

The remainder of this paper is organized as follow. In section 2, we describe the 

state of the art of SDN firewalls. In section 3, we present the architecture and algo-

rithm of our solution. We provide in section 4 the details of its implementation and 

the results of the performance tests. Finally, we conclude with some insights and re-

lated perspectives, in section 5. 

2 Related Work 

A firewall is a mechanism used to protect a network by filtering the traffic coming 

or going to an untrusted network [6]. It matches the packets’ headers of the untrusted 

network with a set of security policies, and it filters them in order to allow only the 

accepted traffic to enter the network. A security policy is a set of filtering rules ex-

pressing the security policies of the organization [7]. Each filtering rule gathers 3 

blocks. (1) A priority is used to determine the order of the rule’s execution. (2) Many 



matching fields enable the classification of a packet based on the values of its headers. 

(3) An action is applied to allow or deny the packet to its destination. There are main-

ly 3 types of firewalls [8] [9] [10]: stateless, stateful and application firewalls. 

Stateless firewalls neither process nor keep in memory the different states of a 

connection. They do not take into consideration dynamic network information such as 

port source negotiation. Therefore, they are vulnerable and can be breached. Stateful 

firewalls have been introduced to resolve the shortcomings of the previous technolo-

gy. They record in their memory the different states of a connection. They use, in 

addition, the attributes related to the states of a connection in their matching fields. 

Application firewalls are advanced stateful firewalls. They use application layer 

matching fields to classify packets and handle application level threats. 

There are several works in the field of SDN stateless firewalls. Most of these solu-

tions use Openflow rules to express the firewall security policies. The authors in [11] 

[12] [13] propose such SDN stateless firewalls. Their solutions forward to the control-

ler the unknown traffic for processing. The controller then, parses the packet headers 

and it matches their values with the policy rules. The administrator can install the 

firewall policy rules in the data plane using the Openflow protocol. In this case the 

controller interprets these policies into Openflow rules and sends them to the data 

plane devices.   

Besides, many SDN controllers propose their own version of stateless SDN fire-

wall [14]. These firewalls lack of user graphical interface and are connectionless. 

FleXam [15] [16] [17] is an extension of Openflow which integrates a stateless fire-

wall. It runs on the controller and provides a means to specify a set of flow filters on 

specified parts of a packet. Then, it applies the associated action to the packets.  

Moreover, some SDN frameworks have been proposed to implement stateless 

firewall functions. FRESCO [18] [19] offers the possibility to instantiate predefined 

security modules and connect them together into a SDN stateless firewall. Flowguard 

[20] [21] is another SDN framework. It provides means to build Openflow stateless 

firewall rules into the data plane and to verify flow rule policy violations. 

We have found in the literature one proposition [22] related to SDN stateful fire-

walls.  The solution is based on Openflow and adds three new tables. This firewall 

keeps a table in the controller to save the connections’ states and to synchronize the 

controller with the connection updates happened on the data plane tables. The other 

two tables are in the switch. One table manages the actual states of the connections 

and the other enables the data plane devices to process the next states. The limitation 

of this firewall relies on its excessive memory space consumption in the data plane 

and the volume of the generated traffic with the controller in order to keep it synchro-

nized. 

3 Firewall Design 

Our solution is integrated into the SDN architecture and uses Openflow as a way to 

express the security policies. It is stateful since it records the states of the connections, 

and processes the information related to these states to protect the network. The be-

havior of the firewall is reactive. It reacts to the traffic by filtering packets and ac-

cordingly installs the appropriate Openflow rules to manage their connection. 



 

Fig. 1. SDN Stateful firewall general architecture  

3.1 Firewall General Architecture 

Our solution (see Figure 1) is distributed into 3 levels. (1) The higher level offers 

orchestration services including a security policies management. (2) A stateful fire-

wall application is integrated on the top of the control layer. It is responsible for pro-

cessing the states of the connections and installing the Openflow rules and filters con-

nection requests according to the security rules. (3) An OpenFlow level expresses the 

security policies with OF rules which are installed in the data plane layer. 

