
HAL Id: hal-01228929
https://hal.univ-brest.fr/hal-01228929

Submitted on 15 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure and Efficient Sharing Aggregation Scheme for
Data Protection in WSNs

Feriel Bouakkaz, Mawloud Omar, Ahcène Bounceur, Abdelkamel Tari

To cite this version:
Feriel Bouakkaz, Mawloud Omar, Ahcène Bounceur, Abdelkamel Tari. Secure and Efficient Sharing
Aggregation Scheme for Data Protection in WSNs. ISSPIT, Dec 2015, Abu Dhabi, United Arab
Emirates. �hal-01228929�

https://hal.univ-brest.fr/hal-01228929
https://hal.archives-ouvertes.fr

Secure and Efficient Sharing Aggregation Scheme
for Data Protection in WSNs

Feriel Bouakkaz1, Mawloud Omar1, Ahcène Bounceur1,2 and Abdelkamel Tari1

1Laboratoire d’Informatique Médicale, Faculté des Sciences Exactes
Université de Bejaia, 06000 Bejaia, Algérie.

2Lab-STICC - UMR CNRS 6285
Université de Bretagne Occidentale, 29238 Brest, France.

Email: bouakkazferiel@yahoo.fr

Abstract—Wireless sensor networks (WSNs) are omnipresent
in a multitude of applications. One of the important common
requirements of these applications is the data security. Indeed,
the exchanged data in WSNs are often considered as a preferred
target, which can be a subject of several threats, such as eaves-
dropping, replay, falsification, alteration, etc. Another important
common requirement of WSNs applications is data aggregation.
Indeed, the limitations of such networks in terms of energy,
bandwidth and storage accentuate the need of data aggregation.
In this paper, we address these two issues. We propose a new
efficient approach for data integrity and credibility protection
for WSNs, while ensuring the data aggregation. We consider
a cluster-based network architecture, where sensor nodes are
equally distributed in clusters. Each sensor node is in charge to
deliver one bit of the sensed data and at the same time observe
the remaining parts through a parity control based encryption
approach. In this manner, the sensed data could be effectively
and securely controlled with a low overhead compared to the
classical aggregation approaches, where all the nodes transmit
individually the sensed data. To validate the proposed protocol
we have simulated it using the simulator CupCarbon and in order
to evaluate its efficiency in terms of energy, we have developed a
prototype with the TelosB platform, where the obtained results
show that our method is less energy consuming.1

I. INTRODUCTION

The sensors have much seduced by their many advantages.
They very quickly invade the field of medicine, industry,
environment, military and many other fields. These equipments
are of small size, low price, have the ability to capture
different information (thermal, optical, vibration, etc.) and
can communicate wirelessly. To benefit from these advantages
possessed by the sensors, they are deployed in large number
in areas of interest forming a WSN to perform a common task
[2][5]. However, WSNs suffer from energy problem, because
it is difficult to change the batteries of sensors after their
deployment. In other hand, WSNs suffer from vulnerability
problem, due to the nature of wireless communication. These

1This work is part of the research project PERSEPTEUR supported by the
French Agence Nationale de la Recherche ANR.

constraints highlight the difficulty of developing the necessary
protocols for the management and protection of these net-
works, such as routing and security protocols. As the other
types of network architectures, security is one of the most
challenging requirements in WSNs [11] and includes mainly
data confidentiality, data integrity, authentication, availability
and data freshness. In the literature, the majority of works
uses the symmetric cryptography. The latter takes into account
the constraints of this network type, nevertheless the key
distribution stays a challenge. Asymmetric cryptography is
more secure than symmetric one, but is more expensive in
term of resources.

There are numerous works using the threshold cryptogra-
phy: a number of nodes cooperate in order to create the secret,
and an attacker has to successfully compromise these nodes
to alter the data exchanged. Their results are very promising.
Shen et al. [9] have proposed a protocole based on µTESLA
[13] and threshold cryptography in order to provide a broadcast
authentication for multi base stations sensor networks. The
proposed protocol divides the authentication key into key
shares, and distributes them to each station. Sensor nodes
reconstruct keys by using key shares broadcasted by Base
station and authenticate the broadcast messages. Li et al. [7]
have proposed a secure monitoring scheme using identity-
based threshold signcryption scheme. The proposed protocol
provides a confidential and authenticated transmission channel
for monitoring messages sent by the sensor nodes to the
base station. Sliti et al. [8] have proposed a technique called:
”k-security in heterogeneous WSNs” based on elliptic curve
cryptography and threshold signature. A minimal number of
k sensor nodes is required to individually sign a message in
order to generate a global valid signature. It requires that an
alert message related to a hostile presence within the monitored
region should be issued by k distinct sensor nodes in order to
be considered as valid. Singh et al. [3] have proposed a hierar-
chical group key management using threshold cryptography for
WSNs. The technique considers hierarchical sensor network,
where sensing nodes are coordinated by forwarding nodes.
The latter nodes are connected to the base station and are

