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Abstract—Smart cities and smart homes are booming fields
of development of pervasive systems. With the high stakes these
systems have to manage, and their sheer complexity, anomalies
have to be considered. In these complex systems are many
connected components with computing capacities. They can
manage anomalies, even if partially, and can act as some kind
of expert systems. These expert systems can be relied upon to
provide anomaly management.

The complexity to manage generic expert systems brings us to
suggest another approach. In this paper, the N-layers is discussed.
It layers the various existing expert systems to organize them
as a more generic expert system. It also aims to correct some
difficulties to develop and integrate generic expert systems into
various scales complex systems, such as smart cities or smart
homes.

I. INTRODUCTION

Pervasive systems, as smart cities (SC) or smart homes
(SH), are more and more relied upon. These systems provide
efficient usage of their infrastructure, to serve best their users.
Among the functionalities that target SH and SC, one can
cite the ambient assisted living (AAL) or the smart grid
(SG). In AAL, the users’ living standard is improved via
assisting technology. In SG, the overall resource consumption
and distribution is optimized to lessen wastes.

No matter its origin –be it attrition, design, malevolence, and
so on–, an anomaly may occur in any system. Such occurrence
is more likely the more the system is complex. More so if the
stakes are high, as is the case when daily life may be affected.
Smart cities and smart homes are no exception. These complex
systems are made of many connected components, some of
which are highly specific, while others are more generic.

It is sensible to consider that among the various components,
there are expert systems (ES). These are the intelligence
provider of the system. From the information they gather,
they analyze the world to provide appropriated reactions of
the system. A perfect expert system would offer: a wide
scope; an easy maintenance; and a high reliability. Although
there are steady improvement, the choice and configuration
of an expert system boils down to the selection of at most
two properties.

When an anomaly occurs, a few steps are commonly done.
Their exact number and precise ordering may change, but the
broad idea remains the same.

1) Discovery: the anomaly must be detected, and then
reported, to alert the system of its occurrence.

2) Reasoning: information about the anomaly must be gath-
ered, and analyzed to improve the system’s knowledge
of the situation.

3) Termination: with enough knowledge, a solution to
improve the overall situation can be tried. Of its outcome
depend whether the anomaly is closed, or left open.

To ease this management, it may be useful to use a generic,
anomaly related ontology [4], [10], [11]. Thus, the relevant
information can be properly formulated and transmitted.

Fig. 1. The various kinds of anomaly

Once the anomaly is declared: it is detected and the system
is alerted; it has to be analyzed in order to be properly
resolved. Throughout literature, the anomaly is related to a
few types, each with their specific solutions. Usually, the
distinction (figure 1) is made [15] between hardware related
anomalies, software related anomalies, network related anoma-
lies, and functioning related anomalies.

Hardware and software anomalies are mainly related to
“WHAT in the system” is affected, i.e.: the affected com-
ponents. Network and function anomalies are more related
to “HOW the system” is affected, i.e.: the relation between
components.

In addition to these, any user oriented technology (i.e.:
SH and AAL) requires anomalies related to the users’ daily
activities [12]. Such anomalies are centered on the user.978-1-5090-0284-9/16/$31.00 c©2016 IEEE



Therefore, they may not be related to which component is
affected, nor how is affected the system. In fact, the system
and its components may as well be perfectly fine.

No matter the anomaly, when it occurs, it has to be managed
and resolved. This is the role of the expert system, as discussed
in section II.To improve their usage, out proposal, the N-
Layers, is detailed in section III. A test implementation is
described in section IV.

II. EXPERT SYSTEM

Expert systems (ES) are products of the artificial intelli-
gence research. These are components of a system, built to
resolve certain situations. Initially, the role of expert systems
is to provide feedback analysis on large quantity of data.

In smart cities, smart homes and similar fields, it is sensible
to expect that many ES are scattered inside the infrastructure.
Each one of them may be unique and required. But there are
many chances that many ES are redundant one toward another.

Fig. 2. Schematic description of expert systems

These decision makers/helpers can be perceived as black-
boxes, more or less specific to a field. They receive a context
–a situation description– as input and emit a decision as output.
Though the focus is mostly on the reasoner part, a complete
expert system is built (figure 2) from an aggregator, a reasoner,
a database and a publisher.

The aggregator receives various information –from the
“context”– and produces a meaningful input for the reasoner.
Depending on the peculiarity of the reasoner, the aggregator
might process more or less its inputs. It may as well store
temporarily the input context.