The orchestrator offers a management interface so that the administrator can ex-

press the security policies and access to the network global view. The orchestrator can 

be considered as a federation point because it collects the security policies and propa-

gates them to the controllers. Also, it collects network data such as statistics and net-

work logs and keeps them into its database. Based on these data, the orchestrator con-

structs a holistic network view including the network topology. In order to reinforce 

and propagate the security policies, it uses an Access Table. It contains all the stateful 

and stateless security policies specified by the administrator. The orchestrator manag-

es this table to propagate the security policies into the network.  

The orchestrator can also configure the behavior of the Firewall Applications dy-

namically. When the latter receives a new configuration, it loads the corresponding 

module and stops the old one. Such configurations options are the behavior mode: 

stateful or stateless, the event mode: periodic (according to a timer) or instantaneous 

(according to a sensor) and the topology discovering mode: static (topology data pro-

vided by the user) or dynamic (by learning dynamically the topology). 

Each time a new controller joins the orchestrator, the latter sends to this controller 

the security policies that concern the part of the network it controls. These security 

policies are recorded in the Access table of the firewall application. Each controller is 

connected to the orchestrator by a Rest API. It enables any type of controller to inter-

act with our orchestrator. It ensures also the interactions between each controller and 

its instance of the Firewall Application.  
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When a new data plane device joins the controller, the firewall application produc-

es an OF universal rule and sends it to the new connected side. This rule matches with 

connection initialization packets and executes a forward to controller action. The 

firewall application also configures the data plane device by setting its table miss 

entry. In this case, all packets without a correspondence are dropped by default. 

Hence, each synchronization packet is sent to the controller which then transmits it to 

the firewall application. The latter then, verifies if the connection is legitimate or not 

using the Access table. In case the connection is rejected the packet is dropped.  

Each instance of the firewall application uses a state table to record the connec-

tions’ states and their attributes. This table enables the application to keep track of the 

connection, its state and its possible transitions to the next states. It is also used to 

create State OF rules in order to restrict the traffic only to the packets corresponding 

to the actual state and its possible transitions. This mechanism guaranties that the 

controller receives only the events triggering the transitions from the actual state of 

the Active connection. As an outcome, the Firewall Application reduces the load on 

the controller and mitigates some DoS attacks like Syn flooding. Because, we can 

restrict the number of synchronization requests for a connection, and clean the traffic 

from packets which are inconsistent with the connection state. For example, when a 

connection’s synchronization succeeds, the firewall denies any further synchroniza-

tion demand for it. 

The data plane devices store in their Openflow tables (see Figure 1) the security 

policies in the Openflow rule structure.  The universal rule matches with any syn-

chronization packet and executes a forward to the controller action. The Stateless 

rules express the stateless policies of the firewall. The Stateful rules correspond to the 

stateful behavior of the firewall Application and the tables miss entry to process un-

matched traffic. Except for synchronization packets, any other traffic is dropped in the 

data plane devices, if it is not corresponding to a legitimate connection state in the 

firewall application. Therefore it contributes to mitigate some DoS attacks since 

spoofed traffic will be directly dropped in the data plane devices. 

The data plane devices perform firewalling behaviors by running the above OF en-

tries. In the SDN architecture, each data plane device can be seen as a firewall from 

an external point of view. Thus, instead of using dedicated and specialized hardware, 

the SDN firewall elevates the behavior of the switch by reprogramming it according 

to the network security policies. 

3.2 Firewall Generic Algorithm 

The Class Firewall_General_Behaviour describes the generic algorithm of the 

firewall. The algorithm is thought in a way to process the Finite States Machine 

(FSM) of any communication protocol. It takes as entries the observed network 

events. Then, it verifies them with the preconditions of the actual FSM’s state. If they 

fulfill the preconditions, it applies the corresponding actions. The firewall adapts the 

FSM’s actions according to OF protocol by interpreting the original actions into OF 

rules.  Then, it transits to the new state.  

In our work we apply the generic algorithm to TCP communications. It has been 

instantiated with TCP states, transitions, their preconditions and actions. We also 



encapsulate some transitions’ actions with Openflow rules in order to comply with 

Openflow standard.  

