
HAL Id: hal-01333445
https://hal.univ-brest.fr/hal-01333445

Submitted on 21 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Software Defined Networking Reactive Stateful Firewall
Salah Eddine S. E. Zerkane, Philippe Le Parc, Frederic Cuppens, David Espes

To cite this version:
Salah Eddine S. E. Zerkane, Philippe Le Parc, Frederic Cuppens, David Espes. Software Defined
Networking Reactive Stateful Firewall. 31st IFIP International Information Security and Privacy
Conference (SEC), May 2016, Ghent, Belgium. pp.119-132, �10.1007/978-3-319-33630-5_9�. �hal-
01333445�

https://hal.univ-brest.fr/hal-01333445
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Software Defined Networking Reactive Stateful

Firewall

Salaheddine Zerkane1, David Espes
2
, Philippe Le Parc2, and Frederic Cuppens3

1IRT B<>COM, UBO, Télécom Bretagne,

35510 Cesson-Sévigné, France

Salaheddine.ZERKANE@b-com.com
2 IRT B<>COM, UBO,

29200 Brest, France

{David.Espes, Philippe.Le-Parc}@univ-brest.fr
3 IRT B<>COM, Télécom Bretagne,

35510 Cesson-Sévigné, France

Frederic.Cuppens@telecom-bretagne.eu

Abstract. Network security is a crucial issue of Software Defined Network-

ing (SDN). It is probably, one of the key features for the success and the future

pervasion of the SDN technology. In this perspective, we propose a SDN reac-

tive stateful firewall. Our solution is integrated into the SDN architecture. The

application filters TCP communications according to the network security poli-

cies. It records and processes the different states of connections and interprets

their possible transitions into OpenFlow (OF) rules. The proposition uses a re-

active behavior in order to reduce the number of OpenFlow rules in the data

plane devices and to mitigate some Denial of Service (DoS) attacks like SYN

Flooding. The firewall processes the Finite State Machine of network protocols

so as to withdraw useless traffic not corresponding to their transitions’ condi-

tions.

In terms of cost efficiency, our proposal empowers the behavior of Open-

flow compatible devices to make them behaving like stateful firewalls. There-

fore, organizations do not need to spend money and resources on buying and

maintaining conventional firewalls. Furthermore, we propose an orchestrator in

order to spread and to reinforce security policies in the whole network with a

fine grained strategy. It is thereupon able to secure the network by filtering the

traffic related to an application, a node, a subnetwork connected to a data plane

device, a sub SDN network connected to a controller, traffic between different

links, etc. The deployment of rules of the firewall becomes flexible according to

a holistic network view provided by the management plane. In addition, the so-

lution enlarges the security perimeter inside the network by securing accesses

between its internal nodes.

Keywords: Software Defined Networking, Stateful Firewall, Security, Orches-

tration, TCP

leparc
Rectangle

1 Introduction

Classical networks are complex due to the lack of abstraction and due to the heter-

ogeneity of the network infrastructure. They are costly in terms of deployment,

maintenance and reconfiguration. Also, their structure is statically defined which

makes tedious their provisioning and upgrading. In this context, Software Defined

Networking (SDN) proposes new network architecture [1] to face the challenges of

legacy networks. It is based on the physical separation of the data plane and the con-

trol plane.

The SDN architecture is organized in two layers. The data plane is responsible for

forwarding the network traffic. It is organized into a set of SDN compatible devices

connected to each other. The control plane embeds the network intelligence: the con-

troller and the network applications. It is responsible for network configuration and

for programming the data plane devices. It offers also an interface to the network

applications, to enable them manipulating the data plane layer. They interact with the

controller by a Northbound API which allows them also to collect network data and to

transfer their commands to the controller, via a specific interface.

The controller interacts with the data plane via a standardized southbound API.

OpenFlow [2] [3] is the most common interface. It enables the controller to install

Openflow rules in the data plane layer and reprogram it through its flow tables. A

flow table is a collection of flow entries. Each entry is a composition of matching

fields, an instruction describing the way of executing a set of actions and many coun-

ters to keep traffic statistics. The data plane devices process the traffic according to

their OpenFlow tables. The inward packets’ headers are compared to the matching

fields. If there is a correspondence between them then the instruction is executed.