responsible for key computation and distribution. A forwarding
node computes the group key using a threshold secret sharing
scheme. The acquired group key is divided into multiple shares
and shared among the member nodes. Koschuch et al. [6]
have proposed an adaptation of the multiparty multiplication
protocol for cluster-based WSNs. The authors have focused on
the number of exchanged messages and the generated overhead
on each sensor node. The secret is signed by the sensor nodes
by using RSA, and it is sent to the cluster head in order
to calculate the complete valid signature. Chaudhary et al.
[1] have proposed a group authentication scheme for WSNs
using threshold cryptography. It is used to authenticate multiple
devices at once. The group manager and the members sharing
a pair of RSA keys used to exchange a message. This message
allows devices to get partially decrypted message (PDM). All
of these PDMs are sent to the groupe manager in order to
recover the complete message and to authenticate the group.

In this paper, we propose a new protocol that aims to
ensure two important functions in the operation of WSNs: the
protection of data integrity and the aggregation. This protocol
is based on threshold cryptography, which consists of the
collaboration of sensor nodes in order to deliver collectively
the sensed data. Each sensor node proceeds to the aggregation
by sending to the cluster head a part of the sensed value and
control bits. The latter bits are used by a system of parity on
different bit combinations of the message. A cluster head, upon
receiving all the parts, recovers the complete value, verifies its
integrity by using the control bits and corrects the message
in case of attacks. To validate the proposed method we have
simulated it using the simulator CupCarbon [14] and in order
to evaluate its efficiency in terms of energy, we have developed
a prototype with the TelosB platform.

The remainder of this paper is organized as follows. In Sec-
tion II, we give the detailed description of our protocol, as well
as we discuss the resistance of our protocol against attacks. In
Section III, we present the simulation results of our protocol
using the simulator CupCarbon and its implementation on real
sensors. These results have allowed us to validate our protocol
and study its effectiveness in terms of energy consumption.
Finally, in Section IV, we conclude the paper.

II. THE PROPOSED PROTOCOL

In this section, we present the considered network model,
the operations of the proposed protocol and the security
analysis.

A. Network model and assumptions

We consider a cluster-based WSN composed of a set of
sensor nodes deployed in a zone of interest. We assume
that sensor nodes are static, their wireless mediums are error
free, and have all the same hardware characteristics. The
network is divided into several clusters with the same node
number, and where each cluster is supervised by a cluster

head. We assume that the sensor nodes belong to the same
cluster are geographically close so that the sensed data will
be the same for each sensor node of the same cluster. Several
WSN applications operate under this property. For example,
in wireless body area networks, the sensor nodes scratched
on a same patient’s body observe approximately the same
glucose state. The sensor nodes deployed in a volcanic area
observe approximately the same temperature if the nodes are
geographically close. In military applications, an adversary is
detected simultaneously by sensor nodes supervising the same
area. We note n the number of the sensor nodes that belong
to each cluster. In order to provide the cluster size balance by
adjusting n, we can use the potential-based clustering protocol,
proposed in [10]. This protocol uses Hello packets to estimate
the potential ”number of neighbors” of each node. Each node
maintains the potentials of its neighbors and determines the
budget amount assigned to each one of them. A neighbor with
higher potential receives more tokens than a neighbor with
a lower potential. The same distribution process is applied by
sensor nodes in the subtrees until the budget is exhausted or no
further growth is possible. Let consider the binary format of the
sensed environment parameter V = (v1, v2, · · · , vn), where n
is equal to the number of the bits of V (i.e., n = |V | bits) and
vi ∈ {0, 1}. In Table I, we summarize the used notations in
this paper, where i = 1, ..., n.