 In the first step, the Orchestrator sends the Universal OF Rule and the settings of 

the table miss to all the Firewall Application instances. The following program code 

describes the structure of the universal OF Rule for TCP communications. 

def Universal_OF_Rule(): 

1. action = OF_ActionOutput (FORWARD_CONTROLLER) 
2. instruction = Instructions(OF_APPLY_ACTIONS, action) 
3. matching_fields = OF_Match(eth_type = IPv4, IP_PROTO = 

TCP, TCP_FLAGS = (SYN) ) 

4. OF_RULE = OF_FlowMod (match = matching_fields, command 
= ADD_RULE, priority = 1, instructions = instruction) 

5. send_msg (OF_RULE) 

Through the controller, the Firewall Application is constantly listening to a poten-

tial connection of new data plane devices. It reacts to the network events by propagat-

ing the received Universal Rule and the settings of the table miss. It also, installs the 

Openflow Stateful Rules when the state transitions are triggered. The Firewall Appli-

cation observes networks events according to two modes: 

1. Periodic Mode: in this mode (see the Firewall_Periodic_Mode Class) the firewall 

sets a timer to observe periodically new network events coming from the controller. 

When the timer reaches its threshold, it sends a request to the controller to check if 

any new data plane device has been connected or if any update happened in any 

known data plane device. Once an alteration is observed, the firewall generates the 

corresponding Openflow Universal Rule and the configuration of the table miss. 

Then, it installs them on the new data plane device.  

Class Firewall_Periodic_Mode : 

1. Read (threshold) 
2. While (true): 
3.  Sleep(start_time=0, end_time=threshold) 

4.  If (new_data-plane-device is connected): 

5.    Send(Universal_OF_Rule,new_data-plane-device) 

6.    Set(Table-miss(Drop),new_data-plane-device) 

2. Instantaneous Mode: The firewall (see the Firewall_Instantaneous_Mode Class) 

puts in place a sensor into the controller to collect new network events coming into 

it. When the sensor detects a new data plane device, it prompts the firewall immedi-

ately. Then, the firewall generates the corresponding Openflow Universal Rule with 

the settings of the table miss and installs them on the new data plane device. 

Class Firewall_Instantaneous_Mode : 

1. While (true):  
2.   Sleep(Waking_Event=Sensor_Notification) 

3.   If Sensor_Event == New_Data_Plane_Device_connected : 

4.     Send(Universal_OF_Rule,new_data-plane-device) 

5.     Set(Table-miss(Drop),new_data-plane-device) 



The firewall application uses one of the previous modes to update the data plane 

devices. When it receives a synchronization packet, it verifies its legitimacy. It checks 

in the access table if the connection is accepted or denied. If there is no specified poli-

cy for the connection in the table, it is denied by default. If the connection is accepted, 

an entry is created in the connection table. Then, the firewall verifies if the precondi-

tions in the packet activate any of the transitions from the actual connection’s state. If 

a transition is found, the firewall applies the corresponding actions associated with it, 

and then, it sends delete requests to the data plane device to remove the previous State 

Openflow rules. In the opposite case, the packet is dropped. Finally it updates the 

state in the state table and installs the new corresponding State OF rules. This mecha-

nism lessens the load of the traffic into the controller, because the data plane devices 

send only the packets that can prompt the available transitions. Any traffic outside 

this zone is automatically dropped in the data plane device. 

Class Firewall_General_Behaviour : 

1. If (FW_Mode==Periodic): 

2.  Firewall_Periodic_Mode(); 

3. Else: 

4.  Firewall_Instantaneous_Mode(); 

5. While (true): 

6.  C_Event=Collect(Controller_Events); 

7.  If (C_Event.Type==Packet-in) 

8.   Connection_Status =Check_Connection(C_Event) 

9.   If (Not Connection_Status) 

10.    Protocol_Data = C_Event.Protocol.Data 

10.    Legitimacy = Check_Legimacy(Protocol_Data) 

11.    If (Legitimacy): 

12.     Create_Connection(Protocol_Data,State_Table) 

13.    Else: 

14.     Return; 

16.  Else: #If Connection_Status == True 

17.     Continue; 

18.  Preconditions=Check_Preconditions(Protocol_Data) 

19.  If (Not C_Preconditions.Status): 

20.    Return; 

21.  Else: #If the preconditions allow any transition 

22.   C_Transition=Select_Transitions(C_Preconditions); 

23.   Apply(C_Transition.Actions); 

24.   Update(Connection_OF_Rules.Previous); 

25.   Install(Connection_OF_Rules.New); 

26.   Set(C_Transition.State,State_Table) 

27. Else: #If C_Event.Type is not Packet-in 

28.   Return; 



4 SDN Firewall Proof of concept 

We have implemented the firewall on the RYU [23] controller using the Python 

language. RYU is a software component SDN controller. It provides means to use 

multi-threading, to parse and serialize packets and to communicate with different data 