More, the controller can add, modify and delete flow entries. It collects the counters

and may receive encapsulated packets in Openflow format (packet-in) from the data

plane devices to process them.

Potentially, SDN will offer [4] advanced abstractions by adding visibility to net-

work applications and services and by simplifying network administration. It will

enable transparent levels of scalability while elevating user experience. It will save

costs of network provisioning, deployment and maintenance. Additionally, it will

enhance network agility by easing network function virtualization and automating

network configuration.

SDN security is challenging and two sided [5]. On one side, SDN facilitates the

development and the integration of flexible, efficient and controllable security solu-

tions. It empowers security applications by providing them a network holistic view.

However, on the other side, it introduces new vulnerabilities into the network. Some

of them can have major impacts on the network. For example, breaching the control-

ler will put the entire network beneath the attacker’s control.

We propose a SDN stateful reactive firewall to protect the network from illicit ac-

cess. SDN firewalls offer many advantages compared to traditional firewalls. They

are cost effective because they enable to elevate the data plane with firewalling be-

havior. Thus, legacy firewall devices are no longer needed. They are also flexible

since the controller can at any time reconfigure them and deploy them in any place.

They offer a management interface for administrators to ease their tasks. Also, they

enable them to apply efficiently the network security policies in the data plane devic-

es.

Many stateless SDN firewall had been proposed in the SDN realm. We are the first

to propose an operational stateful SDN firewall. Moreover, our solution can also han-

dle stateless communications.

The proposed firewall behaves in a reactive mode according to a generic algorithm.

The later takes in entry the Finite State Machine (FSM) of any network protocol and

produces the appropriate Firewall machine. In each transition, it incorporates as set of

OF rules to express the corresponding action. We propose a first implementation to

process TCP traffic. It receives connection synchronization packets, verifies their

legitimacy against the security policies and validates them. The reactive behavior of

the firewall saves flow table’s space in the data plane devices by reducing the number

of the installed flow rules. Besides, the firewall processes the traffic according to the

states of the connection. For each connection’s state, it receives only the traffic corre-

sponding to the transitions from this state. This mechanism enables to restrict the

traffic to useful communications and to mitigate some DoS attacks like Syn flooding.

Our solution is entirely integrated into the SDN architecture. We take full ad-

vantage of the SDN paradigm in terms of automatization, flexibility, abstraction and

efficiency. In this regards, the firewall spreads dynamically the security policies ac-

cording to its global view and adapts its behavior whenever the topology is updated. It

installs its rules in any OpenFlow compatible device and enables the later to behave

according to the access control decisions alike a firewall. Besides, it enables the user

to express its policies without worrying about their installation and maintenance in the

network. In addition, it enables to save costs related to repetitive firewall maintenance

and provisioning tasks.

The architecture of the solution is as following. The application layer runs above

the controller. It expresses the logic of the firewall. Below, in the data plane layer, we

integrate a set of Openflow rules. These rules express the security policies according

to OpenFlow. Besides the two conventional SDN layers, we propose a management

level to orchestrate and reinforce the security policies. It enables the configuration of

the firewall management and provides the administrator with a global view on the

network.

The remainder of this paper is organized as follow. In section 2, we describe the

state of the art of SDN firewalls. In section 3, we present the architecture and algo-

rithm of our solution. We provide in section 4 the details of its implementation and

the results of the performance tests. Finally, we conclude with some insights and re-

lated perspectives, in section 5.

2 Related Work

A firewall is a mechanism used to protect a network by filtering the traffic coming

or going to an untrusted network [6]. It matches the packets’ headers of the untrusted

network with a set of security policies, and it filters them in order to allow only the

accepted traffic to enter the network. A security policy is a set of filtering rules ex-

pressing the security policies of the organization [7]. Each filtering rule gathers 3

blocks. (1) A priority is used to determine the order of the rule’s execution. (2) Many

matching fields enable the classification of a packet based on the values of its headers.

(3) An action is applied to allow or deny the packet to its destination. There are main-

ly 3 types of firewalls [8] [9] [10]: stateless, stateful and application firewalls.