TABLE I. NOTATIONS

Notation Description
n The cluster size (n = |v|)
Si The ith sensor node
V The sensed data v = (v1, v2, · · · , vn)
V ′ The reconstructed sensed data
mi The message sent by Si

m′
i The message received by the cluster head
r The number of control bits
C The control bit (parity bit) matrix
G The generator matrix

B. The protocol algorithm

Before the network deployment, each sensor node is pre-
configured with a set of symmetric keys shared with all
the other sensor nodes of the network. These keys are used
to secure the communication between sensors, cluster heads
and the base station. After deployment, excepting the cluster
heads, each sensor node discovers its neighbors, identifies
the required symmetric keys to be used. However, cluster
heads keep in addition, symmetric keys of the sensor nodes
that belong to their cluster. The main purpose using these
symmetric keys is to secure multi-hop communication when
transmitting sensitive information as parts of the sensed value
and the exchanged data between the cluster heads and the base
station. Other operations to do before the deployment are the
computation of the control bit number r and the generation of
the r×n binary matrix G given by Equation (1), and where the

rows represent a succession of 2i of 1 and 0, where i = 1, ..., n
is the column number in G.

G =

1 0 1 0 1 0 1 0 .
1 1 0 0 1 1 0 0 .
1 1 1 1 0 0 0 0 .
.

 (1)

The parameter r depends on the size of the sensed data
and is calculated by solving the following equation:

n = 2r − y (2)

where y is a positive variable that must be minimized.

Once an event is detected, each sensor node Si extract
from the sensed data V its ith bit, where i corresponds to the
identifier of Si which is related to its order in the cluster. Then,
it calculates the control bits c1, c2, ..., cr, where ci represents
the even parity of the vector bi = (gi&v), gi is the ith row
of G and & represents the logical AND operator. Figure 1
illustrates how to calculate cj for n = 5 and r = 3.

Fig. 1. Computation of the control bits cj for n = 5.

A message mi sent by the sensor node Si to the cluster
head is composed of vi, c1i , ..., cri . That is to say, mi =
[vi|c1i |c2i |...|cri]. The character ′|′ represents the conactenation,
vi is the ith bit of V sent by the sensor node Si and cji is the jth

control bit sent by the sensor node Si. The control bits are used
to verify the integrity of the message. Note that the message
mi is sent once encrypted. The reconstruction of the message
by the cluster head starts by the decryption of all the messages
m′

i received from its neighbors, where m′
i = [v′i|c′1i |c′2i |...|c′ri].

The next steps are; concatenates v′i, uses the control bits to
verify the integrity of the message and transmits it securely
to the base station. Algorithm 1 and Algorithm 2 shows the
pseudo code of the proposed protocol to implement on each
sensor node and each cluster head.

C. Behavior against attacks

If an attacker, internal or external, tries to alter the ex-
changed data, it will attempt to modify the information while
ensuring that it will not be detected. In front of this type of
attack, the proposed protocol can detect this modification, and
can also identify the malicious node, with the possibility to
correct the message. In our protocol, each node sends a bit
of the message, which limits the power of each node to alter

Algorithm 1 The pseudo code of a cluster head.
Input: n: The number of the sensors of the cluster

1: Calculate the value of r
2: Generate the matrix G
3: repeat
4: Read/Decrypte the n received messages: m′

i =
[v′i|c′1i |c′2i |...|c′ri], i = 1, ..., n

5: Reconstruct the sensed value V ′ = [v′1|v′2|...|v′n]
6: Calculate the vector C = (c1, c2, ..., cr)
7: Compare each received C ′

i = (c′1i , c
′2
i , ..., c

′r
i) to C

8: if (∀k/C 6= C ′
k) then

9: Determine the malicious node and correct V ′

10: end if
11: Send V ′ to the base station
12: until false

Algorithm 2 The pseudo code of a sensor node.
Input: n: The number of the sensors of the cluster
Input: i: The identifier of the current sensor node

1: Calculate the value of r
2: Generate the matrix G
3: repeat
4: Wait for a message from the cluster head
5: Read the sensor value V (a binary format)
6: Extract the ith bit of V
7: Calculate the vector C = (c1, c2, ..., cr)
8: Construct the message mi = [vi|c1i |c2i |...|cri]
9: Encrypt mi

10: Send mi to the cluster head
11: until false

the entire data. Hence, any malicious node can only modify
one bit of the message. This modification will be immediately
detected by the cluster head through the control bits. These
bits represent the bit parity of the received message V ′. If any
malicious node change some of the bits of the sent message V
then this parity will not be longer verified. Therefore, the attack
will be detected. The attack detection phase will be followed
by the identification of the malicious nodes phase. This will
be done by identifying the common bit of the incorrect control
bits. We will come back again to the situation illustrated by
Figure 1. In this case, if the parity is not verified by the control
bits c′1 and c′2 we start first by identifying the common bits (v′1
and v′5 in our example). Then, from these common bits, we will
determine those that are not verified by c′3 (v′5 in our example).
This allows as to determine the malicious nodes, where the
ith node is declared as malicious if the corresponding ith bit
is not verified by c′3 (i.e., the fifth node is malicious in our
example). By analyzing the behavior of the proposed protocol
against active attacks, we conclude that if any attacker try to
modify any bit of the message V without being detected, it
must modify this bit in at least (n/2) + 1 nodes.