The database, or knowledge base, stores the “expert’s
knowledge” used by the reasoner. Depending on the expert
system, it may be fused within the reasoner, or be an inert
database. It should not be mistaken with the configuration.
The configuration relates to the expert system’s state, and is
used before its usage, by setting parameters in the aggregator,

the publisher. . . The database is relevant during the usage of
the expert systems, and relates to the context processing.

The reasoner is, with the knowledge base, the core of the
expert system. It is the reasoner that produces, from the context
and its database, outputs information.

The publisher is almost the mirror of the aggregator. From
the output of the reasoner, it publishes the relevant messages.
The improved situation description is added to the context,
while the required action, is sent to the relevant components.
For example, if the reasoner’s output is that there is an
anomaly, the publisher emits an appropriated alert.

The various parts of an expert system are tightly coupled.
They are either deployed as a whole; or the reasoner and the
database are provided, and the publisher and aggregator have
to be built ad-hoc.

All things being equal, an expert system is a compromise
between:

• its upkeep, the ease of maintenance (update, deploy. . . );
• its reliability, the trust the system can give to its re-

sponses;
• its scope, whether it is generic or specific to a given field.

An expert system may be made to change “on-the-fly” this
compromise. But for most expert systems, the reliability and
the scope is directly linked to the knowledge base, whereas
the upkeep is linked to the cost of changes the knowledge base.

Historically, the first kinds of ES –the reasoners based on
rules, models and cases– are imitation of human experts’
strategies, hence the name. Each follows an iterative reasoning
process explicated by experts in a given field. More recent
approaches move away from these explicit processes to focus
on the modelization of either the field, or the expert reasoning.

Basically, rule-based reasoners (RBR) and model-based
reasoners (MBR) are similar. Once received, the context is
matched against each rule’s condition or requirement. The
items whose rules/requirement are selected have their actions
triggered [9], [16]. RBR use set of “if-then” rules as knowl-
edge base. Whereas MBR use set of “for-requires” rules as
knowledge base.

RBR and MBR each expresses a different condition-action
relation. This boils down to the expression of models as logical
rules (RBR) or set of properties (MBR). In RBR, it is easier to
express one condition for many actions, whereas in MBR, it
is more pragmatic to express many conditions for one action.

Case-based reasoners (CBR) use set of “situation-response”
cases as knowledge base. The context is matched against each
case’s situation. The more relevant cases are selected, and their
responses mixed to produce what is expected to be the correct
solution [8], [14]. CBR relies on the idea that similar situations
expect similar responses, and that the similarity at both ends
can be automatically computed and produced.

Bayesian networks (BN) (and Markov networks) can be
used for the modelization of the knowledge of the field [6],
[13]. In such networks, the knowledge is not stored as fac-
tual, definitive rules. It is expressed as probabilistic relations



between properties. Reasoners can rely on such networks to
try and predict evolution of the situation.

Neural networks (NN), as BN, tend to fuse their database
with their reasoner [3], [5], [17]. In NN, the reasoner does
not emulate conscious, human reasoning process, but tries to
emulate the brain’s knowledge processing.

On the whole, expert systems are well adapted to specific
cases management. Still, each has some flaws yet to overcome.
As effective as they are, ES lack the genericity and the
plasticity of a human being. They may be more efficient than
a human in their specific field. But their upkeep is related
to the complexity (size and peculiarity of the cases) of their
database1. Moreover, each technology of ES has its own
strength, and is more suited for certain aspects of problematic.

RBR and MBR suffer from the complexity to improve their
knowledge base. Easy to define for a small knowledge set, each
addition is trickier than the previous one; new knowledge may
interfere with existing, validated knowledge. Hence, conflict
resolution may require human intervention, as the meaning
and worth of the rules rely on human metrics.

CBR is less impacted, but may still suffer from a “too big”
case base. The more complex and the more cases there are, the
more time is required to select the relevant cases. Moreover the
similarity cases and the responses fusing algorithms have to be
written, and are often ad-hoc. Worse, some cases with similar
situation may require contradictory responses. Algorithms
have to be adapted if such a possibility is expected to arise.

NN may be perceived as an “easy to configure solution”:
sending in inputs and outputs, until the desired outputs are
reached. A special care has to be given to avoid over-fitting:
losing the genericity of NN for matching exactly the learning
set. In addition, each evolution of the NN requires to re-run
the full validation process, as new knowledge may alter the
previously valid responses.

Expert systems require careful configuration, especially
when their (or their knowledge’s) complexity increases. Yet
when their field is correctly constrained, and not expected to
change, ES are “perfect generic ad-hoc solutions”.

On a side note, it may be possible to classify some ES
by their processing time. For a similar complexity, RBR and
MBR performs in less time than CBR2, as they have less
computational complexity. This is a gross approximation, as
each expert system is more suited for a set of situations. And
to exactly compare the process time, one should define metrics
to compare situations’ complexity.