Stateless firewalls neither process nor keep in memory the different states of a

connection. They do not take into consideration dynamic network information such as

port source negotiation. Therefore, they are vulnerable and can be breached. Stateful

firewalls have been introduced to resolve the shortcomings of the previous technolo-

gy. They record in their memory the different states of a connection. They use, in

addition, the attributes related to the states of a connection in their matching fields.

Application firewalls are advanced stateful firewalls. They use application layer

matching fields to classify packets and handle application level threats.

There are several works in the field of SDN stateless firewalls. Most of these solu-

tions use Openflow rules to express the firewall security policies. The authors in [11]

[12] [13] propose such SDN stateless firewalls. Their solutions forward to the control-

ler the unknown traffic for processing. The controller then, parses the packet headers

and it matches their values with the policy rules. The administrator can install the

firewall policy rules in the data plane using the Openflow protocol. In this case the

controller interprets these policies into Openflow rules and sends them to the data

plane devices.

Besides, many SDN controllers propose their own version of stateless SDN fire-

wall [14]. These firewalls lack of user graphical interface and are connectionless.

FleXam [15] [16] [17] is an extension of Openflow which integrates a stateless fire-

wall. It runs on the controller and provides a means to specify a set of flow filters on

specified parts of a packet. Then, it applies the associated action to the packets.

Moreover, some SDN frameworks have been proposed to implement stateless

firewall functions. FRESCO [18] [19] offers the possibility to instantiate predefined

security modules and connect them together into a SDN stateless firewall. Flowguard

[20] [21] is another SDN framework. It provides means to build Openflow stateless

firewall rules into the data plane and to verify flow rule policy violations.

We have found in the literature one proposition [22] related to SDN stateful fire-

walls. The solution is based on Openflow and adds three new tables. This firewall

keeps a table in the controller to save the connections’ states and to synchronize the

controller with the connection updates happened on the data plane tables. The other

two tables are in the switch. One table manages the actual states of the connections

and the other enables the data plane devices to process the next states. The limitation

of this firewall relies on its excessive memory space consumption in the data plane

and the volume of the generated traffic with the controller in order to keep it synchro-

nized.

3 Firewall Design

Our solution is integrated into the SDN architecture and uses Openflow as a way to

express the security policies. It is stateful since it records the states of the connections,

and processes the information related to these states to protect the network. The be-

havior of the firewall is reactive. It reacts to the traffic by filtering packets and ac-

cordingly installs the appropriate Openflow rules to manage their connection.

Fig. 1. SDN Stateful firewall general architecture

3.1 Firewall General Architecture

Our solution (see Figure 1) is distributed into 3 levels. (1) The higher level offers

orchestration services including a security policies management. (2) A stateful fire-

wall application is integrated on the top of the control layer. It is responsible for pro-

cessing the states of the connections and installing the Openflow rules and filters con-

nection requests according to the security rules. (3) An OpenFlow level expresses the

security policies with OF rules which are installed in the data plane layer.

The orchestrator offers a management interface so that the administrator can ex-

press the security policies and access to the network global view. The orchestrator can

be considered as a federation point because it collects the security policies and propa-

gates them to the controllers. Also, it collects network data such as statistics and net-

work logs and keeps them into its database. Based on these data, the orchestrator con-

structs a holistic network view including the network topology. In order to reinforce

and propagate the security policies, it uses an Access Table. It contains all the stateful

and stateless security policies specified by the administrator. The orchestrator manag-

es this table to propagate the security policies into the network.

The orchestrator can also configure the behavior of the Firewall Applications dy-

namically. When the latter receives a new configuration, it loads the corresponding

module and stops the old one. Such configurations options are the behavior mode:

stateful or stateless, the event mode: periodic (according to a timer) or instantaneous

(according to a sensor) and the topology discovering mode: static (topology data pro-

vided by the user) or dynamic (by learning dynamically the topology).

Each time a new controller joins the orchestrator, the latter sends to this controller

the security policies that concern the part of the network it controls. These security

policies are recorded in the Access table of the firewall application. Each controller is

connected to the orchestrator by a Rest API. It enables any type of controller to inter-

act with our orchestrator. It ensures also the interactions between each controller and

its instance of the Firewall Application.