plane devices. We based our implementation on the instantiation of the generic algo-

rithm for TCP. Then, we deploy a testbed to measure the performance of the SDN 

firewall.  

4.1 Implementation 

The firewall API (see Figure 2) comprises two packages. The orchestrator package 

runs in the management layer. It offers a General user Interface to manage the securi-

ty policies and the OF rules. It allows adding, modifying and displaying the security 

policies and manages the static topology information. It offers to the administrator the 

possibility to configure many parameters of the firewall such as event modes, behav-

ior modes, etc. It keeps open sockets with all the Firewall Application instances to 

communicate with them. Through these canals, it sends management commands and 

collects network events. 

 

Fig. 2. Firewall API Class Diagram 

The core package (Firewall_Application) is running on the Ryu Controller. It is 

mainly formed of the following components. (1) The firewall Manager Module keeps 

an open socket with the orchestrator. It sends the data coming from the other modules 

to the orchestrator and vice versa. (2) The Interpreter module translates the Adminis-
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trator rules into Openflow rules according to the specification of the Openflow proto-

col. (3) The State_Table keeps the connection states, their properties and the firewall 

policies. (4) The Logger class collects information on the firewall components, connec-

tions data and traffic statistics. (5) The Static_Topology class provides data on the net-

work topology. (6) The Sentinel singleton is responsible for the interaction with the 

controller. It configures also the firewall components and instantiates them. (7)The 

Engine class expresses the behavior of the firewall in handling all the phases of a state-

ful connection and in processing the communication between the client and the server. 

4.2 Test & Results 

We deploy and configure our test environment (see Figure 3) in mininet [24]. The 

latter is a Python application to emulate virtual networks. Our mininet environment 

comprises 3 clients and a HTTP server. All are connected by their virtual network 

interfaces to a virtual switch (OVS [25]). Each client runs a Python script which gen-

erates a number of simultaneous queries to request data from the HTTP server.  The 

Ryu controller is remotely connected to the virtual switch via the virtual channel of-

fered by mininet. It offers an execution environment to the Firewall Application and 

ensures all its interactions with the virtual environment. Besides we run the orchestra-

tor and we connect it with a socket to the firewall Application. Our environment is 

running under Ubuntu 14, 64 bits, 2 GB of RAM and 2 processors at 2.8 GHz. The 

effective average latency between the controller and the switch is 0.25 ms, while the 

chosen bandwidth is 1 GB/s. 

                  

Fig. 3. SDN Firewall experiment Environment 

We perform two different experiments in order to show the impact of the firewall 

on the connections’ processing times and its effects on the user quality of service. In 

the first experiment (see Figure 3) we remove from the test bed the orchestrator and 

the firewall Application. Then, we activate the learning switch module of the Control-

ler so that it behaves like a learning switch. In this case, the virtual switch sends the 

unmatched traffic to the controller. The latter maintains dynamically a table associat-

ing each IP and Mac host addresses with an OVS port number. When the route is 
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found in the table, the controller installs the corresponding OF Rules to enable the 

switch to forward directly the traffic to its destination. In case it does not find a port 

for the unmatched packet, it broadcasts the packet to all the switch ports and it waits 

for an answer to add the new correspondence. 

 

Fig. 4. SDN Learning Switch experiment Environment 

In the second experiment (see Figure 3), we run the Firewall Application on the 

Controller. We connect to them the Orchestrator and we disable the learning switch 

module in order to let our firewall handling all the traffic.  

In the two cases, the clients generate the same number of simultaneous TCP con-

nections.  We started the tests with 10 simultaneous connections and ended at 1000 

simultaneous connections per second in a continuous and a constant interval of time. 