III. N-LAYER

Pervasive systems, as smart cities or smart homes, are com-
plex systems that rely on distributed components of varying
“intelligence”. These components are parts of their integrating
systems, and usually independent from the rest of the whole

1or the equivalent, as the learning set for NN
2BN and NN (and others) are more dependant on more complex parameters

than “database size” and “activation or response fusing”

system. Among these components, some may be considered
as “expert systems” in a broad sense.

The more a system is: complex; relied upon; deployed, and
the higher the stakes are, the more anomalies’ occurrence has
to be taken into account. Pervasive systems –smart cities, smart
homes. . . – and even expert systems, are no exception.

Anomalies can be managed by an expert system. In spite of
steady progress, conceiving a perfect, generic expert system
is a nigh impossible task. A well-suited, specific ES is easier
to toughen against its own errors, to the detriment of its
genericity. Easier to design and manage, and of a lesser scope,
such an expert system can be grouped with other similar ones.
In a pervasive, connected world, such as SC or SH, there may
be many redundant, “small” expert systems, as well as some
domain-specific ones.

For example, a smart city can be built from inter-connected
smart homes, each with their own set of expert systems. With
cooperation, a dysfunction in an ES of one smart home can
be mitigated while repairs are under way, by switching to the
same ES of the next home. Or some functionalities can be
improved by sharing information between homes; taking into
account information otherwise not accessible at this level [7].

Fig. 3. Schematic overview of the N-Layer architecture
The light blue diamonds represent expert systems, of various kinds.

The arrows denote possible dependencies. The aggregation from
and publication to the context are implied for every expert system.

As pictured by figure 3, the solution suggested in this paper,
the N-Layer, makes hierarchical layers of expert systems. In a
similar fashion to [2], the various expert systems improve the
context, and provide their responses to the rest of the system.
However, the expert systems are organized as layers, based on
their authority and their dependencies.

These dependencies are service inspired: any expert system
similar enough can be relied upon. SH and SC are expected
to have many ES, of varying redundancy. Hence, in a system
of systems, the various specific expert systems can be used



together to provide improved efficiency.

The dependency only goes upward: layers are independent
form the layers above them, to avoid looping dependency.
However, layers may depend on the ones under them. They
benefit from the enriched context and the decisions of these
lower layers. As the knowledge is improved with the level of
the layer, a layer may preempt or invalidate its lower layers
outputted information.

An event is processed by every relevant expert systems
in the N-Layer’s layers, from the bottom to the top. Each
expert system managing the event benefits from the previous
ES’ processing. As the process occurs, the information is
increasingly complete: the enriched context and decisions are
expected to be more reliable. Hence the downward preemption.

The resulting layers of ES are organized with increasing
complexity and genericity. Each additional expert system can
be more high-level than the previous ones, as it can rely on
these “lower layers”.

The reliability of a whole depends on the reliability of its
parts, as well as how the mistakes are carried away. This
is why the N-Layer relies on many highly specific, efficient
expert systems in the lower layers. Each is reliable in its
domain only. Above these, more generic expert system can
discriminate between the false positive and false negative,
as they dispose of more knowledge. By focusing on small
subset of functionalities, the higher layers are of increasingly
genericity, while still staying reliable.

At the lowest layers, the components are barely expert
systems, and at most RBR with as few rules as possible, to
minimize false categorization of the context. Depending on the
criticalness and the requirement to distinguish these errors,
false positive or false negative are avoided. For example, it
may be better to falsely suspect the batteries of a device are
dead than to falsely suspect they are full.

Relying on these layers, the next layers consolidate and
improve the knowledge from the bottom layers. The ES of
these layers, which becomes more and more “real” expert
systems3, perform more complex analysis. They check the
lower layers’ context for false positive or false negative.
They add complementary information. They even provide new
context and decisions.

IV. IMPLEMENTATION / TEST

An implementation of the N-Layer has been created on the
UniversAAL middleware. This “proof of concept” relied on
some functionalities of the middleware to ease the develop-
ment.

A. UniversAAL

UniversAAL [1] is a European Union project to create a
reference among the AAL oriented middlewares. Ended in

3compared to the bottom layers’ ES Though these are still expert systems,
even if they are not as complex as more common cases

2014, though still active, UniversAAL (uAAL) is the follow-
up of half a dozen previous projects. This modular middleware
is a service oriented architecture written in Java and OSGi. It
provides miscellaneous functionalities, in regard to security,
privacy. . . as well as various tools to ease application/service
development.