REST API

Open Flow interface

Controller Controller

Orchestrator

Firewall
Application

Firewall
Application

Open Flow Table

Table miss

Stateless rules

Stateful rules

Orchestrator Access Table

IP Src IP Dst Port Src Port Dst ActionProto

State Table

IP Src IP Dst Port Src Port Dst NAckNSeq WSize State

Firewall Access Table

IP Src IP Dst Port Src Port Dst ActionProto

Universal rule

When a new data plane device joins the controller, the firewall application produc-

es an OF universal rule and sends it to the new connected side. This rule matches with

connection initialization packets and executes a forward to controller action. The

firewall application also configures the data plane device by setting its table miss

entry. In this case, all packets without a correspondence are dropped by default.

Hence, each synchronization packet is sent to the controller which then transmits it to

the firewall application. The latter then, verifies if the connection is legitimate or not

using the Access table. In case the connection is rejected the packet is dropped.

Each instance of the firewall application uses a state table to record the connec-

tions’ states and their attributes. This table enables the application to keep track of the

connection, its state and its possible transitions to the next states. It is also used to

create State OF rules in order to restrict the traffic only to the packets corresponding

to the actual state and its possible transitions. This mechanism guaranties that the

controller receives only the events triggering the transitions from the actual state of

the Active connection. As an outcome, the Firewall Application reduces the load on

the controller and mitigates some DoS attacks like Syn flooding. Because, we can

restrict the number of synchronization requests for a connection, and clean the traffic

from packets which are inconsistent with the connection state. For example, when a

connection’s synchronization succeeds, the firewall denies any further synchroniza-

tion demand for it.

The data plane devices store in their Openflow tables (see Figure 1) the security

policies in the Openflow rule structure. The universal rule matches with any syn-

chronization packet and executes a forward to the controller action. The Stateless

rules express the stateless policies of the firewall. The Stateful rules correspond to the

stateful behavior of the firewall Application and the tables miss entry to process un-

matched traffic. Except for synchronization packets, any other traffic is dropped in the

data plane devices, if it is not corresponding to a legitimate connection state in the

firewall application. Therefore it contributes to mitigate some DoS attacks since

spoofed traffic will be directly dropped in the data plane devices.

The data plane devices perform firewalling behaviors by running the above OF en-

tries. In the SDN architecture, each data plane device can be seen as a firewall from

an external point of view. Thus, instead of using dedicated and specialized hardware,

the SDN firewall elevates the behavior of the switch by reprogramming it according

to the network security policies.

3.2 Firewall Generic Algorithm

The Class Firewall_General_Behaviour describes the generic algorithm of the

firewall. The algorithm is thought in a way to process the Finite States Machine

(FSM) of any communication protocol. It takes as entries the observed network

events. Then, it verifies them with the preconditions of the actual FSM’s state. If they

fulfill the preconditions, it applies the corresponding actions. The firewall adapts the

FSM’s actions according to OF protocol by interpreting the original actions into OF

rules. Then, it transits to the new state.

In our work we apply the generic algorithm to TCP communications. It has been

instantiated with TCP states, transitions, their preconditions and actions. We also

encapsulate some transitions’ actions with Openflow rules in order to comply with

Openflow standard.

 In the first step, the Orchestrator sends the Universal OF Rule and the settings of

the table miss to all the Firewall Application instances. The following program code

describes the structure of the universal OF Rule for TCP communications.

def Universal_OF_Rule():

1. action = OF_ActionOutput (FORWARD_CONTROLLER)
2. instruction = Instructions(OF_APPLY_ACTIONS, action)
3. matching_fields = OF_Match(eth_type = IPv4, IP_PROTO =

TCP, TCP_FLAGS = (SYN))

4. OF_RULE = OF_FlowMod (match = matching_fields, command
= ADD_RULE, priority = 1, instructions = instruction)

5. send_msg (OF_RULE)

Through the controller, the Firewall Application is constantly listening to a poten-

tial connection of new data plane devices. It reacts to the network events by propagat-

ing the received Universal Rule and the settings of the table miss. It also, installs the

Openflow Stateful Rules when the state transitions are triggered. The Firewall Appli-

cation observes networks events according to two modes:

1. Periodic Mode: in this mode (see the Firewall_Periodic_Mode Class) the firewall

sets a timer to observe periodically new network events coming from the controller.