We perform in every experiment the following measurements: the average processing 

time of a packet-in and the average TCP connection time (the average time needed to 

process a complete TCP session). Furthermore, in the case of the experiment 2, we 

measured the maximum and minimum time of packet-in processing. 

We analyze the data with two objectives. The first one is the performance of the 

firewall compared with a controller without a firewall (the learning switch controller). 

In this case, we are interested in observing how much extra time the Firewall needs to 

process the packet-in and the connections. Performance results are presented in Fig-

ures 5 and 6. In the second case, we focus on the scalability of the firewall by observ-

ing the evolution of the packet-in processing time zones with the number of simulta-

neous connections. The results are presented in Figure 7. 

 

Fig. 5.Average processing times of packet-in 
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Figure 5 displays the Average packet-in processing time. We observe in both ex-

periments a rather constant average time. The average packet-in processing time of 

the Firewall stays between 0.9 ms and 0.7 ms. For the learning switch controller it is 

almost constant around 0.5 ms. The firewall takes 0.3 ms more than the learning 

switch from 10 to 250 simultaneous connections then this extra time decreases to 0.2 

ms till 1000 simultaneous connections. The time added by the firewall can be consid-

ered as inconsequential. It does not also inflate with the surge of the number of paral-

lel connections.  

 

Fig. 6.Average TCP connections processing times 

The results regarding the average TCP connections time are shown in Figure 6. In 

the case of the firewall the Average time is almost steady (around 3.3 ms) from 10 to 

100 simultaneous connections while for the learning switch the average time decreas-

es from 2.6 ms to 1.4 ms. From 100 simultaneous connections, the average time of the 

firewall increases till 250 simultaneous connections (5.4 ms) and then stays almost 

steady. While for the learning switch it continues in each step to increase reaching at 

the end a value of 4.7 ms. The processing time added by the firewall increases from 

0.6 ms to 3.8 ms then decreases to 0.9 ms. The extra time added by the firewall in this 

case is also insignificant and scale very well with the increase of the number of simul-

taneous connections. In terms of Quality of Experience (QoE) this time is indiscerni-

ble for the user and does not reach the TCP timeouts values.   

 

Fig. 7. Firewall Packet-in time values domain 

In Figure 7, we observe the amplitude of the Packet-in processing time values for 

the firewall. It is almost steady (around 1.8 ms) all along the growth of the simultane-



ous connections. The interval of the packet-in processing time values is as following. 

The maximum values are between 2 ms and 1.6 ms while the minimum values are 

between 0.2 ms and 0.01 ms. The maximum and minimum values are related to RYU 

multithreading processing. The Engine threads are created by the Sentinel and then 

are put in a queue. If the queue reaches an important size, the packet-in processing 

time increases to the maximum values.   

5 Conclusion 

We introduce in this paper the first SDN reactive firewall. We speak about the ad-

vantages of our solution in terms of flexibility, performance, security enforcement and 

effectiveness. We discuss about its conceptual foundations based on a general algo-

rithm specified for the TCP protocol. Finally, we show the details of its implementa-

tion, its deployment in a virtual environment and the results of the tests. 

We add to the SDN architecture an orchestrator to manage the network according 

to a holistic view. We also integrate a Firewall Application which enforces the securi-

ty policy. 

In terms of performance, our solution adds a negligible delay to process packet-in 

or TCP connections. Regarding scalability, we show that the time processing does not 

increase with the number of simultaneous connections. These results are encouraging 

and confirm the effectiveness of our proposition. 

We plan to consider the following enhancements in order to improve our solution. 

The first improvement will focus on the evaluation part. We will deploy the SDN test 

bed in a real environment. All the SDN elements will be hosted in dedicated powerful 

machines. We will push the firewall capabilities to their limits in order to measure the 

maximum number of connection that it can handle and the impacts on the network 

performances. In the second enhancement, we propose to develop a meta-firewall on 

the management plane. The orchestrator will instantiate it dynamically into different 

firewall applications and will place them in different SDN locations. This specializa-

tion will take into account the global view of the orchestrator, the spatial, historical 

and temporal context of the SDN network and the type of the network communication 

protocol.  
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