III. SIMULATION AND IMPLEMENTATION

To validate the proposed protocol, first, we have simulates
it using the CupCarbon platform [14][15] and then we have
implemented it using real sensor nodes (TelosB).

A. Simulation results

The simulations are done using the CupCarbon simulator,
which is a Smart City and Internet of Things Wireless Sensor
Network (SCI-WSN) simulator. Its objective is to design, visu-
alize, debug and validate distributed algorithms for monitoring,
environmental data collection, etc. and to create environmental
scenarios such as fires, gas, mobiles. Networks can be designed
and prototyped by an ergonomic and easy to use interface
using the OpenStreetMap (OSM) framework to deploy sensors
directly on the map. It includes a script called SenScript
which allows to program and to configure each sensor node
individually.

Figure 2 shows a network with 6 nodes (one cluster head
S6 and five sensor nodes S1, S2, S3, S4 and S5) designed
using the simulator CupCarbon.

Fig. 2. Network designed using the CupCarbon simulator.

We have validated that the proposed protocol can detect
malicious nodes and correct the switched bit of the received
data. In the simulations we assumed that the energy con-
sumption related to the the computing operations is zero. To
estimate the energy consumption, we use the energy model
of the TelosB. It is estimated to 59.2µJ to transmit one bit
and to 28.6µJ when one bit is received [16]. We have used
the Super Alkaline AALR6 battery which is a portable energy
source with a capacity of 9580 Joules.

Figure 3 shows the state of the battery of each sensor node
in the case where the cluster head asks four times for the
sensed value each 1 seconds. We have considered a data with
5 bits. Note that the sensor node S6 is the cluster head.

Figure 4 shows the energy consumption (in Joules) of the
sensor node S1 in function of the time (in seconds). If we look
the zoomed part of the peak, we can see two peaks that are
generated by the received message from the cluster head that

Fig. 3. The state of the battery vs. the simulation time.

asks for the sensed data (the small peak) and by the message
to send the sensed data to the cluster head. We conclude that,
the consumption of a sensor is mainly due to the sending of
the sensed data.

Fig. 4. The energy consumption vs. the simulation time.

B. Real implementation

Figure 5 shows a MTM-CM5000-MSP which is the sensor
nodes used in our experiment.

It is IEEE 802.15.4 compliant wireless sensor node, based
on the original open-source ”TelosB/Tmote Sky platform de-
sign” developed and published by the University of California,
Berkeley. The included sensors are: temperature, relative hu-
midity and light. To approach has been implemented using the
Contiki OS [12]. It is an open source and portable operating
system designed specifically for resource limited devices such
as sensor nodes. It brings the benefits of both events and thread
execution models. It also supports a full TCP/IP stack via uIP
and the programming abstraction ”Protothreads”. The Contiki-
OS version which we have used is InstantContiki2.7-VMware
Player.

We have developed two prototypes: one in the cluster
head side and the other in the sensor side according to the

Fig. 5. A TelosB sensor node.

steps presented previously. These programs are developed in
language C, injected into the sensor nodes by using the virtual
machine of Contiki-OS. To compare the simulation results with
the real ones, we have designed the same network of Figure 2
as illustrated by Figure 6. The cluster head is connected to a
laptop to monitor in real time the execution of the protocol and
collects data via the USB port by using the virtual machine of
Contiki-OS.

Fig. 6. Network deployment.

To profile the power consumed by the sensors, we have
used the Powertrace system [4] which gives values that are
very close to the real ones. Powertrace calculates the power
consumption of the local node based on the monitoring of the
power state. This value is then encapsulated according to the
corresponding activities (reception or transmission of packets,
computation, etc.). The energy consumption is computed in
Joules as:

E =
EnergestValue× Current×Voltage

RtimerSecond× 1000
(3)

where, Current = 20mA for listening, 17.7mA for trans-
mitting and 1.8mA for computing. Voltage = 3V and
RtimerSecond = 32768. Energy consumption profiling of our
protocol is illustrated by Figure 7.