When the timer reaches its threshold, it sends a request to the controller to check if

any new data plane device has been connected or if any update happened in any

known data plane device. Once an alteration is observed, the firewall generates the

corresponding Openflow Universal Rule and the configuration of the table miss.

Then, it installs them on the new data plane device.

Class Firewall_Periodic_Mode :

1. Read (threshold)
2. While (true):
3. Sleep(start_time=0, end_time=threshold)

4. If (new_data-plane-device is connected):

5. Send(Universal_OF_Rule,new_data-plane-device)

6. Set(Table-miss(Drop),new_data-plane-device)

2. Instantaneous Mode: The firewall (see the Firewall_Instantaneous_Mode Class)

puts in place a sensor into the controller to collect new network events coming into

it. When the sensor detects a new data plane device, it prompts the firewall immedi-

ately. Then, the firewall generates the corresponding Openflow Universal Rule with

the settings of the table miss and installs them on the new data plane device.

Class Firewall_Instantaneous_Mode :

1. While (true):
2. Sleep(Waking_Event=Sensor_Notification)

3. If Sensor_Event == New_Data_Plane_Device_connected :

4. Send(Universal_OF_Rule,new_data-plane-device)

5. Set(Table-miss(Drop),new_data-plane-device)

The firewall application uses one of the previous modes to update the data plane

devices. When it receives a synchronization packet, it verifies its legitimacy. It checks

in the access table if the connection is accepted or denied. If there is no specified poli-

cy for the connection in the table, it is denied by default. If the connection is accepted,

an entry is created in the connection table. Then, the firewall verifies if the precondi-

tions in the packet activate any of the transitions from the actual connection’s state. If

a transition is found, the firewall applies the corresponding actions associated with it,

and then, it sends delete requests to the data plane device to remove the previous State

Openflow rules. In the opposite case, the packet is dropped. Finally it updates the

state in the state table and installs the new corresponding State OF rules. This mecha-

nism lessens the load of the traffic into the controller, because the data plane devices

send only the packets that can prompt the available transitions. Any traffic outside

this zone is automatically dropped in the data plane device.

Class Firewall_General_Behaviour :

1. If (FW_Mode==Periodic):

2. Firewall_Periodic_Mode();

3. Else:

4. Firewall_Instantaneous_Mode();

5. While (true):

6. C_Event=Collect(Controller_Events);

7. If (C_Event.Type==Packet-in)

8. Connection_Status =Check_Connection(C_Event)

9. If (Not Connection_Status)

10. Protocol_Data = C_Event.Protocol.Data

10. Legitimacy = Check_Legimacy(Protocol_Data)

11. If (Legitimacy):

12. Create_Connection(Protocol_Data,State_Table)

13. Else:

14. Return;

16. Else: #If Connection_Status == True

17. Continue;

18. Preconditions=Check_Preconditions(Protocol_Data)

19. If (Not C_Preconditions.Status):

20. Return;

21. Else: #If the preconditions allow any transition

22. C_Transition=Select_Transitions(C_Preconditions);

23. Apply(C_Transition.Actions);

24. Update(Connection_OF_Rules.Previous);

25. Install(Connection_OF_Rules.New);

26. Set(C_Transition.State,State_Table)

27. Else: #If C_Event.Type is not Packet-in

28. Return;

4 SDN Firewall Proof of concept

We have implemented the firewall on the RYU [23] controller using the Python

language. RYU is a software component SDN controller. It provides means to use

multi-threading, to parse and serialize packets and to communicate with different data

plane devices. We based our implementation on the instantiation of the generic algo-

rithm for TCP. Then, we deploy a testbed to measure the performance of the SDN

firewall.

4.1 Implementation

The firewall API (see Figure 2) comprises two packages. The orchestrator package

runs in the management layer. It offers a General user Interface to manage the securi-

ty policies and the OF rules. It allows adding, modifying and displaying the security

policies and manages the static topology information. It offers to the administrator the

possibility to configure many parameters of the firewall such as event modes, behav-

ior modes, etc. It keeps open sockets with all the Firewall Application instances to

communicate with them. Through these canals, it sends management commands and

collects network events.