In UniversAAL, applications communicate with each
other by the means of ontologies, abstracting their APIs.
To this end, 3 buses are provided: one dedicated to the
user interface (UI bus); one for service request (Service
bus), where each request is answered by a response; and
one for context exchange (Context bus). To make use of
a bus, applications/services must register on it, specifying
communication properties, to the middleware. Then, the
security modules can check whether the registration is
accepted or refused.

UniversAAL’s buses filter inputs to and outputs from ser-
vices. From the context (cf. figure 2), the aggregator does
only access information it specifically required. Thus, its job
is to sort ambiguous data and to remove sensible part of the
messages, on a per case basis. This implementation of the
solution, which relies on the application developer to do the
right job, is far from perfect. A more concrete solution would
be to ask the user whether each registration to a bus is valid
or not.

UniversAAL ensures that each context message is trans-
mitted to each interested service. This eases the dependency
management. The context is broadcasted to any component
authorized to access it, and the services are left to organize
themselves. By tagging each response with the set of its
related inputs’ IDs, it is possible to tackle the problem of
the delay management while limiting the additional weight of
the message. This relies on a service which provides storage
for every context message transmitted.

B. Implementation

The example presented in this section simulates 3 rooms: a
storage room; a break room; and a corridor linking the both
together. Each room is geared with various sensors which
monitors the temperature and the presence of a user. To
manage the various reasoners, a 4 layers N-Layer is used.

Both the storage room and the break room have environment
control, to increase or decrease the temperature. For each
room, when the temperature goes beyond a given range, an
anomaly is raised. The storage room’s temperature is kept ice-
cold. The break room’s temperature is luke-warm. Whereas the
corridor’s temperature is monitored, but left unmanaged.

In addition, the temperature of the room in which the user is
is monitored. A too long exposition to “harmful” temperature
triggers an anomaly alert.

To manage the user’s well-being, and the rooms’
temperature, the N-Layer is built of 4 layers of increasing
worth. The first layer processes the sensors’ context, to try
and extract revelant properties. The second layer tries and
extracts from this enriched context some obvious anomalies.



The third layer processes the available context to submit
mitigation measures. These measures are vetted by the fourth
layer. This last layer emits the validated outputs.

The context is then enriched by services and related
expert systems. The events (“temperature in storage is too
hot”, “user is not found”, etc.) are expressed with their own
ontology, as the message is destined to whichever can read
them. Anomalies are expressed using a common ontology,
focusing on the system’s components and their relations.
This implies that each expert system knows their relevant
components’ relations.

When the application starts, so do the services, which per-
form their duty. Once initialized, the sensors provide grounds
for the context. From there, the N-Layer’s layers can perform
their work.

Periodically, the sensors update their share of the context.
These events may trigger updates in the N-Layer. When an
event occurs, the relevant sensors emit new context.

When triggered by the second layer, the anomaly alert
reaches the fourth layer with potential, quick solutions. The
solutions’ discrimination (or combination) is then performed.

The selected action –or lack thereof– triggers new
notifications from the sensors. This new step may further
improve the situation’s knowledge, closing in to its resolution.
Or it may start a new situation to resolve.

The presented example, aimed to check the validity of the
N-Layer, is minimalist. This is due to the amount of work
required to develop various expert systems. Their integration
requires either translation modules (at the level of the aggre-
gator and the publisher), or additional fine-tuning.

An improved example is pending. It is expected to be
bigger: with many more devices and expert systems. In ad-
dition, it’ll be independent of the middleware (even though
UniversAAL has some interesting features): no functionality
of the N-Layer requires specifically UniversAAL. When this
example will be finished, it should scale from AAL to smart
homes.

V. CONCLUSION

The anomaly management, in the field of ubiquitous intel-
ligence such as smart cities, smart homes. . . has been focused
on increasingly efficient expert systems. However, it is difficult
to benefit from these expert systems, as they are hard to
manage (design, use and maintain). Our idea is to focus on
existing solutions, and to integrate them together, by using a
“KISS” (Keep It Simple) approach.

Some of the related problematic still have to be tackled.
The various expert systems have to express information in
a sensible way for the whole system. This can be done by
translating to and from, or even using, a common language,
which can be achieved by using ontologies.

The N-Layer relies on many “low level” expert systems,
to provide a ground context. On top of these layers, more

abstract expert system are deployed. The goal is to ease the
expression of high level anomaly management, by ensuring the
lower levels exist and obey. This is done through a redundancy
tolerant, hierarchically layered expert system.

Off course, the solution is not perfect. Its upward depen-
dency puts constraints on how to express generic solutions. A
possible improvement could be to rely on subscriber/publisher,
though this trades the dependencies restrictions with the time
(and reactivity) management.
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