The blue curve, in the upper part, represents the energy
consumption generated by sending four times the value of
the temperature sensor. This means that our protocol will be
executed four times by each sensor. While the lower part shows
the corresponding activities for each consumption. These two
parts have been obtained using the Powertrace system. This
graph shows that the power consumption is close to 0.001
Joules. This consumption is generated by passive monitoring
operations, the execution of Powertrace and other network
management operations running continuously. However, the
four peaks are due to energy consumed by three activities: the
reception activity (in green color), the transmission of data to
the cluster head (in blue color) and the computation activity (in
red color). If we compare this figure with Figure 4 we can see
that the results obtained by simulation and using real sensor
nodes are close. Then, we can conclude that the proposed
protocol is less energy consuming and it is estimated at 0.0048
Joules to execute one time the proposed protocol. Using the
Super Alkaline AALR6 battery with a capacity of 9580 Joules,
our protocol can be executed ∼ 2 · 106 times.

IV. CONCLUSION

In this paper, we have proposed an efficient shared protocol
that ensures the data integrity. In this protocol, each sensor
node transmits a part of the sensed data and in the same time
observes the remaining parts through a parity control-based
encryption approach. The cluster head reconstitutes the data by
concatenating the received parts, uses the control bits to detect
and correct the message in case of attack, and finally forwards
it securely to the base station. We proved the robustness of our
protocol by studying its behavior against attacks. Subsequently,
we validated it by simulation using the CupCarbon simulator
and then implemented it in a real environment based on the
TelosB sensor nodes. The obtained results in terms of energy
consumption show that the proposed protocol is less energy
consuming and can be used to send about 2 · 106 of 5 bit
coded sensed value.

REFERENCES

[1] K. Chaudhary and G. Shinde. Group Authentication in Wireless Sensor
Networks. International Journal of Scientific Engineering and Research,
2015.

[2] H.M. Ammari. The Art of Wireless Sensor Networks: Volume 1: Funda-
mentals. Springer Science and Business Media, 2013.

[3] K. Singh and L. Sharma. Hierarchical Group Key Management using
Threshold Cryptography in Wireless Sensor Networks. International Jour-
nal of Computer Applications, 2013.

[4] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes. Powertrace: Network-
level Power Profiling for Low-power Wireless Networks. SICS Technical
Report T2011:05 ISSN 1100-3154, 2011.

Fig. 7. Energy consumption profiling of our protocol.

[5] I.F. Akyildiz and M.C. Vuran. Wireless Sensor Networks. Advanced Texts
in Communications and Networking, Wiley, 2010.

[6] M. Koschuch, M. Hudler, M. Kruger, P. Lory, and J. Wenzel. Applica-
bility of multiparty computation schemes for wireless sensor networks.
Proceedings of the Data Communication Networking, Athens, 2010.

[7] J.F. Li, D.W. Wei, and H.Z. Kou. Secure Monitoring Scheme Based
on Identity-Based Threshold Signcryption for Wireless Sensor Networks.
Proceedings of the 4th Wireless Communications, Networking and Mo-
bile Computing, 2008.

[8] M. Sliti, M. Hamdi, and N. Boudriga. An Elliptic Threshold Signature
Framework for k-Security in Wireless Sensor Networks. Proceedings of
15th Electronics, Circuits and Systems, St. Julien’s, 2008.

[9] Y.L. Shen, Q.Q. Pei, and J.F. Ma. MMµTESLA: broadcast authentication
protocol for multiple-base-station sensor networks. Chinese Journal of
Computers, 2007.

[10] F.B. Abdesslem, A. Ziviani, M. Dias de Amorim, and P. Todorova.
Looking Around First: Localized Potential-Based Clustering in Sponta-
neous Networks. Communications Letters, 2007.

[11] N.R. Prasad and M. Alam. Security Framework for Wireless Sensor
Networks. Journal of Wireless Personal Communications, 2006.

[12] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a Lightweight and
Flexible Operating System for Tiny Networked Sensors. In first Workshop
on Embedded Networked Sensors, 2004.

[13] A. Perrig, R. Szewczyk, J.D. Tygar, V. Wen, and D.E. Culler. SPINS:
security protocols for sensor networks, Wireless Networks Journal, 2002.

[14] K. Mehdi, M. Lounis, A. Bounceur, and T. Kechadi, Cupcarbon:
A multi-agent and discrete event wireless sensor network design and
simulation tool, In IEEE 7th International Conference on Simulation
Tools and Techniques (SIMUTools’14), Lisbon, Portugal, March 17-19,
2014.

[15] CupCarbon. (2015) ANR Project PERSEPTEUR, CupCarbon simulator.
[Online]. Available:http://www.cupcarbon.com

[16] A. S. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, Energy
analysis of public-key cryptography for wireless sensor networks, In
the Third IEEE International Conference on Pervasive Computing and
Communications, PerCom 2005, pp. 324328.