Fig. 2. Firewall API Class Diagram

The core package (Firewall_Application) is running on the Ryu Controller. It is

mainly formed of the following components. (1) The firewall Manager Module keeps

an open socket with the orchestrator. It sends the data coming from the other modules

to the orchestrator and vice versa. (2) The Interpreter module translates the Adminis-

GUI

Topology Access_Table Log_Database

Orchestrator_Manager

Firewall_Manager Access_Table

Sentinel
Interpreter

Static_Topology

Logger

Engine

Dynamic_Topology

State_Table

trator rules into Openflow rules according to the specification of the Openflow proto-

col. (3) The State_Table keeps the connection states, their properties and the firewall

policies. (4) The Logger class collects information on the firewall components, connec-

tions data and traffic statistics. (5) The Static_Topology class provides data on the net-

work topology. (6) The Sentinel singleton is responsible for the interaction with the

controller. It configures also the firewall components and instantiates them. (7)The

Engine class expresses the behavior of the firewall in handling all the phases of a state-

ful connection and in processing the communication between the client and the server.

4.2 Test & Results

We deploy and configure our test environment (see Figure 3) in mininet [24]. The

latter is a Python application to emulate virtual networks. Our mininet environment

comprises 3 clients and a HTTP server. All are connected by their virtual network

interfaces to a virtual switch (OVS [25]). Each client runs a Python script which gen-

erates a number of simultaneous queries to request data from the HTTP server. The

Ryu controller is remotely connected to the virtual switch via the virtual channel of-

fered by mininet. It offers an execution environment to the Firewall Application and

ensures all its interactions with the virtual environment. Besides we run the orchestra-

tor and we connect it with a socket to the firewall Application. Our environment is

running under Ubuntu 14, 64 bits, 2 GB of RAM and 2 processors at 2.8 GHz. The

effective average latency between the controller and the switch is 0.25 ms, while the

chosen bandwidth is 1 GB/s.

Fig. 3. SDN Firewall experiment Environment

We perform two different experiments in order to show the impact of the firewall

on the connections’ processing times and its effects on the user quality of service. In

the first experiment (see Figure 3) we remove from the test bed the orchestrator and

the firewall Application. Then, we activate the learning switch module of the Control-

ler so that it behaves like a learning switch. In this case, the virtual switch sends the

unmatched traffic to the controller. The latter maintains dynamically a table associat-

ing each IP and Mac host addresses with an OVS port number. When the route is

Controller (Ryu)

Firewall
OF Rules

OpenVSwitch

Client 1

Client 2

Client 3

Server HTTP

Virtual Network interface

Python script to generate
parallel Wget connections

Mininet

Firewall Application

Orchestrator

Administrator

found in the table, the controller installs the corresponding OF Rules to enable the

switch to forward directly the traffic to its destination. In case it does not find a port

for the unmatched packet, it broadcasts the packet to all the switch ports and it waits

for an answer to add the new correspondence.

Fig. 4. SDN Learning Switch experiment Environment

In the second experiment (see Figure 3), we run the Firewall Application on the

Controller. We connect to them the Orchestrator and we disable the learning switch

module in order to let our firewall handling all the traffic.

In the two cases, the clients generate the same number of simultaneous TCP con-

nections. We started the tests with 10 simultaneous connections and ended at 1000

simultaneous connections per second in a continuous and a constant interval of time.

We perform in every experiment the following measurements: the average processing

time of a packet-in and the average TCP connection time (the average time needed to

process a complete TCP session). Furthermore, in the case of the experiment 2, we

measured the maximum and minimum time of packet-in processing.

We analyze the data with two objectives. The first one is the performance of the

firewall compared with a controller without a firewall (the learning switch controller).

In this case, we are interested in observing how much extra time the Firewall needs to

process the packet-in and the connections. Performance results are presented in Fig-

ures 5 and 6. In the second case, we focus on the scalability of the firewall by observ-

ing the evolution of the packet-in processing time zones with the number of simulta-

neous connections. The results are presented in Figure 7.

