Assessment of the impact of spatial audiovisual coherence on source unmasking
Julian Palacino, Mathieu Paquier, Vincent Koehl, Frédéric Changenet, Etienne Corteel

To cite this version:
Julian Palacino, Mathieu Paquier, Vincent Koehl, Frédéric Changenet, Etienne Corteel. Assessment of the impact of spatial audiovisual coherence on source unmasking. AES (Audio Engineering Society). 140th AES Convention, Jun 2016, Paris, France. 2016. hal-01326842

HAL Id: hal-01326842
https://hal.univ-brest.fr/hal-01326842
Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The present study aims at evaluating the contribution of spatial audiovisual coherence for sound source unmasking for live music mixing. Sound engineers working with WFS technologies for live sound mixing have reported that their mixing methods have radically changed. Using conventional mixing methods, the audio spectrum is balanced in order to get each instrument intelligible inside the stereo mix. In contrast, when using WFS technologies, the source intelligibility can be achieved thanks to spatial audiovisual coherence and/or sound spatialization (and without using spectral modifications). The respective effects of spatial audiovisual coherence and sound spatialization should be perceptually evaluated.

As a first step, the ability of naive and expert subjects to identify a spatialized mix was evaluated by a discrimination task. For this purpose, live performances (rock, jazz and classic) were played back to subjects with and without stereoscopic video display and VBAP or WFS audio rendering. Two sound engineers realized the audio mixing for three pieces of music and for both audio technologies in the same room where the test have been carried out.

Hypothesis:
- The audiovisual coherence allows source unmasking
- The source spatialization allows source unmasking

UBO 3D room (controlled environment)
3D stereoscopic projection (HD)

- 2 conditions
- 3 excerpts
- 2 sound engineers
- 4 versions

Preliminary listening:
- Subjects are able to identify the differences to evaluate it?

DISCRIMINATION TEST

Protocol
- 2 sessions (Audio, Audiovisual)
- 3 Excerpts x 2 sound ing x 4 versions

RESULTS

Expertise:

- **Excerpt:**
 - F(1,25) = 1.54, p = 0.23 and > 70%
- **Session and expertise:**
 - F(1,25) = 4.90, p = 0.036
 - Bonferroni post hoc (p<0.001)

Sound Ing.:

- **Excerpt:**
 - F(1,25) = 34.09, p < 0.001
- **Session and Sound ing:**
 - F(2,50) = 9.92, p < 0.001
 - Bonferroni post hoc (p<0.001)

Subjects are able to perform discrimination task

- The expertise does not influence the discrimination.
- Subjects are able to detect small differences between versions.
- Mixing choices affect discrimination.
- Classic : Conservative mixing conform to the style aesthetics.
- Experts have equivalent scores in audio an audiovisual conditions.
- Assessment by naives is degraded in audiovisual condition.
- Experts have equivalent scores in audio an audiovisual conditions.
- Results are significantly different between sound ing.
- (especially for the classic excerpt)
- WFS and VBAP are differentiated