Fig. 5.Average processing times of packet-in

Learning switch

Controller (Ryu)

OF Rules

OpenVSwitch

Client 1

Client 2

Client 3

Server HTTP

Virtual Network interface

Python script to generate
parallel Wget connections

Mininet

Figure 5 displays the Average packet-in processing time. We observe in both ex-

periments a rather constant average time. The average packet-in processing time of

the Firewall stays between 0.9 ms and 0.7 ms. For the learning switch controller it is

almost constant around 0.5 ms. The firewall takes 0.3 ms more than the learning

switch from 10 to 250 simultaneous connections then this extra time decreases to 0.2

ms till 1000 simultaneous connections. The time added by the firewall can be consid-

ered as inconsequential. It does not also inflate with the surge of the number of paral-

lel connections.

Fig. 6.Average TCP connections processing times

The results regarding the average TCP connections time are shown in Figure 6. In

the case of the firewall the Average time is almost steady (around 3.3 ms) from 10 to

100 simultaneous connections while for the learning switch the average time decreas-

es from 2.6 ms to 1.4 ms. From 100 simultaneous connections, the average time of the

firewall increases till 250 simultaneous connections (5.4 ms) and then stays almost

steady. While for the learning switch it continues in each step to increase reaching at

the end a value of 4.7 ms. The processing time added by the firewall increases from

0.6 ms to 3.8 ms then decreases to 0.9 ms. The extra time added by the firewall in this

case is also insignificant and scale very well with the increase of the number of simul-

taneous connections. In terms of Quality of Experience (QoE) this time is indiscerni-

ble for the user and does not reach the TCP timeouts values.

Fig. 7. Firewall Packet-in time values domain

In Figure 7, we observe the amplitude of the Packet-in processing time values for

the firewall. It is almost steady (around 1.8 ms) all along the growth of the simultane-

ous connections. The interval of the packet-in processing time values is as following.

The maximum values are between 2 ms and 1.6 ms while the minimum values are

between 0.2 ms and 0.01 ms. The maximum and minimum values are related to RYU

multithreading processing. The Engine threads are created by the Sentinel and then

are put in a queue. If the queue reaches an important size, the packet-in processing

time increases to the maximum values.

5 Conclusion

We introduce in this paper the first SDN reactive firewall. We speak about the ad-

vantages of our solution in terms of flexibility, performance, security enforcement and

effectiveness. We discuss about its conceptual foundations based on a general algo-

rithm specified for the TCP protocol. Finally, we show the details of its implementa-

tion, its deployment in a virtual environment and the results of the tests.

We add to the SDN architecture an orchestrator to manage the network according

to a holistic view. We also integrate a Firewall Application which enforces the securi-

ty policy.

In terms of performance, our solution adds a negligible delay to process packet-in

or TCP connections. Regarding scalability, we show that the time processing does not

increase with the number of simultaneous connections. These results are encouraging

and confirm the effectiveness of our proposition.

We plan to consider the following enhancements in order to improve our solution.

The first improvement will focus on the evaluation part. We will deploy the SDN test

bed in a real environment. All the SDN elements will be hosted in dedicated powerful

machines. We will push the firewall capabilities to their limits in order to measure the

maximum number of connection that it can handle and the impacts on the network

performances. In the second enhancement, we propose to develop a meta-firewall on

the management plane. The orchestrator will instantiate it dynamically into different

firewall applications and will place them in different SDN locations. This specializa-

tion will take into account the global view of the orchestrator, the spatial, historical

and temporal context of the SDN network and the type of the network communication

protocol.

6 References

1. D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky et S. Uhlig,

Software-Defined Networking: A Comprehensive Survey, Proceedings of the IEEE, pp.

14-76, 2014.

2. The Open Networking Foundation, OpenFlow Switch Specification, 2014.

3. A. Lara, A. Kolasani and B. Ramamurthy, Network Innovation using OpenFlow: A Sur-

vey, IEEE communications surveys & tutorials, vol. 16, no. 1, pp. 493-512, 2014.

4. D. M. Jammal, T. Singh, A. Shami, R. Asal and Y. Li, Software-Defined Networking State

of the Art and Research Challenges, Journal of Computer Networks, pp. 1-24, 2014.

5. L. Schehlmann, S. Abt and H. Baier, Blessing or curse? Revisiting security aspects of

Software-Defined Networking, 10th International Conference on Network and Service

Management, pp. 382-387, 2014.

6. R. K. Sharma, H. K. Kalita and B. Issac, Different Firewall Techniques: A Survey, 5th

ICCCNT, 2014.

7. S. Zeidan and Z. Trabelsi, A Survey on Firewall’s Early Packet Rejection, International

Conference on Innovation and Information Technology, pp. 203-208, 2011.

8. H. Bidgoli, Packet filtering and stateful firewalls, Handbook of Information Security,

Threats, Vulnerabilities, Prevention, Detection, and Management, New Jersey, John Wiley

& Sons, 2006, pp. 526-536.

9. Z. Trabelsi, Teaching Stateless and Stateful Firewall Packet Filtering : A Hands-on Ap-

proach,16th Colloquium for Information Systems Security Education, pp. 95-102, 2012.

10. F. Guo and T.-c. Chiueh, Traffic Analysis: From Stateful Firewall to Network Intrusion

Detection System, RPE report, New York, 2004.

11. J. Collings and J. Liu, An OpenFlow-based Prototype of SDN-Oriented Stateful Hardware

Firewalls, in IEEE 22nd International Conference on Network Protocols, Chapel Hill,

2014.

12. J. G. Pena and W. E. Yu, Development of a Distributed Firewall Using Software Defined

Networking Technology, 4th IEEE International Conference on Information Science and

Technology , pp. 449-452, 2014.

13. C. Yoon, T. Park, S. Lee, H. Kang, S. Shin and Z. Zhang, Enabling security functions with

SDN: A feasibility study, Computer Networks, vol. 85, no. 1389-1286, pp. 19-35, 2015.

14. M. Suh, S. H. Park, B. Lee and S. Yang, Building Firewall over the Software-Defined

Network Controller, The 16th International Conference on Advanced Communications

Technology, pp. 744-748, 2014.

15. S. Shirali-Shahreza and Y. Ganjali, Efficient Implementation of Security Applications in

OpenFlow Controller with FleXam, 21st Annual Symposium on High-Performance Inter-

connects, pp. 49-54, 2013.

16. S. Shirali-Shahreza and Y. Ganjali, FleXam: Flexible Sampling Extension for Monitoring

and Security Applications in OpenFlow, Proceedings of the Second ACM SIGCOMM

Workshop on Hot Topics in Software Defined Networking, pp. 167-168, 2013.

17. S. Shirali-Shahreza and Y. Ganjali, Empowering Software Defined Network Control-

ler,IEEE International Conference on Communication, pp. 1335-1339, 2013.

18. S. Shin, P. Porras, V. Yegneswaran and G. Gu, A Framework For Integrating Security

Services into Software-Defined Networks,2013 Open Networking Summit, 2013.

19. S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu and M. Tyson, FRESCO: Modular

Composable Security Services for Software-Defined Networks, Network and Distributed

System Security Symposium, pp. 1-16, 2013.

20. H. Hu, W. Han, G.-J. Ahn and Z. Zhao, Towards a Reliable SDN Firewall, Open Network-

ing Summit, 2014.

21. H. Hu, W. Han, G.-J. Ahn and Z. Zhao, FLOWGUARD: Building Robust Firewalls for

Software-Defined Networks, HotSDN’14, 2014.

22. W. Juan, W. Jiang, C. Shiya, J. Hongyang and K. Qianglong, SDN (self-defending net-

work) firewall state detecting method and system based on OpenFlow protocol. China Pa-

tent CN 104104561 A, 11 August 2014.

23. RYU Team, component-based software defined networking framework, [Online]. Availa-

ble: http://osrg.github.io/ryu/. [Accessed 27 August 2015].

24. Heller, B. Reproducible network research with high-fidelity emulation. Doctoral Thesis.

Stanford University. 2013.

25. OpenVSwitch, [Online]. Available: http://openvswitch.org/. [Accessed 02 September

2015].

